1
|
Martinet A, Miebach L, Weltmann K, Emmert S, Bekeschus S. Biomimetic Hydrogels - Tools for Regenerative Medicine, Oncology, and Understanding Medical Gas Plasma Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2403856. [PMID: 39905967 PMCID: PMC11878268 DOI: 10.1002/smll.202403856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Biomimetic hydrogels enable biochemical, cell biology, and tissue-like studies in the third dimension. Smart hydrogels are also frequently used in tissue engineering and as drug carriers for intra- or extracutaneous regenerative medicine. They have also been studied in bio-sensor development, 3D cell culture, and organoid growth optimization. Yet, many hydrogel types, adjuvant components, and cross-linking methods have emerged over decades, diversifying and complexifying such studies. Here, an evaluative overview is provided, mapping potential applications to the corresponding hydrogel tuning. Strikingly, hydrogels are ideal for studying locoregional therapy modalities, such as cold medical gas plasma technology. These partially ionized gases produce various reactive oxygen species (ROS) types along with other physico-chemical components such as ions and electric fields, and the spatio-temporal effects of these components delivered to diseased tissues remain largely elusive to date. Hence, this work outlines the promising applications of hydrogels in biomedical research in general and cold plasma science in particular and underlines the great potential of these smart scaffolds for current and future research and therapy.
Collapse
Affiliation(s)
- Alice Martinet
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| | - Lea Miebach
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| | - Klaus‐Dieter Weltmann
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
| | - Steffen Emmert
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
| | - Sander Bekeschus
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| |
Collapse
|
2
|
Rahmani A, Jafari R, Nadri S. Molecular dynamics simulation in tissue engineering. BIOIMPACTS : BI 2024; 15:30160. [PMID: 40161944 PMCID: PMC11954742 DOI: 10.34172/bi.30160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 04/02/2025]
Abstract
Introduction In tissue engineering, the interaction among three primary elements, namely cells, material scaffolds, and stimuli, plays a pivotal role in determining the fate of cells and the formation of new tissue. Understanding the characteristics of these components and their interplay through various methodologies can significantly enhance the efficiency of the designed tissue engineering system. In silico methods, such as molecular dynamics (MD) simulation, use mathematical calculations to investigate molecular properties and can overcome the limitations of laboratory methods in delivering adequate molecular-level information. Methods The studies that used molecular dynamics simulation, either alone or in combination with other techniques, have been reviewed in this paper. Results The review explores the use of molecular dynamics simulations in studying substrate formation mechanism and its optimization. It highlights MD simulations' role in predicting biomolecule binding strength, understanding substrate properties' impact on biological activity, and factors influencing cell attachment and proliferation. Despite limited studies, MD simulations are considered a reliable tool for identifying ideal substrates for cell proliferation. The review also touches on MD simulations' contribution to cell differentiation studies, emphasizing their role in designing engineered extracellular matrix for desired cell fates. Conclusion Molecular dynamics simulation as a non-laboratory tool has many capabilities in providing basic and practical information about the behavior of the molecular components of the cell as well as the interaction of the cell and its components with the surrounding environment. Using this information along with other information obtained from laboratory tools can ultimately lead to the advancement of tissue engineering through the development of more appropriate and efficient methods.
Collapse
Affiliation(s)
- Ali Rahmani
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Rahim Jafari
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
3
|
Haidar LL, Bilek M, Akhavan B. Surface Bio-engineered Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310876. [PMID: 38396265 DOI: 10.1002/smll.202310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Surface bio-engineering of polymeric nanoparticles (PNPs) has emerged as a cornerstone in contemporary biomedical research, presenting a transformative avenue that can revolutionize diagnostics, therapies, and drug delivery systems. The approach involves integrating bioactive elements on the surfaces of PNPs, aiming to provide them with functionalities to enable precise, targeted, and favorable interactions with biological components within cellular environments. However, the full potential of surface bio-engineered PNPs in biomedicine is hampered by obstacles, including precise control over surface modifications, stability in biological environments, and lasting targeted interactions with cells or tissues. Concerns like scalability, reproducibility, and long-term safety also impede translation to clinical practice. In this review, these challenges in the context of recent breakthroughs in developing surface-biofunctionalized PNPs for various applications, from biosensing and bioimaging to targeted delivery of therapeutics are discussed. Particular attention is given to bonding mechanisms that underlie the attachment of bioactive moieties to PNP surfaces. The stability and efficacy of surface-bioengineered PNPs are critically reviewed in disease detection, diagnostics, and treatment, both in vitro and in vivo settings. Insights into existing challenges and limitations impeding progress are provided, and a forward-looking discussion on the field's future is presented. The paper concludes with recommendations to accelerate the clinical translation of surface bio-engineered PNPs.
Collapse
Affiliation(s)
- Laura Libnan Haidar
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
4
|
Wang Y, Yang Z, Chen X, Jiang X, Fu G. Silk fibroin hydrogel membranes prepared by a sequential cross-linking strategy for guided bone regeneration. J Mech Behav Biomed Mater 2023; 147:106133. [PMID: 37742595 DOI: 10.1016/j.jmbbm.2023.106133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Silk fibroin hydrogel is a widely used material for tissue engineering. However, its mechanical properties are the main obstacle to its application to medical bone regeneration barrier membranes. Here, we developed a new hydrogel membrane for guided bone regeneration (GBR). In this study, a sequential crosslinking strategy including photo crosslinking and organic solvent (ethanol) treatment was used to obtain silk fibroin hydrogel membrane (EA-SF). The mechanical properties of EA-SF were significantly enhanced compared to the hydrogel prepared only by photocrosslinking (E-SF). The compressive and tensile strengths of the hydrogel film treated with 75% ethanol for 6 h were 1.18 ± 0.36 MPa and 0.43 ± 0.03 MPa, respectively. In vitro cell culture results showed that EA-SF has good biocompatibility and can effectively shield fibroblasts (L929). EA-SF also has excellent in vitro protein hydrolysis stability. In vivo experiments (subcutaneous implantation and calvarial defect experiment) confirmed the stability and barrier functionality of EA-SF. In conclusion, this study demonstrated that ethanol could improve the mechanical properties of silk fibroin hydrogel and extend the scope of their application, making silk fibroin hydrogel a promising GBR material.
Collapse
Affiliation(s)
- Yuan Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Zhenyu Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Xi Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Xiaofeng Jiang
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Gang Fu
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| |
Collapse
|
5
|
Scholtz V, Jirešová J, Fišer L, Obrová K, Sláma M, Klenivskyi M, Khun J, Vaňková E. Non-thermal plasma disinfecting procedure is harmless to delicate items of everyday use. Sci Rep 2023; 13:15479. [PMID: 37726338 PMCID: PMC10509187 DOI: 10.1038/s41598-023-42405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023] Open
Abstract
Non-thermal plasma (NTP) is a well-known decontamination tool applicable for a wide range of microorganisms and viruses. Since the recent COVID-19 pandemic highlighted the need to decontaminate all daily used items, it is highly desirable to address the applicability of NTP, including its possible harmful effects. To the best of our knowledge, a comprehensive characterization of NTP effects on sensitive materials is still lacking. We investigated the potential damage to common materials of daily use inflicted by air atmospheric NTP generated in Plasmatico v1.0. The materials tested were paper, various metals, and passive and active electronic components modelling sensitive parts of commonly used small electronic devices. The NTP-exposed paper remained fully usable with only slight changes in its properties, such as whitening, pH change, and degree of polymerization. NTP caused mild oxidation of copper, tinned copper, brass, and a very mild oxidation of stainless steel. However, these changes do not affect the normal functionality of these materials. No significant changes were observed for passive electronic components; active components displayed a very slight shift of the measured values observed for the humidity sensor. In conclusion, NTP can be considered a gentle tool suitable for decontamination of various sensitive materials.
Collapse
Affiliation(s)
- V Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic.
| | - J Jirešová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
| | - L Fišer
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
| | - K Obrová
- Division Molecular Microbiology, St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - M Sláma
- Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
| | - M Klenivskyi
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
| | - J Khun
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
| | - E Vaňková
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
6
|
Saeidi M, Chenani H, Orouji M, Adel Rastkhiz M, Bolghanabadi N, Vakili S, Mohamadnia Z, Hatamie A, Simchi A(A. Electrochemical Wearable Biosensors and Bioelectronic Devices Based on Hydrogels: Mechanical Properties and Electrochemical Behavior. BIOSENSORS 2023; 13:823. [PMID: 37622909 PMCID: PMC10452289 DOI: 10.3390/bios13080823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Hydrogel-based wearable electrochemical biosensors (HWEBs) are emerging biomedical devices that have recently received immense interest. The exceptional properties of HWEBs include excellent biocompatibility with hydrophilic nature, high porosity, tailorable permeability, the capability of reliable and accurate detection of disease biomarkers, suitable device-human interface, facile adjustability, and stimuli responsive to the nanofiller materials. Although the biomimetic three-dimensional hydrogels can immobilize bioreceptors, such as enzymes and aptamers, without any loss in their activities. However, most HWEBs suffer from low mechanical strength and electrical conductivity. Many studies have been performed on emerging electroactive nanofillers, including biomacromolecules, carbon-based materials, and inorganic and organic nanomaterials, to tackle these issues. Non-conductive hydrogels and even conductive hydrogels may be modified by nanofillers, as well as redox species. All these modifications have led to the design and development of efficient nanocomposites as electrochemical biosensors. In this review, both conductive-based and non-conductive-based hydrogels derived from natural and synthetic polymers are systematically reviewed. The main synthesis methods and characterization techniques are addressed. The mechanical properties and electrochemical behavior of HWEBs are discussed in detail. Finally, the prospects and potential applications of HWEBs in biosensing, healthcare monitoring, and clinical diagnostics are highlighted.
Collapse
Affiliation(s)
- Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Shaghayegh Vakili
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Abdolreza (Arash) Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
7
|
Sremački I, Kos Š, Bošnjak M, Jurov A, Serša G, Modic M, Leys C, Cvelbar U, Nikiforov A. Plasma Damage Control: From Biomolecules to Cells and Skin. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46303-46316. [PMID: 34569240 DOI: 10.1021/acsami.1c12232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The antibacterial and cell-proliferative character of atmospheric pressure plasma jets (APPJs) helps in the healing process of chronic wounds. However, control of the plasma-biological target interface remains an open issue. High vacuum ultraviolet/ultraviolet (VUV/UV) radiation and RONS flux from plasma may cause damage of a treated tissue; therefore, controlled interaction is essential. VUV/UV emission from argon APPJs and radiation control with aerosol injection in plasma effluent is the focus of this research. The aerosol effect on radiation is studied by a fluorescent target capable of resolving the plasma oxidation footprint. In addition, DNA damage is evaluated by plasmid DNA radiation assay and cell proliferation assay to assess safety aspects of the plasma jet, the effect of VUV/UV radiation, and its control with aerosol injection. Inevitable emission of VUV/UV radiation from plasmas during treatment is demonstrated in this work. Plasma has no antiproliferative effect on fibroblasts in short treatments (t < 60 s), while long exposure has a cytotoxic effect, resulting in decreased cell survival. Radiation has no effect on cell survival in the medium due to absorption. However, a strong cytotoxic effect on the attached fibroblasts without the medium is apparent. VUV/UV radiation contributes 70% of the integral plasma effect in induction of single- and double-strand DNA breaks and cytotoxicity of the attached cells without the medium. Survival of the attached cells increases by 10% when aerosol is introduced between plasma and the cells. Injection of aerosol in the plasma effluent can help to control the plasma-cell/tissue interaction. Aerosol droplets in the effluent partially absorb UV emission from the plasma, limiting photon flux in the direction of the biological target. Herein, cold and safe plasma-aerosol treatment and a safe operational mode of treatment are demonstrated in a murine model.
Collapse
Affiliation(s)
- Ivana Sremački
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| | - Špela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, Ljubljana 1000, Slovenia
| | - Maša Bošnjak
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, Ljubljana 1000, Slovenia
| | - Andrea Jurov
- Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana 1000, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, Ljubljana 1000, Slovenia
| | - Martina Modic
- Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia
| | - Christophe Leys
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| | - Uroš Cvelbar
- Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana 1000, Slovenia
| | - Anton Nikiforov
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| |
Collapse
|
8
|
Korzec D, Andres T, Brandes E, Nettesheim S. Visualization of Activated Area on Polymers for Evaluation of Atmospheric Pressure Plasma Jets. Polymers (Basel) 2021; 13:polym13162711. [PMID: 34451254 PMCID: PMC8401304 DOI: 10.3390/polym13162711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 11/16/2022] Open
Abstract
The treatment of a polymer surface using an atmospheric pressure plasma jet (APPJ) causes a local increase of the surface free energy (SFE). The plasma-treated zone can be visualized with the use of a test ink and quantitatively evaluated. However, the inked area is shrinking with time. The shrinkage characteristics are collected using activation image recording (AIR). The recording is conducted by a digital camera. The physical mechanisms of activation area shrinkage are discussed. The error sources are analyzed and methods of error reduction are proposed. The standard deviation of the activation area is less than 3%. Three polymers, acrylonitrile butadiene styrene (ABS), high-density polyethylene (HDPE), and polyoxymethylene (POM), are examined as a test substrate material. Due to a wide variation range of SFE and a small hydrophobic recovery, HDPE is chosen. Since the chemical mixtures tend to temporal changes of the stoichiometry, the pure formamide test ink with 58 mN/m is selected. The method is tested for the characterization of five different types of discharge: (i) pulsed arc APPJ with the power of about 700 W; (ii) piezoelectric direct discharge APPJ; (iii) piezoelectric driven needle corona in ambient air; (iv) piezoelectric driven plasma needle in argon; and (v) piezoelectric driven dielectric barrier discharge (DBD). For piezoelectrically driven discharges, the power was either 4.5 W or 8 W. It is shown how the AIR method can be used to solve different engineering problems.
Collapse
|
9
|
Xiong Y, Zhang X, Ma X, Wang W, Yan F, Zhao X, Chu X, Xu W, Sun C. A review of the properties and applications of bioadhesive hydrogels. Polym Chem 2021. [DOI: 10.1039/d1py00282a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to their outstanding properties, bioadhesive hydrogels have been extensively studied by researchers in recent years.
Collapse
Affiliation(s)
- Yingshuo Xiong
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoran Zhang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xintao Ma
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenqi Wang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Feiyan Yan
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaohan Zhao
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoxiao Chu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenlong Xu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Changmei Sun
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| |
Collapse
|