1
|
Li G, Jin Y, Li Y, Cui W, An H, Li R, Neshchimenko VV, Zhu S, Liang Z, Jiang B, Li C. One-Step Self-Assembled WO 3/rGO Microspheres Photoanode Assembled Efficient Photocatalytic Fuel Cells for Simultaneous Organic Pollutant Degradation and Electricity Generation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47784-47796. [PMID: 39208073 DOI: 10.1021/acsami.4c13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Photocatalytic fuel cells (PFCs) present a promising and environmentally friendly approach to simultaneously treat organic pollutants in wastewater and electricity generation. The development of photoanodes with high light absorption and carrier mobility is essential for enhancing the performance of PFCs but remains challenging. Herein, a one-step self-assembly strategy was adopted to develop flower-like WO3/rGO microspheres for PFC devices. Attributed to the abundant surface-active sites, enhanced light harvesting, and efficient separation of photogenerated charge carriers, the WO3/rGO photoanode demonstrated superior rhodamine B (RhB) degradation rate (90% in 2 h), maximum power density (4.74 μW/cm2), and maximum photocurrent density (0.096 mA/cm2), 1.4, 2.4, and 4.0 times higher than the corresponding pure WO3 photoanode, respectively. Density functional theory (DFT) calculations reveal that the built-in electric field formed between the interface of WO3 and rGO promotes the transfer of photogenerated electrons from WO3 to rGO, thus exerting a significant impact on improving the migration and separation of photoinduced charge carriers. Moreover, by combining experimental and theoretical results, a complete PFC operation mechanism for the PFC system was proposed. This study focuses on the strategy of constructing rGO-doped photocatalysts to enhance the interfacial charge transfer mechanism, providing a promising approach for the development of high-performance photoanodes in PFC systems.
Collapse
Affiliation(s)
- Guanshu Li
- Key Laboratory of Science and Technology on Material Performance Evaluating in Space Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yingmin Jin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yumeng Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Wenhao Cui
- Key Laboratory of Science and Technology on Material Performance Evaluating in Space Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Haojie An
- Key Laboratory of Science and Technology on Material Performance Evaluating in Space Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ruxue Li
- Key Laboratory of Science and Technology on Material Performance Evaluating in Space Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - V V Neshchimenko
- Space Materials Laboratory, Amur State University, Blagoveshchensk 675027, Amur Region, Russia
| | - Shuaikang Zhu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Zhiqiang Liang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Chundong Li
- Key Laboratory of Science and Technology on Material Performance Evaluating in Space Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
2
|
Abbas M, Ilyas M, Hussain K, Ali T, Afzal M, Batool N, Hussain Shah N, Qasim M, Wang Y, Cui Y. Defect-engineered dual Z-scheme core-shell MoS 2/WO 3-x/AgBiS 2 for antibiotic and dyes degradation in photo and night catalysis: Mechanism and pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124375. [PMID: 38880327 DOI: 10.1016/j.envpol.2024.124375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
Water pollution caused by antibiotics and synthetic dyes and imminent energy crises due to limited fossil fuel resources are issues of contemporary decades. Herein, we address them by enabling the multifunctionality in dual Z-scheme MoS2/WO3-x/AgBiS2 across photolysis, photo Fenton-like, and night catalysis. Defect, basal, and facet-engineered WO3-x is modified with MoS2 and AgBiS2, which extended its photoresponse from the UV-NIR region, inhibited carrier recombination, and reduced carrier transfer resistance. The electric field rearrangement leads to a flow of electrons from MoS2 and AgBiS2 to WO3-x and intensifies the electron population, which is crucial for night catalysis. When MoS2/WO3-x/AgBiS2 was employed against doxycycline hydrochloride (DOXH), it removed 95.65, 81.11, and 77.92 % of DOXH in 100 min during photo-Fenton (PFR), night-Fenton (NFR), and photocatalytic (PCR) reactions, respectively. It also effectively removed 91.91, 98.17, 99.01, and 98.99 % of rhodamine B (RhB), Congo red (CR), methylene blue (MB), and methylene orange (MO) in Fenton reactions, respectively. ESR analysis consolidates the ROS generation feature of MoS2/WO3-x/AgBiS2 using H2O2 with and without irradiation. This work provides a strategy to eliminate the deficiencies of WO3-x and is conducive to the evolution of applications seeking to combat environmental and energy crises.
Collapse
Affiliation(s)
- Muhammad Abbas
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Mubashar Ilyas
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry Beijing Institute of Technology Beijing, 100081, China
| | - Kashif Hussain
- College of Physics and Optoelectronic Engineering, Shenzhen University, THz Technical Research Center of Shenzhen University, Shenzhen, China
| | - Tariq Ali
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Muhammad Afzal
- University of Agriculture Faisalabad, Sub-campus Burewala, Pakistan
| | - Nazia Batool
- School of Natural Science Department of Physics, National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Navid Hussain Shah
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Muhammad Qasim
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yanyan Cui
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
3
|
Jun BM, Nam SN, Jung B, Choi JS, Park CM, Choong CE, Jang M, Jho EH, Son A, Yoon Y. Photocatalytic and electrocatalytic degradation of bisphenol A in the presence of graphene/graphene oxide-based nanocatalysts: A review. CHEMOSPHERE 2024; 356:141941. [PMID: 38588897 DOI: 10.1016/j.chemosphere.2024.141941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
Bisphenol A (BPA), a widely recognized endocrine disrupting compound, has been discovered in drinking water sources/finished water and domestic wastewater influent/effluent. Numerous studies have shown photocatalytic and electrocatalytic oxidation to be very effective for the removal of BPA, particularly in the addition of graphene/graphene oxide (GO)-based nanocatalysts. Nevertheless, the photocatalytic and electrocatalytic degradation of BPA in aqueous solutions has not been reviewed. Therefore, this review gives a comprehensive understanding of BPA degradation during photo-/electro-catalytic activity in the presence of graphene/GO-based nanocatalysts. Herein, this review evaluated the main photo-/electro-catalytic degradation mechanisms and pathways for BPA removal under various water quality/chemistry conditions (pH, background ions, natural organic matter, promotors, and scavengers), the physicochemical characteristics of various graphene/GO-based nanocatalysts, and various operating conditions (voltage and current). Additionally, the reusability/stability of graphene/GO-based nanocatalysts, hybrid systems combined with ozone/ultrasonic/Fenton oxidation, and prospective research areas are briefly described.
Collapse
Affiliation(s)
- Byung-Moon Jun
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon, 34057, Republic of Korea
| | - Seong-Nam Nam
- Military Environmental Research Center, Korea Army Academy at Yeongcheon, 495 Hoguk-ro, Gogyeong-myeon, Yeongcheon-si, Gyeongsangbuk-do, 38900, Republic of Korea
| | - Bongyeon Jung
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Jong Soo Choi
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Choe Earn Choong
- Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-dong Nowon-gu, Seoul, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-dong Nowon-gu, Seoul, Republic of Korea
| | - Eun Hea Jho
- Department of Agricultural Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
4
|
Sun Y, Zhao X, Song X, Fan J, Yang J, Miao Y, Xiao S. An all-in-one FeO x-rGO sponge fabricated by solid-phase microwave thermal shock for water evaporation and purification. J Environ Sci (China) 2024; 138:671-683. [PMID: 38135430 DOI: 10.1016/j.jes.2023.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 12/24/2023]
Abstract
Developing high-efficiency photothermal seawater desalination devices is of significant importance in addressing the shortage of freshwater. Despite much effort made into photothermal materials, there is an urgent need to design a rapidly synthesized photothermal evaporator for the comprehensive purification of complex seawater. Therefore, we report on all-in-one FeOx-rGO photothermal sponges synthesized via solid-phase microwave thermal shock. The narrow band gap of the semiconductor material Fe3O4 greatly reduces the recombination of electron-hole pairs, enhancing non-radiative relaxation light absorption. The abundant π orbitals in rGO promote electron excitation and thermal vibration between the lattices. Control of the surface hydrophilicity and hydrophobicity promotes salt resistance while simultaneously achieving the purification of various complex polluted waters. The optimized GFM-3 sponge exhibitedan enhanced photothermal conversion rate of 97.3% and a water evaporation rate of 2.04 kg/(m2·hr), showing promising synergistic water purification properties. These findings provide a highly efficient photothermal sponge for practical applicationsof seawater desalination and purification,as well as develop a super-rapid processing methodology for evaporation devices.
Collapse
Affiliation(s)
- Youkun Sun
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiuwen Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueling Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junhe Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; Prytula Igor Collaborate Innovation Center for Diamond, Shanghai Jian Qiao University, Shanghai 201306, China
| | - Yingchun Miao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Shuning Xiao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
5
|
Deng F, Olvera-Vargas H, Zhou M, Qiu S, Sirés I, Brillas E. Critical Review on the Mechanisms of Fe 2+ Regeneration in the Electro-Fenton Process: Fundamentals and Boosting Strategies. Chem Rev 2023; 123:4635-4662. [PMID: 36917618 DOI: 10.1021/acs.chemrev.2c00684] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic reduction within the context of the electro-Fenton (EF) process. Different strategies developed to improve the reduction rate are discussed, dividing them into two categories that regard the mechanistic feature that is promoted: electron transfer control and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer control includes: (i) the formation of a series of active sites in both carbon- and metal-based materials and (ii) the use of other emerging strategies such as single-atom catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by mass transport control, the main routes involve the application of magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Finally, challenges are singled out, and future prospects are described. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, eventually providing essential ideas for smart design of highly effective systems for wastewater treatment and valorization at an industrial scale.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.,Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos CP 62580, México
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
6
|
He C, Zhao X, Huo M, Dai W, Cheng X, Yang J, Miao Y, Xiao S. Surface, Interface and Structure Optimization of Metal-Organic Frameworks: Towards Efficient Resourceful Conversion of Industrial Waste Gases. CHEM REC 2022:e202200211. [PMID: 36193960 DOI: 10.1002/tcr.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Indexed: 11/09/2022]
Abstract
Industrial waste gas emissions from fossil fuel over-exploitation have aroused great attention in modern society. Recently, metal-organic frameworks (MOFs) have been developed in the capture and catalytic conversion of industrial exhaust gases such as SO2 , H2 S, NOx , CO2 , CO, etc. Based on these resourceful conversion applications, in this review, we summarize the crucial role of the surface, interface, and structure optimization of MOFs for performance enhancement. The main points include (1) adsorption enhancement of target molecules by surface functional modification, (2) promotion of catalytic reaction kinetics through enhanced coupling in interfaces, and (3) adaptive matching of guest molecules by structural and pore size modulation. We expect that this review will provide valuable references and illumination for the design and development of MOF and related materials with excellent exhaust gas treatment performance.
Collapse
Affiliation(s)
- Chengpeng He
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.,College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, China
| | - Xiuwen Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Mengjia Huo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wenrui Dai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xuejian Cheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junhe Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.,Prytula Igor Collaborate Innovation Center for Diamond, Shanghai Jian Qiao University, Shanghai, 201306, China
| | - Yingchun Miao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, China
| | - Shuning Xiao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
7
|
Nath A, Biswas S, Pal A. A comprehensive review on BPA degradation by heterogeneous Fenton-like processes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:714-745. [PMID: 36038973 DOI: 10.2166/wst.2022.219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Synthetic organic pollutants emanating continuously in the ecosystem have become a global concern because of their toxicity and persistent nature. Bisphenol A (BPA) is one such pollutant which threatens public health and safety. It is a monomer used in manufacturing plastics, polycarbonate resins, epoxy resins and is a well-recognised endocrine disruptor mimicking estrogen. BPA leaches into food and beverages stored in containers causing contamination issues. Its widespread exposure and potential toxicity is an environmental health concern. In this review, a systematic investigation has been carried out on the heterogeneous catalysts used for Fenton-like processes for BPA degradation. The Fenton-like reaction is one such reaction that is used for wastewater remediation purposes. The reaction advances through the generation of powerful oxidizing radicals like •OH and SO4•- in the presence of a suitable catalyst. The application of various Fenton catalysts, with their distinguished morphological characteristics, oxidizing properties, toxicity analysis, and the present state of the art of BPA degradation by these catalysts, have been documented in the current work. This review also highlights a few challenges and prospects for analysing degradation products of landfill leachate.
Collapse
Affiliation(s)
- Ankurita Nath
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Both authors have contributed equally to this paper
| | - Subhadeep Biswas
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India E-mail: ; Both authors have contributed equally to this paper
| | - Anjali Pal
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India E-mail:
| |
Collapse
|
8
|
Xiang Y, Liu H, Zhu E, Yang K, Yuan D, Jiao T, Zhang Q, Tang S. Application of inorganic materials as heterogeneous cocatalyst in Fenton/Fenton-like processes for wastewater treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Zhang L, Gao W, Song X, Chi L, Liu B, Yu X. Synergistic Effects of Redox Couples and Oxygen Vacancies Improve the Tetracycline Degradation Property of La 2NiMnO 6. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2314-2326. [PMID: 35139309 DOI: 10.1021/acs.langmuir.1c03112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Improving the e- and h+ separation efficiency and promoting the production of more radicals is the key to improving the degradation efficiency of catalytic degradation of antibiotics. On the other hand, intermediate analysis of antibiotics in the dark adsorption and light irradiation process is very important to clarify the entire antibiotic degradation pathway. Here, the La2NiMnO6 (LNMO) catalyst was prepared by the sol-gel method and the calcination method. By changing the calcination temperature (800, 900, and 1000 °C), the LNMO-based catalysts were successfully formed, abbreviated as L-800, L-900, and L-1000. XPS measurements demonstrated the presence of Mn4+, Mn3+, Mn2+, and oxygen vacancies (OVs) in the LNMO-based catalysts. Analysis of PL, PC, EIS, and TR-PL demonstrated that L-900 had the highest separation efficiency and fastest carrier mobility. The LNMO-based catalysts were used to degrade tetracycline (TC). With the optimized catalyst L-900, the decomposition rate of TC reached 99.57% in 120 min. The entire TC degradation pathway was analyzed according to LC-MS measurements. Radical trap experiments and ESR technology revealed that the synergistic effect of Mn4+/Mn3+, Mn4+/Mn2+, and OVs not only effectively separated e- and h+ but also facilitated the formation of superoxide radicals (•O2-) to accelerate TC degradation. Radicals •OH, h+, and •O2- all contributed to TC deterioration in increasing order of importance. In addition, XPS measurements of the L-900 catalyst before and after use indicated that Mn4+/Mn3+, Mn4+/Mn2+, and OVs were not reactants but mediators of e- and h+. Finally, the mechanism of TC degradation with the LNMO-based catalysts was discussed. This work provided new material for TC degradation in the wastewater.
Collapse
Affiliation(s)
- Lemeng Zhang
- Optoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
| | - Wen Gao
- Optoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
| | - Xinhua Song
- Optoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
| | - Long Chi
- Optoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
| | - Bin Liu
- School of Chemical and Civil Engineering, Shaoguan University, Shaoguan 512023, China
| | - Xiaoyan Yu
- Optoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
| |
Collapse
|
10
|
Zhao G, Ding J, Zhou F, Zhao Q, Wang K, Chen X, Gao Q. Insight into a novel microwave-assisted W doped BiVO4 self-assembled sphere with rich oxygen vacancies oriented on rGO (W-BiVO4-x/rGO) photocatalyst for efficient contaminants removal. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Guo XJ, Yang X, Yuan XY, Zhou D, Lu Y, Liu JK. Oxygen Vacancy Defects and a Field Effect-Mediated ZnO/WO 2.92 Heterojunction for Enhanced Corrosion Resistance. Inorg Chem 2021; 60:15390-15403. [PMID: 34592815 DOI: 10.1021/acs.inorgchem.1c02035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heterojunction constructed by tungsten oxide and zinc oxide materials can improve the problem of easy deactivation of electrons, which is a new and effective strategy for realizing anticorrosion. Here, the ZnO/WO2.92 heterojunction modified by oxygen vacancies (OVs) serving as the photoelectric conversion center was not consumed to provide continuous light-induced protection for steel, and the impedance value was increased by 185.35% compared to that of epoxy resin after 72 h of corrosion. The enhanced anticorrosion activity was due to OV modification leading to oxygen adsorption and electron capture, which inhibited the cathodic corrosion reaction and effectively hindered electron transport. Additionally, the localized surface plasmon resonance effect produced by OVs improved light utilization efficiency and increased electron density, which enabled numerous photoelectrons to gather on the surface of the iron substrate to reduce the corrosion rate of metals. Besides, the cascade effect of the ZnO/WO2.92 heterojunction promoted the transfer of e-/h+ to form an electric field that allowed the directional flow of electrons to inhibit the anode dissolution process. Thus, exploring the corrosion reaction involving OVs and heterojunction structures was of great significance to the development of nonsacrificial and efficient anticorrosion materials.
Collapse
Affiliation(s)
- Xiao-Jiao Guo
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology (ECUST), Shanghai 200237, P.R. China
| | - Xiu Yang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology (ECUST), Shanghai 200237, P.R. China
| | - Xiao-Yu Yuan
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology (ECUST), Shanghai 200237, P.R. China
| | - Dan Zhou
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology (ECUST), Shanghai 200237, P.R. China
| | - Yi Lu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology (ECUST), Shanghai 200237, P.R. China
| | - Jin-Ku Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology (ECUST), Shanghai 200237, P.R. China
| |
Collapse
|
12
|
Jin J, Yin J, Liu H, Huang B, Hu Y, Zhang H, Sun M, Peng Y, Xi P, Yan C. Atomic Sulfur Filling Oxygen Vacancies Optimizes H Absorption and Boosts the Hydrogen Evolution Reaction in Alkaline Media. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Jin
- State Key Laboratory of Applied Organic Chemistry Frontiers Science Center for Rare Isotopes College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Jie Yin
- State Key Laboratory of Applied Organic Chemistry Frontiers Science Center for Rare Isotopes College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Hongbo Liu
- Lanpec Technologies Limited Shanghai 200000 China
| | - Bolong Huang
- State Key Laboratory of Applied Organic Chemistry Frontiers Science Center for Rare Isotopes College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hong Hum Kowloon, Hong Kong SAR China
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry Frontiers Science Center for Rare Isotopes College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Hong Zhang
- Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hong Hum Kowloon, Hong Kong SAR China
| | - Yong Peng
- Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry Frontiers Science Center for Rare Isotopes College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Chun‐Hua Yan
- State Key Laboratory of Applied Organic Chemistry Frontiers Science Center for Rare Isotopes College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry Peking University Beijing 100871 China
| |
Collapse
|
13
|
Jin J, Yin J, Liu H, Huang B, Hu Y, Zhang H, Sun M, Peng Y, Xi P, Yan CH. Atomic Sulfur Filling Oxygen Vacancies Optimizes H Absorption and Boosts the Hydrogen Evolution Reaction in Alkaline Media. Angew Chem Int Ed Engl 2021; 60:14117-14123. [PMID: 33843135 DOI: 10.1002/anie.202104055] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 11/09/2022]
Abstract
The hydrogen evolution reaction (HER) usually has sluggish kinetics in alkaline solution due to the difficulty in forming binding protons. Herein we report an electrocatalyst in which sulfur atoms are doping in the oxygen vacancies (VO ) of inverse spinel NiFe2 O4 (S-NiFe2 O4 ) to create active sites with enhanced electron transfer capability. This electrocatalyst has an ultralow overpotential of 61 mV at the current density of 10 mA cm-2 and long-term stability of 60 h at 1.0 Acm-2 in 1.0 M KOH media. In situ Raman spectroscopy revealed that S sites adsorb hydrogen adatom (H*) and in situ form S-H*, which favor the production of hydrogen and boosts HER in alkaline solution. DFT calculations further verified that S introduction lowered the energy barrier of H2 O dissociation. Both experimental and theoretical investigations confirmed S atoms are active sites of the S-NiFe2 O4 .
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jie Yin
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hongbo Liu
- Lanpec Technologies Limited, Shanghai, 200000, China
| | - Bolong Huang
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong SAR, China
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hong Zhang
- Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong SAR, China
| | - Yong Peng
- Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing, 100871, China
| |
Collapse
|