1
|
Cui C, Ma H, Du J, Xie L, Chen A. Recent Advances in the Design and Application of Asymmetric Carbon-Based Materials. SMALL METHODS 2025; 9:e2401580. [PMID: 39865857 DOI: 10.1002/smtd.202401580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Asymmetric carbon-based materials (ACBMs) have received significant attention in scientific research due to their unique structures and properties. Through the introduction of heterogeneous atoms and the construction of asymmetric ordered/disordered structures, ACBMs are optimized in terms of electrical conductivity, pore structure, and chemical composition and exhibit multiple properties such as hydrophilicity, hydrophobicity, optical characteristics, and magnetic behavior. Here, the recent research progress of ACBMs is reviewed, focusing on the potential of these materials for electrochemical, catalysis, and biomedical applications and their unique advantages over conventional symmetric carbon-based materials. Meanwhile, a variety of construction strategies of asymmetric structures, including template method, nanoemulsion assembly method, and self-assembly method, are described in detail. In addition, the contradictions between material synthesis and application are pointed out, such as the limitations of synthesis methods and morphology modulation means, as well as the trade-off between property improvement and production costs. Finally, the future development path of ACBMs is envisioned, emphasizing the importance of the close integration of theory and practice, and looking forward to promoting the research and development of a new generation of high-performance materials through the in-depth understanding of the design principles and action mechanisms of ACBMs.
Collapse
Affiliation(s)
- Chenqi Cui
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Haoxuan Ma
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Lei Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| |
Collapse
|
2
|
Bhardwaj S, Pathak A, Das SK, Das P, Thapa R, Dey RS. Decoding Dual-Functionality in N-doped Defective Carbon: Unveiling Active Sites for Bifunctional Oxygen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411035. [PMID: 39806810 DOI: 10.1002/smll.202411035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Indexed: 01/16/2025]
Abstract
Oxygen electrocatalysis plays a pivotal role in energy conversion and storage technologies. The precise identification of active sites for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for developing an efficient bifunctional electrocatalyst. However, this remains a challenging endeavor. Here, it is demonstrated that metal-free N-doped defective carbon material derived from triazene derivative exhibits excellent bifunctional activity, achieving a notable ΔE value of 0.72 V. Through comprehensive X-ray photoelectron spectroscopy and Raman spectroscopic analyses, the active sites responsible for oxygen electrocatalysis are elucidated, resolving a long-standing issue. Specifically, pyridinic-N sites are crucial for ORR, while graphitic-N are good for OER. A predictive model utilizing π-electron descriptors further aids in identifying these sites, with theoretical insights aligning with experimental results. Additionally, in situ ATR-FTIR spectroscopy provides clarity on reaction intermediates for both reactions. This research paves the way for developing metal-free, site-specific electrocatalysts for practical applications in energy technologies.
Collapse
Affiliation(s)
- Sakshi Bhardwaj
- Institute of Nano Science and Technology, Sector-81, Knowledge city, S.A.S. Nagar, Punjab, 140306, India
| | - Arupjyoti Pathak
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522240, India
| | - Sabuj Kanti Das
- Institute of Nano Science and Technology, Sector-81, Knowledge city, S.A.S. Nagar, Punjab, 140306, India
| | - Prasenjit Das
- Department of Chemistry, Functional Materials, Technische Universität Berlin, 10623, Berlin, Germany
| | - Ranjit Thapa
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522240, India
- Centre for Computational and Integrative Sciences, SRM University - AP, Amaravati, Andhra Pradesh, 522240, India
| | - Ramendra Sundar Dey
- Institute of Nano Science and Technology, Sector-81, Knowledge city, S.A.S. Nagar, Punjab, 140306, India
| |
Collapse
|
3
|
Kong Y, Jiang B, Tian Y, Liu R, Shaik F. Tailoring vinegar residue-derived all-carbon electrodes for efficient electrocatalytic carbon dioxide reduction to formate through heteroatom doping and defect enrichment. J Colloid Interface Sci 2024; 676:283-297. [PMID: 39029254 DOI: 10.1016/j.jcis.2024.07.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Electrocatalytic carbon dioxide reduction (ECO2R) to formate is the most technically and economically feasible approach to achieve electrochemical CO2 value addition. Here, a few-layer graphene is prepared from vinegar residue. Then a series of heteroatom-doped vertical graphene electrodes (X-rGO, X=P/S/N/B/, NS/NP/NB, NSP/NSB/NPB/NSPB) are prepared. The NS-rGO has improved ECO2R to formate selectivity (Faraday Efficiency (FEHCOO-) = 78.7 %) thanks to the synergistic effect between N and S. Carbon quantum dots (CQDs) are introduced into the electrode, the doped heteroatoms are further removed by high-temperature to form the defects-rich electrode (NS-CQDs-rGO-1100), which has better catalytic performance (FEHCOO-=90 %, stability over 10 h) with electrochemical double layer capacitance of 12.5 mF cm-2. The intrinsic effect of heteroatom doping and defects on the ECO2R activity of the electrodes are explored by density functional theory calculation. This work broadens the field of preparation of graphene and opens the door to the development of cost-effective electrocatalysts for efficient ECO2R.
Collapse
Affiliation(s)
- Yun Kong
- Shaanxi Provincial Key Laboratory of Earth Surface System and Environmental Carrying Capacity, and College of Urban and Environmental Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Bin Jiang
- Shaanxi Provincial Key Laboratory of Earth Surface System and Environmental Carrying Capacity, and College of Urban and Environmental Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China; Shaanxi Provincial Key Laboratory of Carbon Neutrality Technology, Carbon Neutrality College (YULIN), Northwest University, Xi'an, Shaanxi 710127, People's Republic of China.
| | - Yuchen Tian
- Shaanxi Provincial Key Laboratory of Earth Surface System and Environmental Carrying Capacity, and College of Urban and Environmental Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Rong Liu
- Shaanxi Provincial Key Laboratory of Earth Surface System and Environmental Carrying Capacity, and College of Urban and Environmental Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Firdoz Shaik
- Department of Biotechnology, Vignan's Foundation for Science, Technology, and Research, Vadlamudi, Guntur 522213, India
| |
Collapse
|
4
|
Han J, Shi L, Xie H, Song R, Wang D, Liu D. Self-Powered Electrochemical CO 2 Conversion Enabled by a Multifunctional Carbon-Based Electrocatalyst and a Rechargeable Zn-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401766. [PMID: 38837621 DOI: 10.1002/smll.202401766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Indexed: 06/07/2024]
Abstract
Multifunctional electrocatalysts are required for diverse clean energy-related technologies (e.g., electrochemical CO2 reduction reaction (CO2RR) and metal-air batteries). Herein, a nitrogen and fluorine co-doped carbon nanotube (NFCNT) is reported to simultaneously achieve multifunctional catalytic activities for CO2RR, oxygen reduction reaction (ORR), and oxygen evolution reaction (OER). Theoretical calculations reveal that the superior multifunctional catalytic activities of NFCNT are attributed to the synergistic effect of nitrogen and fluorine co-doping to induce charge redistribution and decrease the energy barrier of rate-determining step for different electrocatalytic reactions. Furthermore, the rechargeable Zn-air battery (ZAB) with NFCNT electrode delivers a high peak power density of 230 mW cm-2 and superior durability over 100 cycles, outperforming the ZAB with Pt/C+RuO2 based electrodes. More importantly, a self-driven CO2 electrolysis unit powered by the as-assembled ZABs is developed, which achieves 80% CO Faraday efficiency and 60% total energy efficiency. This work provides a new insight into the exploration of highly efficient multifunctional carbon-based electrocatalysts for novel energy-related applications.
Collapse
Affiliation(s)
- Jingrui Han
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lei Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Huamei Xie
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruilin Song
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dong Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Yang B, Xiang Z. Nanostructure Engineering of Cathode Layers in Proton Exchange Membrane Fuel Cells: From Catalysts to Membrane Electrode Assembly. ACS NANO 2024; 18:11598-11630. [PMID: 38669279 DOI: 10.1021/acsnano.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The membrane electrode assembly (MEA) is the core component of proton exchange membrane fuel cells (PEMFCs), which is the place where the reaction occurrence, the multiphase material transfer and the energy conversion, and the development of MEA with high activity and long stability are crucial for the practical application of PEMFCs. Currently, efforts are devoted to developing the regulation of MEA nanostructure engineering, which is believed to have advantages in improving catalyst utilization, maximizing three-phase boundaries, enhancing mass transport, and improving operational stability. This work reviews recent research progress on platinum group metal (PGM) and PGM-free catalysts with multidimensional nanostructures, catalyst layers (CLs), and nano-MEAs for PEMFCs, emphasizing the importance of structure-function relationships, aiming to guide the further development of the performance for PEMFCs. Then the design strategy of the MEA interface is summarized systematically. In addition, the application of in situ and operational characterization techniques to adequately identify current density distributions, hot spots, and water management visualization of MEAs is also discussed. Finally, the limitations of nanostructured MEA research are discussed and future promising research directions are proposed. This paper aims to provide valuable insights into the fundamental science and technical engineering of efficient MEA interfaces for PEMFCs.
Collapse
Affiliation(s)
- Bolong Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
6
|
Li K, Kuwahara Y, Yamashita H. Hollow carbon-based materials for electrocatalytic and thermocatalytic CO 2 conversion. Chem Sci 2024; 15:854-878. [PMID: 38239694 PMCID: PMC10793651 DOI: 10.1039/d3sc05026b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
Electrocatalytic and thermocatalytic CO2 conversions provide promising routes to realize global carbon neutrality, and the development of corresponding advanced catalysts is important but challenging. Hollow-structured carbon (HSC) materials with striking features, including unique cavity structure, good permeability, large surface area, and readily functionalizable surface, are flexible platforms for designing high-performance catalysts. In this review, the topics range from the accurate design of HSC materials to specific electrocatalytic and thermocatalytic CO2 conversion applications, aiming to address the drawbacks of conventional catalysts, such as sluggish reaction kinetics, inadequate selectivity, and poor stability. Firstly, the synthetic methods of HSC, including the hard template route, soft template approach, and self-template strategy are summarized, with an evaluation of their characteristics and applicability. Subsequently, the functionalization strategies (nonmetal doping, metal single-atom anchoring, and metal nanoparticle modification) for HSC are comprehensively discussed. Lastly, the recent achievements of intriguing HSC-based materials in electrocatalytic and thermocatalytic CO2 conversion applications are presented, with a particular focus on revealing the relationship between catalyst structure and activity. We anticipate that the review can provide some ideas for designing highly active and durable catalytic systems for CO2 valorization and beyond.
Collapse
Affiliation(s)
- Kaining Li
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Osaka 565-0871 Japan
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
| |
Collapse
|
7
|
Feng X, Chen G, Cui Z, Qin R, Jiao W, Huang Z, Shang Z, Ma C, Zheng X, Han Y, Huang W. Engineering Electronic Structure of Nitrogen-Carbon Sites by sp 3 -Hybridized Carbon and Incorporating Chlorine to Boost Oxygen Reduction Activity. Angew Chem Int Ed Engl 2024; 63:e202316314. [PMID: 38032121 DOI: 10.1002/anie.202316314] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Development of efficient and easy-to-prepare low-cost oxygen reaction electrocatalysts is essential for widespread application of rechargeable Zn-air batteries (ZABs). Herein, we mixed NaCl and ZIF-8 by simple physical milling and pyrolysis to obtain a metal-free porous electrocatalyst doped with Cl (mf-pClNC). The mf-pClNC electrocatalyst exhibits a good oxygen reduction reaction (ORR) activity (E1/2 =0.91 V vs. RHE) and high stability in alkaline electrolyte, exceeding most of the reported transition metal carbon-based electrocatalysts and being comparable to commercial Pt/C electrocatalysts. Likewise, the mf-pClNC electrocatalyst also shows state-of-the-art ORR activity and stability in acidic electrolyte. From experimental and theoretical calculations, the better ORR activity is most likely originated from the fact that the introduced Cl promotes the increase of sp3 -hybridized carbon, while the sp3 -hybridized carbon and Cl together modify the electronic structure of the N-adjacent carbons, as the active sites, while NaCl molten-salt etching provides abundant paths for the transport of electrons/protons. Furthermore, the liquid rechargeable ZAB using the mf-pClNC electrocatalyst as the cathode shows a fulfilling performance with a peak power density of 276.88 mW cm-2 . Flexible quasi-solid-state rechargeable ZAB constructed with the mf-pClNC electrocatalyst as the cathode exhibits an exciting performance both at low, high and room temperatures.
Collapse
Affiliation(s)
- Xueting Feng
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhibo Cui
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rong Qin
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wensheng Jiao
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zeyi Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ziang Shang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
8
|
Payattikul L, Chen CY, Chen YS, Raja Pugalenthi M, Punyawudho K. Recent Advances and Synergistic Effects of Non-Precious Carbon-Based Nanomaterials as ORR Electrocatalysts: A Review. Molecules 2023; 28:7751. [PMID: 38067478 PMCID: PMC10708244 DOI: 10.3390/molecules28237751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 02/07/2025] Open
Abstract
The use of platinum-free (Pt) cathode electrocatalysts for oxygen reduction reactions (ORRs) has been significantly studied over the past decade, improving slow reaction mechanisms. For many significant energy conversion and storage technologies, including fuel cells and metal-air batteries, the ORR is a crucial process. These have motivated the development of highly active and long-lasting platinum-free electrocatalysts, which cost less than proton exchange membrane fuel cells (PEMFCs). Researchers have identified a novel, non-precious carbon-based electrocatalyst material as the most effective substitute for platinum (Pt) electrocatalysts. Rich sources, outstanding electrical conductivity, adaptable molecular structures, and environmental compatibility are just a few of its benefits. Additionally, the increased surface area and the simplicity of regulating its structure can significantly improve the electrocatalyst's reactive sites and mass transport. Other benefits include the use of heteroatoms and single or multiple metal atoms, which are capable of acting as extremely effective ORR electrocatalysts. The rapid innovations in non-precious carbon-based nanomaterials in the ORR electrocatalyst field are the main topics of this review. As a result, this review provides an overview of the basic ORR reaction and the mechanism of the active sites in non-precious carbon-based electrocatalysts. Further analysis of the development, performance, and evaluation of these systems is provided in more detail. Furthermore, the significance of doping is highlighted and discussed, which shows how researchers can enhance the properties of electrocatalysts. Finally, this review discusses the existing challenges and expectations for the development of highly efficient and inexpensive electrocatalysts that are linked to crucial technologies in this expanding field.
Collapse
Affiliation(s)
- Laksamee Payattikul
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
- Energy Harvesting and Storage Laboratory, Mechanical Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chen-Yu Chen
- Department of Mechanical Engineering, National Central University, Taoyuan 320317, Taiwan;
| | - Yong-Song Chen
- Advanced Institute of Manufacturing with High-Tech Innovations, Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan;
| | - Mariyappan Raja Pugalenthi
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
- Energy Harvesting and Storage Laboratory, Mechanical Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Konlayutt Punyawudho
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
- Energy Harvesting and Storage Laboratory, Mechanical Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Zhao H, Chen L, Ni N, Lv Y, Wang H, Zhang J, Li Z, Liu Y, Geng Y, Xie Y, Wang L. Zn-Induced Synthesis of Porous Fe-N,S-C Electrocatalyst with Iron-Based Active Sites Containing Sulfides, Oxides and Nitrides for Efficient Oxygen Reduction and Zinc-Air Batteries. Molecules 2023; 28:5885. [PMID: 37570853 PMCID: PMC10421323 DOI: 10.3390/molecules28155885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
There is an urgent need to design and synthesize non-noble metal electrocatalysts (NNMEs) for the replacement of platinum-based electrocatalysts to enhance the sluggish oxygen reduction reaction (ORR) for Zn-air batteries and fuel cells. Herein, Fe-N,S-C materials were fabricated through two steps: first, reprecipitating hemin by adjusting the pH and, then, decorating it with melamine and cysteine in the presence of Zn2+. The resulting Fe-N,S-C-950 (Zn) was prepared after pyrolysis at 950 °C. Using this method, abundant iron-based active species with good dispersion were obtained. The fabrication of more micropores in Fe-N,S-C-950 (Zn) plays a positive role in the improvement of ORR activity. On comparison, Fe-N,S-C-950 (Zn) outperforms Fe-N,S-C-950 and Fe-N-C-950 (Zn) with respect to the ORR due to its larger specific surface area, porous structure, multiple iron-based active sites and N- and S-doped C. Fe-N,S-C-950 (Zn) achieves outstanding ORR performances, including a half-wave potential (E1/2) of 0.844 V and 0.715 V versus a reversible hydrogen electrode (RHE) in 0.1 M KOH and 0.1 M HClO4 solution, respectively. In addition, Fe-N,S-C-950 (Zn) shows an outstanding Zn-air battery performance with an open-circuit voltage (OCV) of 1.450 V and a peak power density of 121.9 mW cm-2, which is higher than that of 20 wt% Pt/C. As a result, the as-prepared electrocatalyst in this work shows the development of the Zn-assisted strategy combined with the assembly of porphyrins as NNMEs for the enhancement of the ORR in both alkaline and acidic solutions.
Collapse
Affiliation(s)
- Haiyan Zhao
- Liaoning Key Laboratory of Plasma Technology, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China; (H.Z.); (N.N.); (Y.G.)
| | - Li Chen
- Shanghai Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China;
| | - Nan Ni
- Liaoning Key Laboratory of Plasma Technology, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China; (H.Z.); (N.N.); (Y.G.)
| | - Yang Lv
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China;
| | - Hezhen Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; (H.W.); (J.Z.); (Y.L.)
| | - Jia Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; (H.W.); (J.Z.); (Y.L.)
| | - Zhiwen Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; (H.W.); (J.Z.); (Y.L.)
| | - Yu Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; (H.W.); (J.Z.); (Y.L.)
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, No. 536 West Huolinhe Road, Tongliao 028000, China
| | - Yubo Geng
- Liaoning Key Laboratory of Plasma Technology, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China; (H.Z.); (N.N.); (Y.G.)
| | - Yan Xie
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; (H.W.); (J.Z.); (Y.L.)
| | - Li Wang
- Liaoning Key Laboratory of Plasma Technology, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China; (H.Z.); (N.N.); (Y.G.)
| |
Collapse
|
10
|
Peng W, Liu J, Liu X, Wang L, Yin L, Tan H, Hou F, Liang J. Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production. Nat Commun 2023; 14:4430. [PMID: 37481579 PMCID: PMC10363113 DOI: 10.1038/s41467-023-40118-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/13/2023] [Indexed: 07/24/2023] Open
Abstract
Electrocatalytic hydrogen peroxide (H2O2) production via the two-electron oxygen reduction reaction is a promising alternative to the energy-intensive and high-pollution anthraquinone oxidation process. However, developing advanced electrocatalysts with high H2O2 yield, selectivity, and durability is still challenging, because of the limited quantity and easy passivation of active sites on typical metal-containing catalysts, especially for the state-of-the-art single-atom ones. To address this, we report a graphene/mesoporous carbon composite for high-rate and high-efficiency 2e- oxygen reduction catalysis. The coordination of pyrrolic-N sites -modulates the adsorption configuration of the *OOH species to provide a kinetically favorable pathway for H2O2 production. Consequently, the H2O2 yield approaches 30 mol g-1 h-1 with a Faradaic efficiency of 80% and excellent durability, yielding a high H2O2 concentration of 7.2 g L-1. This strategy of manipulating the adsorption configuration of reactants with multiple non-metal active sites provides a strategy to design efficient and durable metal-free electrocatalyst for 2e- oxygen reduction.
Collapse
Affiliation(s)
- Wei Peng
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiaxin Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaoqing Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Liqun Wang
- Applied Physics Department, College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387, China.
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| | - Haotian Tan
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Feng Hou
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Ji Liang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
11
|
Peng X, Zhao X, Hu Y, Guo L, Liu Y, Yu X, Yang X, Zhang X, Lu Z, Li L. Designing a Hierarchical Porous Carbon with Optimized Nitrogen Doping for Efficient Oxygen Reduction Reaction. Chempluschem 2023; 88:e202300238. [PMID: 37310283 DOI: 10.1002/cplu.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/14/2023]
Abstract
Nitrogen-doped carbon is considered one of the most promising oxygen reduction catalysts due to its low cost and high activity, however, it still falls short of Pt/C. In this study, we report a strategy for the preparation of highly reactive N-doped hierarchical porous carbon by primary pyrolysis using zinc acetate as a stand-alone zinc source and amino-rich reactants as carbon and nitrogen sources to introduce Zn-Nx structures into mesoporous structures generated by the hard template method using the strong coordination of zinc and amino groups. Benefited from the simultaneous optimization of the hierarchical porous structure and nitrogen-doping, the half-wave potential of Zn(OAc)2 -DCD/HPC is as high as 0.909 V vs. RHE, much better than that of commercial Pt/C catalysts (0.872 V vs. RHE). In addition, zinc-air batteries assembled with Zn(OAc)2 -DCD/HPC (Pmax =198 mW cm-2 ) as the cathode exhibit higher peak power density compared to Pt/C (Pmax =168 mW cm-2 ). This strategy might open up new opportunities for designing and developing highly active metal-free catalysts.
Collapse
Affiliation(s)
- Xingkai Peng
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Xiaowei Zhao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Yuekun Hu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Lingli Guo
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Yan Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Xiaofei Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Xinghua Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300131, China
| |
Collapse
|
12
|
Cui P, Zhao L, Long Y, Dai L, Hu C. Carbon-Based Electrocatalysts for Acidic Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2023; 62:e202218269. [PMID: 36645824 DOI: 10.1002/anie.202218269] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Oxygen reduction reaction (ORR) is vital for clean and renewable energy technologies, which require no fossil fuel but catalysts. Platinum (Pt) is the best-known catalyst for ORR. However, its high cost and scarcity have severely hindered renewable energy devices (e.g., fuel cells) for large-scale applications. Recent breakthroughs in carbon-based metal-free electrochemical catalysts (C-MFECs) show great potential for earth-abundant carbon materials as low-cost metal-free electrocatalysts towards ORR in acidic media. This article provides a focused, but critical review on C-MFECs for ORR in acidic media with an emphasis on advances in the structure design and synthesis, fundamental understanding of the structure-property relationship and electrocatalytic mechanisms, and their applications in proton exchange membrane fuel cells. Current challenges and future perspectives in this emerging field are also discussed.
Collapse
Affiliation(s)
- Pengbo Cui
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Linjie Zhao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongde Long
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liming Dai
- ARC Centre of Excellence for Carbon Science and Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
13
|
Wierzbicki S, Darvishzad T, Gryboś J, Stelmachowski P, Sojka Z, Kruczała K. Switching the Locus of Oxygen Reduction and Evolution Reactions between Spinel Active Phase and Carbon Carrier upon Heteroatoms Doping. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
14
|
Huang R, Lv J, Chen J, Zhu Y, Zhu J, Wågberg T, Hu G. Three-dimensional porous high boron-nitrogen-doped carbon for the ultrasensitive electrochemical detection of trace heavy metals in food samples. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130020. [PMID: 36155296 DOI: 10.1016/j.jhazmat.2022.130020] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/28/2022] [Accepted: 09/16/2022] [Indexed: 05/29/2023]
Abstract
Exposure to even trace amounts of Cd(II) and Pb(II) in food can have serious effects on the human body. Therefore, the development of novel electrochemical sensors that can accurately detect the different toxicity levels of heavy metal ions in food is of great significance. Based on the principle of green chemistry, we propose a new type of boron and nitrogen co-doped carbon (BCN) material derived from a metal-organic framework material and study its synthesis, characterization, and heavy-metal ion detection ability. Under the optimum conditions, the BCN-modified glassy carbon electrode was studied using square-wave anodic stripping voltammetry, which showed good electrochemical responses to Cd(II) and Pb(II), with sensitivities as low as 0.459 and 0.509 μA/μM cm2, respectively. The sensor was successfully used to detect Cd(II) and Pb(II) in Beta vulgaris var. cicla L samples, which is consistent with the results obtained using inductively coupled plasma-mass spectrometry. It also has a strong selectivity for complex samples. This study provides a novel approach for the detection of heavy metal ions in food and greatly expands the application of heteroatom-doped metal-free carbon materials in detection platforms.
Collapse
Affiliation(s)
- Ruihua Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianbing Chen
- Research Academy of Non-metallic Mining Industry Development, Materials and Environmental Engineering College, Chizhou University, Chizhou 247000, China
| | - Yeling Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå 901 87, Sweden
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; Department of Physics, Umeå University, Umeå 901 87, Sweden.
| |
Collapse
|
15
|
Sivaraman N, Duraisamy V, Senthil Kumar SM, Thangamuthu R. N, S dual doped mesoporous carbon assisted simultaneous electrochemical assay of emerging water contaminant hydroquinone and catechol. CHEMOSPHERE 2022; 307:135771. [PMID: 35931262 DOI: 10.1016/j.chemosphere.2022.135771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Heteroatom doped mesoporous carbon materials are promising catalysts for the electrochemical sensing application. Herein, we report highly efficient dual heteroatom-doped hexagonal mesoporous carbon (MC) derived from Santa Barbara Amorphous-15 (SBA-15) hard template for the detection of phenolic isomers. The synthesis involves dopamine hydrochloride (DA)/thiophene complex, which helps to attain perfectly retained N and S dual doped mesoporous carbon (NS-MC) framework. NS-MC exhibits higher surface area (951 m2 g-1) as well as higher pore volume (0.12 cm3 g-1) with huge graphitic, pyridinic and thiophenic defective sites which facilitates the well-resolved simultaneous electrochemical detection of phenolic isomers hydroquinone (HQ) and catechol (CC). Our results demonstrate that as-synthesized NS-MC material had a LOD of 0.63 μM and 0.29 μM for HQ and CC, respectively. From the calibration curve, sensitivities of proposed sensor were found to be 9.44, 2.71 μA μM-1 cm-2 and 20.80, 10.02 μA μM-1 cm-2 for HQ and CC, respectively with good linear ranges of 10-45 μM and 45-115 μM for HQ; 2-16 μM and 16-40 μM for CC. The NS-MC modified electrode exhibited good selectivity over various possible interferences. The present investigation reveals that the proposed NS-MC material is a promising metal-free catalyst which boosted to electrochemically detect both HQ and CC, present in the municipal tap as well as natural river stream water samples.
Collapse
Affiliation(s)
- Narmatha Sivaraman
- Electroorganic and Materials Electrochemistry Division (EMED), CSIR-Central Electrochemical Research Institute, Karaikudi - 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
| | - Velu Duraisamy
- Electroorganic and Materials Electrochemistry Division (EMED), CSIR-Central Electrochemical Research Institute, Karaikudi - 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry Division (EMED), CSIR-Central Electrochemical Research Institute, Karaikudi - 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
| | - Rangasamy Thangamuthu
- Electroorganic and Materials Electrochemistry Division (EMED), CSIR-Central Electrochemical Research Institute, Karaikudi - 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India.
| |
Collapse
|
16
|
Yu H, Qin G, Wang J, Zhao X, Li L, Yu X, Zhang X, Lu Z, Yang X. Improving Oxygen Reduction Reaction Performance via Central Ions Enhanced Crystal-Field Splitting of MnO 6 Octahedron. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haoran Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Guoqing Qin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Jianxiu Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Xinning Zhao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Xiaofei Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Xinghua Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| |
Collapse
|
17
|
Li B, Xiang T, Shao Y, Lv F, Cheng C, Zhang J, Zhu Q, Zhang Y, Yang J. Secondary-Heteroatom-Doping-Derived Synthesis of N, S Co-Doped Graphene Nanoribbons for Enhanced Oxygen Reduction Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3306. [PMID: 36234434 PMCID: PMC9565512 DOI: 10.3390/nano12193306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The rareness and weak durability of Pt-based electrocatalysts for oxygen reduction reactions (ORRs) have hindered the large-scale application of fuel cells. Here, we developed an efficient metal-free catalyst consisting of N, S co-doped graphene nanoribbons (N, S-GNR-2s) for ORRs. GNRs were firstly synthesized via the chemical unzipping of carbon nanotubes, and then N, S co-doping was conducted using urea as the primary and sulfourea as the secondary heteroatom sources. The successful incorporation of nitrogen and sulfur was confirmed by elemental mapping analysis as well as X-ray photoelectron spectroscopy. Electrochemical testing revealed that N, S-GNR-2s exhibited an Eonset of 0.89 V, E1/2 of 0.79 V and an average electron transfer number of 3.72, as well as good stability and methanol tolerance. As a result, N, S-GNR-2s displayed better ORR property than either N-GNRs or N, S-GNRs, the control samples prepared with only a primary heteroatom source, strongly clarifying the significance of secondary-heteroatom-doping on enhancing the catalytic activity of carbon-based nanomaterials.
Collapse
|
18
|
Shi J, Cui H, Xu J, Yan N, You S. Synthesis of N-doped hierarchically ordered micro-mesoporous carbons for CO2 adsorption. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Lu Q, Eid K, Li W. Heteroatom-Doped Porous Carbon-Based Nanostructures for Electrochemical CO 2 Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2379. [PMID: 35889603 PMCID: PMC9316151 DOI: 10.3390/nano12142379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
The continual rise of the CO2 concentration in the Earth's atmosphere is the foremost reason for environmental concerns such as global warming, ocean acidification, rising sea levels, and the extinction of various species. The electrochemical CO2 reduction (CO2RR) is a promising green and efficient approach for converting CO2 to high-value-added products such as alcohols, acids, and chemicals. Developing efficient and low-cost electrocatalysts is the main barrier to scaling up CO2RR for large-scale applications. Heteroatom-doped porous carbon-based (HA-PCs) catalysts are deemed as green, efficient, low-cost, and durable electrocatalysts for the CO2RR due to their great physiochemical and catalytic merits (i.e., great surface area, electrical conductivity, rich electrical density, active sites, inferior H2 evolution activity, tailorable structures, and chemical-physical-thermal stability). They are also easily synthesized in a high yield from inexpensive and earth-abundant resources that meet sustainability and large-scale requirements. This review emphasizes the rational synthesis of HA-PCs for the CO2RR rooting from the engineering methods of HA-PCs to the effect of mono, binary, and ternary dopants (i.e., N, S, F, or B) on the CO2RR activity and durability. The effect of CO2 on the environment and human health, in addition to the recent advances in CO2RR fundamental pathways and mechanisms, are also discussed. Finally, the evolving challenges and future perspectives on the development of heteroatom-doped porous carbon-based nanocatalysts for the CO2RR are underlined.
Collapse
Affiliation(s)
- Qingqing Lu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.L.); (W.L.)
| | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Wenpeng Li
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.L.); (W.L.)
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
20
|
Yan D, Han Y, Ma Z, Wang Q, Wang X, Li Y, Sun G. Magnesium lignosulfonate-derived N, S co-doped 3D flower-like hierarchically porous carbon as an advanced metal-free electrocatalyst towards oxygen reduction reaction. Int J Biol Macromol 2022; 209:904-911. [PMID: 35427639 DOI: 10.1016/j.ijbiomac.2022.04.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/29/2022]
Abstract
The development of metal-free electrocatalytic materials that are economical, friendly to the environment, and efficiency towards the oxygen reduction reaction (ORR) is of significant interest. Hence, this paper synthesizes nitrogen and sulfur co-doped three-dimensional magnesium lignosulfonate (MLS-derived) flower-like hierarchical porous carbon (NSLPC) materials by a simple and green method. The synthesized NSLPC uses magnesium lignosulfonate as the sulfur source and carbon precursor, melamine as nitrogen source, MgO as hard template, and ZnCl2 as the activator. We also investigated the effect of the ratio of MgO to ZnCl2 on the catalyst performance. When the ratio of MgO to ZnCl2 is 10:0.5, NSLPC-1005 possesses the highest ORR activity with an enormous surface area (1752.54 m2 g-1), abundant active sites, and a hierarchical porous network structure. In alkaline media, NSLPC-1005 has an initial potential of 0.97 V, as well as an excellent half-potential of 0.86 V (vs. Hg/HgO), and an ultimate current density of 5.35 mA cm-2. It exhibits attractive ORR performance as well as outstanding cyclic stability that are comparable to commercial Pt/C electrocatalysts. This research developed an effective approach to synthesize metal-free carbon materials with high activity and long-term durability as electrocatalysts, which have a promising application in sustainable energy conversion technology.
Collapse
Affiliation(s)
- Dongyu Yan
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Ying Han
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Zihao Ma
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Qingyu Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Xing Wang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Yao Li
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Guangwei Sun
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| |
Collapse
|
21
|
Tian Y, Ren Q, Chen X, Li L, Lan X. Yeast-Based Porous Carbon with Superior Electrochemical Properties. ACS OMEGA 2022; 7:654-660. [PMID: 35036731 PMCID: PMC8756604 DOI: 10.1021/acsomega.1c05278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/14/2021] [Indexed: 05/09/2023]
Abstract
Biomass is a promising carbon source for supercapacitor electrode materials due to its abundant source, diversity, and low-cost. Yeast is an elliptic unicellular fungal organism that is widespread in nature. In this work, we used yeast as the carbon source and Na2SiO3 as the activator to prepare a honeycomb porous carbon with higher surface area. The yeast and Na2SiO3 were directly mixed and ground without any solvent, which is simple and characterized by large-scale application. The prepared porous carbon shows a good specific capacity of 313 F/g in 6 M KOH at a density of 0.5 A/g and an excellent rate capability of 85.9% from 0.5 to 10 A/g. The results suggest that the yeast-derived porous carbon may be a promising sustainable bio-material for the preparation of supercapacitor carbon electrode materials. This study provides an economical and practical avenue for yeast resource utilization and develops a simple approach to prepare porous carbon materials.
Collapse
Affiliation(s)
- Yuhong Tian
- School
of Chemistry and Chemical Engineering, Xi’an
University of Architecture and Technology, Xi’an 710055, China
| | - Qiaoxia Ren
- School
of Chemistry and Chemical Engineering, Xi’an
University of Architecture and Technology, Xi’an 710055, China
| | - Xiaoyu Chen
- School
of Chemistry and Chemical Engineering, Xi’an
University of Architecture and Technology, Xi’an 710055, China
| | - Linbo Li
- School
of Metallurgical Engineering, Xi’an
University of Architecture and Technology, Xi’an 710055, China
| | - Xinzhe Lan
- Research
Centre on Metallurgical Engineering and Technology of Shaanxi Province, Xi’an 710055, China
| |
Collapse
|
22
|
Xia Q, Hu J, Chen Q, Zhang L. N/S Co-doped microporous carbon derived from PSSH-Melamine salt solution as cathode host for Lithium-Selenium batteries. J Colloid Interface Sci 2021; 610:643-652. [PMID: 34863554 DOI: 10.1016/j.jcis.2021.11.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022]
Abstract
Selenium cathode attracts great attention due to its high theoretical volumetric capacity and better electrical conductivity than sulfur cathode. Herein, N/S co-doped microporous carbon (NS-K-PC) is designed and prepared as Se host by a spray drying process of the poly(styrenesulfonic acid)-melamine salt solution followed by carbonization and activation process. The as-prepared NS-K-PC shows a very high micropore contribution of 94.8% in the total surface area, and a total N/S heteroatom doping level of 2.5 wt% in the carbon matrix. The NS-K-PC/Se cathode delivers a high reversible capacity of 499.2 mA h g-1 at 0.1C, superior rate capacity of 324 mA h g-1 at 8C, and great cycling stability with a capacity decay of 0.081% per cycle over 500 cycles at 1C. Additionally, a comparative study demonstrates that NS-K-PC/Se cathode with the carbonate-based electrolytes exhibit better cycling stability than those with ether-based electrolytes primarily resulted from a direct solid-solid conversion of Se to Li2Se bypassing the formation of soluble polyselenides.
Collapse
Affiliation(s)
- Qi Xia
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlong Hu
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China
| | - Qingqing Chen
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingzhi Zhang
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
23
|
Dun R, Hao M, Su Y, Li W. Alkaline Metal Oxide Assisting the Ionothermal Method for Efficient Fe-N X/C Catalyst Preparation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52479-52486. [PMID: 34699169 DOI: 10.1021/acsami.1c11076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to low cost and high efficiency, nonprecious metal catalysts have been widely used in various types of fuel cells. To obtain a high-activity electrocatalyst, a simple method for the synthesis of iron-modified covalent triazine frameworks by the direct heating of a mixture of FeCl3, ZnCl2, ZnO, and m-phthalodinitrile is reported. The role and a possible evolution pathway of the oxygen of metallic oxides are well discussed. To further verify our assumption, the Fe3O4 microspherical nanomaterials were synthesized and the relative Fe-based catalyst (Fe-NX/C) was successfully obtained by the ionothermal polymerization method. Fe-NX/C exhibits an extraordinary oxygen reduction reaction (ORR) performance in acidic solution, with a half-wave potential of only 25 mV negative shifts compared with Pt/C, while the power density is approximately 56% of that of Pt/C catalysts under the proton exchange membrane fuel cell testing condition. This work represents a new strategy to synthesize high-performance Fe-based catalysts toward ORR.
Collapse
Affiliation(s)
- Rongmin Dun
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menggeng Hao
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumiao Su
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenmu Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
24
|
Kiani M, Tian XQ, Zhang W. Non-precious metal electrocatalysts design for oxygen reduction reaction in polymer electrolyte membrane fuel cells: Recent advances, challenges and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213954] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
da Silva Freitas W, D’Epifanio A, Mecheri B. Electrocatalytic CO2 reduction on nanostructured metal-based materials: Challenges and constraints for a sustainable pathway to decarbonization. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Chen K, Deng J, Zhao J, Liu X, Imhanria S, Wang W. Electrocatalytic Production of Tunable Syngas from CO 2 via a Metal-Free Porous Nitrogen-Doped Carbon. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Keyu Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jie Deng
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiao Zhao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xi Liu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Sarah Imhanria
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Wei Wang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
27
|
Gao S, Liu Y, Xie Z, Qiu Y, Zhuo L, Qin Y, Ren J, Zhang S, Hu G, Luo J, Liu X. Metal-Free Bifunctional Ordered Mesoporous Carbon for Reversible Zn-CO 2 Batteries. SMALL METHODS 2021; 5:e2001039. [PMID: 34927841 DOI: 10.1002/smtd.202001039] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/17/2020] [Indexed: 05/27/2023]
Abstract
The fabrication of Zn-CO2 batteries is a promising technique for CO2 fixation and energy storage. Herein, nitrogen-doped ordered mesoporous carbon (NOMC) is adopted as a bifunctional metal-free electrocatalyst for CO2 reduction and oxygen evolution reaction in the near-neutral electrolyte. The ordered mesoporous structures and abundant N-dopings of NOMC facilitate the accessibility and utilization of the active sites, which endow NOMC with excellent electrocatalysis performance and outstanding stability. Especially, a nearly 100% CO Faradaic efficiency is achieved at an ultralow overpotential of 360 mV for CO2 reduction. When constructed as an aqueous rechargeable Zn-CO2 battery using NOMC as the cathode, it yields a high peak power density of 0.71 mW cm-2 , a good cyclability of 300 cycles, and excellent energy efficiency of 52.8% at 1.0 mA cm-2 .
Collapse
Affiliation(s)
- Sanshuang Gao
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin Key Lab of Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yifan Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Zhongyuan Xie
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin Key Lab of Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yuan Qiu
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin Key Lab of Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Longchao Zhuo
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Yongji Qin
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin Key Lab of Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Junqiang Ren
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Jun Luo
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin Key Lab of Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xijun Liu
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin Key Lab of Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin, 300300, China
| |
Collapse
|
28
|
Huang X, Shen T, Sun S, Hou Y. Synergistic Modulation of Carbon-Based, Precious-Metal-Free Electrocatalysts for Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6989-7003. [PMID: 33529010 DOI: 10.1021/acsami.0c19922] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing alternatives to noble-metal-based catalysts toward the oxygen reduction reaction (ORR) process plays a key role in the application of low-temperature fuel cells. Carbon-based, precious-metal-free electrocatalysts are of great interest due to their low cost, abundant sources, active catalytic performance, and long-term stability. They are also supposed to feature intrinsically high activity and highly dense catalytic sites along with their sufficient exposure, high conductivity, and high chemical stability, as well as effective mass transfer pathways. In this Review, we focus on carbon-based, precious-metal-free nanocatalysts with synergistic modulation of active-site species and their exposure, mass transfer, and charge transport during the electrochemical process. With this knowledge, perspectives on synergistic modulation strategies are proposed to push forward the development of Pt-free ORR catalysts and the wide application of fuel cells.
Collapse
Affiliation(s)
- Xiaoxiao Huang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Department of Materials Science and Engineering, College of Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tong Shen
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Department of Materials Science and Engineering, College of Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shengnan Sun
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Department of Materials Science and Engineering, College of Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Department of Materials Science and Engineering, College of Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|