1
|
Mallem SPR, Puneetha P, Lee DY, An SJ. Strain-Modulated Flexible Bio-Organic/Graphene/PET Sensors Based on DNA-Curcumin Biopolymer. Biomolecules 2024; 14:698. [PMID: 38927101 PMCID: PMC11201641 DOI: 10.3390/biom14060698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, there has been growing interest in the development of metal-free, environmentally friendly, and cost-effective biopolymer-based piezoelectric strain sensors (bio-PSSs) for flexible applications. In this study, we have developed a bio-PSS based on pure deoxyribonucleic acid (DNA) and curcumin materials in a thin-film form and studied its strain-induced current-voltage characteristics based on piezoelectric phenomena. The bio-PSS exhibited flexibility under varying compressive and tensile loads. Notably, the sensor achieved a strain gauge factor of 407 at an applied compressive strain of -0.027%, which is 8.67 times greater than that of traditional metal strain gauges. Furthermore, the flexible bio-PSS demonstrated a rapid response under a compressive strain of -0.08%. Our findings suggest that the proposed flexible bio-PSS holds significant promise as a motion sensor, addressing the demand for environmentally safe, wearable, and flexible strain sensor applications.
Collapse
Affiliation(s)
- Siva Pratap Reddy Mallem
- Advanced Material Research Center, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea;
| | - Peddathimula Puneetha
- Department of Robotics and Intelligent Machine Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Dong Yeon Lee
- Department of Robotics and Intelligent Machine Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sung Jin An
- Department of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| |
Collapse
|
2
|
Guo X, Zhang T, Wang Z, Zhang H, Yan Z, Li X, Hong W, Zhang A, Qian Z, Zhang X, Shu Y, Wang J, Hua L, Hong Q, Zhao Y. Tactile corpuscle-inspired piezoresistive sensors based on (3-aminopropyl) triethoxysilane-enhanced CNPs/carboxylated MWCNTs/cellulosic fiber composites for textile electronics. J Colloid Interface Sci 2024; 660:203-214. [PMID: 38244489 DOI: 10.1016/j.jcis.2024.01.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Recently, wearable electronic products and gadgets have developed quickly with the aim of catching up to or perhaps surpassing the ability of human skin to perceive information from the external world, such as pressure and strain. In this study, by first treating the cellulosic fiber (modal textile) substrate with (3-aminopropyl) triethoxysilane (APTES) and then covering it with conductive nanocomposites, a bionic corpuscle layer is produced. The sandwich structure of tactile corpuscle-inspired bionic (TCB) piezoresistive sensors created with the layer-by-layer (LBL) technology consists of a pressure-sensitive module (a bionic corpuscle), interdigital electrodes (a bionic sensory nerve), and a PU membrane (a bionic epidermis). The synergistic mechanism of hydrogen bond and coupling agent helps to improve the adhesive properties of conductive materials, and thus improve the pressure sensitive properties. The TCB sensor possesses favorable sensitivity (1.0005 kPa-1), a wide linear sensing range (1700 kPa), and a rapid response time (40 ms). The sensor is expected to be applied in a wide range of possible applications including human movement tracking, wearable detection system, and textile electronics.
Collapse
Affiliation(s)
- Xiaohui Guo
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, PR China.
| | - Tianxu Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, PR China
| | - Ziang Wang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, PR China
| | - Huishan Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, PR China
| | - Zihao Yan
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, PR China
| | - Xianghui Li
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, PR China
| | - Weiqiang Hong
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, PR China; State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, PR China.
| | - Anqi Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, PR China
| | - Zhibin Qian
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, PR China
| | - Xinyi Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, PR China
| | - Yuxin Shu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, PR China
| | - Jiahao Wang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, PR China
| | - Liangping Hua
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, PR China
| | - Qi Hong
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, PR China
| | - Ynong Zhao
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
3
|
Wang G, Zheng M, Liu Z, Wang M. Anisotropic Piezoresistive Sensors Made with Magnetically Induced Vertically Aligned Carbon Nanotubes/Polydimethylsiloxane. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37878539 DOI: 10.1021/acsami.3c09104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A piezoresistive material consisting of internal vertically aligned carbon nanotubes acting in concert with an external microdome structure is prepared to obtain a flexible piezoresistive sensor with high anisotropy. Here, we first obtained flexible piezoresistive composites (VCP) with anisotropic properties by inducing the vertical alignment of multiwalled carbon nanotubes in the pressure direction under a weak magnetic field of 0.6 T. Then, the composite with a microdome structure on the surface (m-VCP) was fabricated by a mold with a microstructure to further increase the anisotropy of the composite. The m-VCP microstructure was docked with VCP and placed between two layers of copper foil. With the synergistic effect of vertically aligned carbon nanotubes and the microdome structure, the sensitivity of the flexible sensor in the pressure direction was dramatically increased. In the low-strain range (0-6%), the sensitivity of m-VCP (GF = 9.208) is improved by 49% compared to m-CP and by 86% compared to VCP. The sensor has high anisotropy in the piezoresistive direction and retains good fatigue resistance under fatigue testing for 2000 cycles. This means that the sensor can be used in emerging fields such as human health monitoring, wearable electronics, and intelligent human-computer interaction.
Collapse
Affiliation(s)
- Gongdong Wang
- School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
- Zhiyuan Research Institute, Hangzhou 310012, China
| | - Mingyang Zheng
- School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Zhendong Liu
- School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Meng Wang
- School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
| |
Collapse
|
4
|
Chen Y, Pu X, Xu X, Shi M, Li HJ, Wang D. PET/ZnO@MXene-Based Flexible Fabrics with Dual Piezoelectric Functions of Compression and Tension. SENSORS (BASEL, SWITZERLAND) 2022; 23:91. [PMID: 36616693 PMCID: PMC9823752 DOI: 10.3390/s23010091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/12/2023]
Abstract
The traditional self-supported piezoelectric thin films prepared by filtration methods are limited in practical applications due to their poor tensile properties. The strategy of using flexible polyethylene terephthalate (PET) fabric as the flexible substrate is beneficial to enhancing the flexibility and stretchability of the flexible device, thus extending the applications of pressure sensors. In this work, a novel wearable pressure sensor is prepared, of which uniform and dense ZnO nanoarray-coated PET fabrics are covered by a two-dimensional MXene nanosheet. The ternary structure incorporates the advantages of the three components including the superior piezoelectric properties of ZnO nanorod arrays, the excellent flexibility of the PET substrate, and the outstanding conductivity of MXene, resulting in a novel wearable sensor with excellent pressure-sensitive properties. The PET/ZnO@MXene pressure sensor exhibits excellent sensing performance (S = 53.22 kPa-1), fast response/recovery speeds (150 ms and 100 ms), and superior flexural stability (over 30 cycles at 5% strain). The composite fabric also shows high sensitivity in both motion monitoring and physiological signal detection (e.g., device bending, elbow bending, finger bending, wrist pulse peaks, and sound signal discrimination). These findings provide insight into composite fabric-based pressure-sensitive materials, demonstrating the great significance and promising prospects in the field of flexible pressure sensing.
Collapse
Affiliation(s)
| | | | | | | | - Hui-Jun Li
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | | |
Collapse
|
5
|
Kim KN, Ko WS, Byun JH, Lee DY, Jeong JK, Lee HD, Lee GW. Bottom-Gated ZnO TFT Pressure Sensor with 1D Nanorods. SENSORS (BASEL, SWITZERLAND) 2022; 22:8907. [PMID: 36433504 PMCID: PMC9698253 DOI: 10.3390/s22228907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
In this study, a bottom-gated ZnO thin film transistor (TFT) pressure sensor with nanorods (NRs) is suggested. The NRs are formed on a planar channel of the TFT by hydrothermal synthesis for the mediators of pressure amplification. The fabricated devices show enhanced sensitivity by 16~20 times better than that of the thin film structure because NRs have a small pressure transmission area and causes more strain in the underlayered piezoelectric channel material. When making a sensor with a three-terminal structure, the leakage current in stand-by mode and optimal conductance state for pressure sensor is expected to be controlled by the gate voltage. A scanning electron microscope (SEM) was used to identify the nanorods grown by hydrothermal synthesis. X-ray diffraction (XRD) was used to compare ZnO crystallinity according to device structure and process conditions. To investigate the effect of NRs, channel mobility is also extracted experimentally and the lateral flow of current density is analyzed with simulation (COMSOL) showing that when the piezopotential due to polarization is formed vertically in the channel, the effective mobility is degraded.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ga-Won Lee
- Correspondence: ; Tel.: +82-42-821-5666; Fax: +82-42-823-9544
| |
Collapse
|
6
|
Ru M, Hai AM, Wang L, Yan S, Zhang Q. Recent progress in silk-based biosensors. Int J Biol Macromol 2022; 224:422-436. [DOI: 10.1016/j.ijbiomac.2022.10.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
7
|
Wang L, Zhang F, Su W, Xu X, Li A, Li Y, Xu C, Sun Y. Green Manufacturing of Flexible Sensors with a Giant Gauge Factor: Bridging Effect of CNT and Electric Field Enhancement at the Percolation Threshold. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26024-26033. [PMID: 35608949 DOI: 10.1021/acsami.2c04296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Toxic organic solvents are commonly used to disperse nanomaterials in the manufacturing of flexible conductive composites (e.g., graphene-PDMS). The dry-blended method avoids toxic organic solvent usage but leads to poor performance. Here, we proposed an innovative manufacturing method by adapting the traditional dry-blended method, including two key steps: minor CNT bridging and high-frequency electric field enhancement at the percolation threshold of graphene-PDMS. Significant improvement was achieved in the electrical conductivity (1528 times), the giant gauge factor (>8767.54), and the piezoresistive strain range (30 times) over the traditional dry-blended method. Further applications in measurements of culturing rat neonatal cardiomyocytes and mouse hearts proved that the proposed method has great potential for the manufacturing of nontoxic flexible sensors.
Collapse
Affiliation(s)
- Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Feng Zhang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Weiguang Su
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xingyuan Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Anqing Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto ON M5S 3E8, Canada
| |
Collapse
|
8
|
Preparation of a Vertical Graphene-Based Pressure Sensor Using PECVD at a Low Temperature. MICROMACHINES 2022; 13:mi13050681. [PMID: 35630148 PMCID: PMC9146447 DOI: 10.3390/mi13050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022]
Abstract
Flexible pressure sensors have received much attention due to their widespread potential applications in electronic skins, health monitoring, and human-machine interfaces. Graphene and its derivatives hold great promise for two-dimensional sensing materials, owing to their superior properties, such as atomically thin, transparent, and flexible structure. The high performance of most graphene-based pressure piezoresistive sensors relies excessively on the preparation of complex, post-growth transfer processes. However, the majority of dielectric substrates cannot hold in high temperatures, which can induce contamination and structural defects. Herein, a credibility strategy is reported for directly growing high-quality vertical graphene (VG) on a flexible and stretchable mica paper dielectric substrate with individual interdigital electrodes in plasma-enhanced chemical vapor deposition (PECVD), which assists in inducing electric field, resulting in a flexible, touchable pressure sensor with low power consumption and portability. Benefitting from its vertically directed graphene microstructure, the graphene-based sensor shows superior properties of high sensitivity (4.84 KPa-1) and a maximum pressure range of 120 KPa, as well as strong stability (5000 cycles), which makes it possible to detect small pulse pressure and provide options for preparation of pressure sensors in the future.
Collapse
|
9
|
Zhang R, Huang J, Guo Z. Functionalized paper with intelligent response to humidity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|