1
|
Quirós‐Díez EP, Herreros‐Lucas C, Vila‐Fungueiriño JM, Vizcaíno‐Anaya L, Sabater‐Algarra Y, Giménez‐López MDC. Boosting Oxygen Reduction Reaction Selectivity in Metal Nanoparticles with Polyoxometalates. SMALL METHODS 2024; 8:e2301805. [PMID: 38517266 PMCID: PMC11672175 DOI: 10.1002/smtd.202301805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/06/2024] [Indexed: 03/23/2024]
Abstract
The lack of selectivity toward the oxygen reduction reaction (ORR) in metal nanoparticles can be linked to the generation of intermediates. This constitutes a crucial constraint on the performance of specific electrochemical devices, such as fuel cells and metal-air batteries. To boost selectivity of metal nanoparticles, a novel methodology that harnesses the unique electrocatalytic properties of polyoxometalates (POM) to scavenge undesired intermediates of the ORR (such as HO2 -) promoting selectivity is proposed. It involves the covalent functionalization of metal nanoparticle's surface with an electrochemically active capping layer containing a new sulfur-functionalized vanadium-based POM (AuNP@POM). To demonstrate this approach, preformed thiolate Au(111) nanoparticles with a relatively poor ORR selectivity are chosen. The dispersion of AuNP@POM on the surface of carbon nanofibers (CNF) enhances oxygen diffusion, and therefore the ORR activity. The resulting electrocatalyst (AuNP@POM/CNF) exhibits superior stability against impurities like methanol and a higher pH tolerance range compared to the standard commercial Pt/C. The work demonstrates for the first time, the use of a POM-based electrochemically active capping layer to switch on the selectivity of poorly selective gold nanoparticles, offering a promising avenue for the preparation of electrocatalyst materials with improved selectivity, performance, and stability for ORR-based devices.
Collapse
Affiliation(s)
- Eugenia Pilar Quirós‐Díez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química InorgánicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Carlos Herreros‐Lucas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química InorgánicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - José Manuel Vila‐Fungueiriño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química FísicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Lucía Vizcaíno‐Anaya
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química InorgánicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Yolanda Sabater‐Algarra
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química InorgánicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - María del Carmen Giménez‐López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química InorgánicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| |
Collapse
|
2
|
Lee H, Kim KH, Rao RR, Park DG, Choi WH, Choi JH, Kim DW, Jung DH, Stephens IEL, Durrant JR, Kang JK. A hydrogen radical pathway for efficacious electrochemical nitrate reduction to ammonia over an Fe-polyoxometalate/Cu electrocatalyst. MATERIALS HORIZONS 2024; 11:4115-4122. [PMID: 38884595 DOI: 10.1039/d4mh00418c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Electrochemical nitrate (NO3-) reduction to ammonia (NH3), which is a high value-added chemical or high-energy density carrier in many applications, could become a key process overcoming the disadvantages of the Haber-Bosch process; however, current electrocatalysts have severe drawbacks in terms of activity, selectivity, and stability. Here, we report the hydrogen radical (H*) pathway as a solution to overcome this challenge, as demonstrated by efficacious electrochemical NO3- reduction to NH3 over the Fe-polyoxometalate (Fe-POM)/Cu hybrid electrocatalyst. Fe-POM, composed of Preyssler anions ([NaP5W30O110]14-) and Fe cations, facilitates efficient H* generation via H2O + e- → H* + OH-, and H* transfer to the Cu sites of the Fe-POM/Cu catalyst enables selective NO3- reduction to NH3. Operando spectroelectrochemical spectra substantiate the occurrence of the H* pathway through direct observation of Fe redox related to H* generation and Cu redox related to NO3- binding. With the H* pathway, the Fe-POM/Cu electrodes exhibit high activity for NO3- reduction to NH3 with 1.44 mg cm-2 h-1 in a 500 ppm NO3-/1 M KOH solution at -0.2 V vs. RHE, which is about 36-fold higher than that of the pristine Cu electrocatalyst. Additionally, it attains high selectivity with a faradaic efficiency of up to 97.09% at -0.2 V vs. RHE while exhibiting high catalytic stability over cycles.
Collapse
Affiliation(s)
- Heebin Lee
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Keon-Han Kim
- Chemical Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Reshma R Rao
- Department of Materials, Imperial College London, London W12 0BZ, UK
| | - Dong Gyu Park
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Won Ho Choi
- Department of Petrochemical Materials, Chonnam National University, 50 Daehak-ro, Yeosu-si 59631, Republic of Korea
| | - Jong Hui Choi
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Dong Won Kim
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Do Hwan Jung
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Ifan E L Stephens
- Department of Materials, Imperial College London, London W12 0BZ, UK
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, UK.
| | - Jeung Ku Kang
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
3
|
Adisasmito S, Khoiruddin K, Sutrisna PD, Wenten IG, Siagian UWR. Bipolar Membrane Seawater Splitting for Hydrogen Production: A Review. ACS OMEGA 2024; 9:14704-14727. [PMID: 38585051 PMCID: PMC10993265 DOI: 10.1021/acsomega.3c09205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
The growing demand for clean energy has spurred the quest for sustainable alternatives to fossil fuels. Hydrogen has emerged as a promising candidate with its exceptional heating value and zero emissions upon combustion. However, conventional hydrogen production methods contribute to CO2 emissions, necessitating environmentally friendly alternatives. With its vast potential, seawater has garnered attention as a valuable resource for hydrogen production, especially in arid coastal regions with surplus renewable energy. Direct seawater electrolysis presents a viable option, although it faces challenges such as corrosion, competing reactions, and the presence of various impurities. To enhance the seawater electrolysis efficiency and overcome these challenges, researchers have turned to bipolar membranes (BPMs). These membranes create two distinct pH environments and selectively facilitate water dissociation by allowing the passage of protons and hydroxide ions, while acting as a barrier to cations and anions. Moreover, the presence of catalysts at the BPM junction or interface can further accelerate water dissociation. Alongside the thermodynamic potential, the efficiency of the system is significantly influenced by the water dissociation potential of BPMs. By exploiting these unique properties, BPMs offer a promising solution to improve the overall efficiency of seawater electrolysis processes. This paper reviews BPM electrolysis, including the water dissociation mechanism, recent advancements in BPM synthesis, and the challenges encountered in seawater electrolysis. Furthermore, it explores promising strategies to optimize the water dissociation reaction in BPMs, paving the way for sustainable hydrogen production from seawater.
Collapse
Affiliation(s)
- Sanggono Adisasmito
- Department
of Chemical Engineering, Institut Teknologi
Bandung (ITB), Jalan
Ganesa No. 10, Bandung 40132, Indonesia
| | - Khoiruddin Khoiruddin
- Department
of Chemical Engineering, Institut Teknologi
Bandung (ITB), Jalan
Ganesa No. 10, Bandung 40132, Indonesia
| | - Putu D. Sutrisna
- Department
of Chemical Engineering, Universitas Surabaya
(UBAYA), Jalan Raya Kalirungkut (Tenggilis), Surabaya 60293, Indonesia
| | - I Gede Wenten
- Department
of Chemical Engineering, Institut Teknologi
Bandung (ITB), Jalan
Ganesa No. 10, Bandung 40132, Indonesia
| | - Utjok W. R. Siagian
- Department
of Petroleum Engineering, Institut Teknologi
Bandung (ITB), Jalan Ganesa No. 10, Bandung 40132, Indonesia
| |
Collapse
|
4
|
Jeon D, Kim DY, Kim H, Kim N, Lee C, Seo DH, Ryu J. Electrochemical Evolution of Ru-Based Polyoxometalates into Si,W-Codoped RuO x for Acidic Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304468. [PMID: 37951714 DOI: 10.1002/adma.202304468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Despite intensive studies over decades, the development of electrocatalysts for acidic water splitting still relies on platinum group metals, especially Pt and Ir, which are scarce, expensive, and poorly sustainable. Because such problems can be alleviated, Ru-based bifunctional catalysts such as rutile RuO2 have recently emerged. However, RuO2 has a relatively low activity for hydrogen evolution reactions (HER) and low stability for oxygen evolution reactions (OER) under acidic conditions. In this study, the synthesis of a RuOx -based bifunctional catalyst (RuSiW) for acidic water splitting via the electrochemical evolution from Ru-based polyoxometalates at cathodic potentials is reported. RuSiW consists of the nanocrystalline RuO2 core and Si,W-codoped RuOx shell. RuSiW exhibits outstanding HER and OER activity comparable to Pt/C and RuO2 , respectively, with high stability. Computational analysis suggests that the codoping of RuOx with W and Si synergistically improves the HER activity of otherwise poor RuO2 by shifting the d-band center and optimizing atomic configurations beneficial for proper hydrogen adsorption. This study provides insights into the design and synthesis of unprecedented bifunctional electrocatalysts using catalytically inactive and less explored elements, such as Si and W.
Collapse
Affiliation(s)
- Dasom Jeon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dong Yeon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyeongoo Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Nayeong Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Cheolmin Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dong-Hwa Seo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jungki Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Renewable Carbon, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
5
|
Di A, Xu J, Zinn T, Sztucki M, Deng W, Ashok A, Lian C, Bergström L. Tunable Ordered Nanostructured Phases by Co-assembly of Amphiphilic Polyoxometalates and Pluronic Block Copolymers. NANO LETTERS 2023; 23:1645-1651. [PMID: 36795963 PMCID: PMC9999449 DOI: 10.1021/acs.nanolett.2c03068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The assembly of polyoxometalate (POM) metal-oxygen clusters into ordered nanostructures is attracting a growing interest for catalytic and sensing applications. However, assembly of ordered nanostructured POMs from solution can be impaired by aggregation, and the structural diversity is poorly understood. Here, we present a time-resolved small-angle X-ray scattering (SAXS) study of the co-assembly in aqueous solutions of amphiphilic organo-functionalized Wells-Dawson-type POMs with a Pluronic block copolymer over a wide concentration range in levitating droplets. SAXS analysis revealed the formation and subsequent transformation with increasing concentration of large vesicles, a lamellar phase, a mixture of two cubic phases that evolved into one dominating cubic phase, and eventually a hexagonal phase formed at concentrations above 110 mM. The structural versatility of co-assembled amphiphilic POMs and Pluronic block copolymers was supported by dissipative particle dynamics simulations and cryo-TEM.
Collapse
Affiliation(s)
- Andi Di
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Jipeng Xu
- School
of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Thomas Zinn
- ESRF,
The European Synchrotron, 71 Avenue des Martyrs, CS40220,38043 Grenoble Cedex 9, France
| | - Michael Sztucki
- ESRF,
The European Synchrotron, 71 Avenue des Martyrs, CS40220,38043 Grenoble Cedex 9, France
| | - Wentao Deng
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, China
| | - Anumol Ashok
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Cheng Lian
- School
of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lennart Bergström
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
6
|
Son M, Park J, Im E, Ryu JH, Durmus YE, Eichel RA, Kang SJ. Sacrificial Catalyst of Carbothermal-Shock-Synthesized 1T-MoS 2 Layers for Ultralong-Lifespan Seawater Battery. NANO LETTERS 2023; 23:344-352. [PMID: 36574277 DOI: 10.1021/acs.nanolett.2c04698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A Pt-nanoparticle-decorated 1T-MoS2 layer is designed as a sacrificial electrocatalyst by carbothermal shock (CTS) treatment to improve the energy efficiency and lifespan of seawater batteries. The phase transition of MoS2 crystals from 2H to metallic 1T─induced by the simple but potent CTS treatment─improves the oxygen-reduction-reaction (ORR) activity in seawater catholyte. In particular, the MoS2-based sacrificial catalyst effectively decreases the overpotential during charging via edge oxidation of MoS2, enhancing the cycling stability of the seawater battery. Furthermore, Pt nanoparticles are deposited onto CTS-MoS2 via an additional CTS treatment. The resulting specimen exhibits a significantly low charge/discharge potential gap of Δ0.39 V, high power density of 6.56 mW cm-2, and remarkable cycling stability up to ∼200 cycles (∼800 h). Thus, the novel strategy reported herein for the preparation of Pt-decorated 1T-MoS2 by CTS treatment could facilitate the development of efficient bifunctional electrocatalysts for fabricating seawater batteries with long service life.
Collapse
Affiliation(s)
- Minjin Son
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaehyun Park
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunmi Im
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jong Hun Ryu
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yasin Emre Durmus
- Institute of Energy and Climate Research-Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Rüdiger-A Eichel
- Institute of Energy and Climate Research-Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Institut für Materialien und Prozesse für elektrochemische Energiespeicher-undwandler, RWTH Aachen University, D-52074 Aachen, Germany
| | - Seok Ju Kang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
7
|
Liu G. Oxygen evolution reaction electrocatalysts for seawater splitting: A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Wang X, Lin J, Li H, Wang C, Wang X. Carbazole-based bis-imidazole ligand-involved synthesis of inorganic–organic hybrid polyoxometalates as electrochemical sensors for detecting bromate and efficient catalysts for selective oxidation of thioether. RSC Adv 2022; 12:4437-4445. [PMID: 35425509 PMCID: PMC8981165 DOI: 10.1039/d1ra08861k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/27/2022] [Indexed: 01/12/2023] Open
Abstract
Considering the potential application on preparing electrode and catalyst materials of inorganic–organic hybrid polyoxometalates, a bis-imidazole ligand with carbazole as a connector, 3,6-di(1H-imidazol-1-yl)-9H-carbazole (L), was used for preparing inorganic–organic hybrid polyoxometalates. As a result, three complexes formulated by [NiL2(Mo2O7)] (1), [Cu(H2O)2(HL)2 (β-Mo8O26)]·H2O (2) and [Ni2(H2O)4L2 (CrMo6(OH)5O19)]·6H2O (3) were obtained successfully. Structural analysis indicated that the different polyoxoanions and metal ions showed important influences on the formation of structures. In the presence of Ni2+ ions and heptamolybdate, a 2D network constructed from Ni2+ ions and L ligands was formed in complex 1, in which the [Mo4O14]4− polyoxoanions were encapsulated. But the use of Cu2+ ions led to a 1D chain of complex 2, which was composed of [β-Mo8O26]4− polyoxoanions and mononuclear {CuL2} units. By utilizing [CrMo6(OH)5O19]4− as the inorganic building block, complex 3 showed a 2D (4, 4)-connected layer. Complexes 1–3 could be employed as electrode materials for sensing bromate with the limits of detection of 0.315 μM for 1, 0.098 μM for 2 and 0.551 μM for 3. Moreover, these complexes showed efficient catalytic activity for the selective oxidation of thioethers. Three inorganic–organic hybrid polyoxometalates were prepared using a bis-imidazole ligand featuring carbazole as a connector, exhibiting not only diverse structures, but also good electrochemical sensing activities for bromate, as well as efficient catalytic performances for oxidation of thioether.![]()
Collapse
Affiliation(s)
- Xiang Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121000, P. R. China
| | - Jiafeng Lin
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121000, P. R. China
| | - Huan Li
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121000, P. R. China
| | - Chenying Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121000, P. R. China
| | - Xiuli Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121000, P. R. China
| |
Collapse
|
9
|
Kim N, Lee I, Choi Y, Ryu J. Molecular design of heterogeneous electrocatalysts using tannic acid-derived metal-phenolic networks. NANOSCALE 2021; 13:20374-20386. [PMID: 34731231 DOI: 10.1039/d1nr05901g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemistry could play a critical role in the transition to a more sustainable society by enabling the carbon-neutral production and use of various chemicals as well as efficient use of renewable energy resources. A prerequisite for the practical application of various electrochemical energy conversion and storage technologies is the development of efficient and robust electrocatalysts. Recently, molecularly designed heterogeneous catalysts have drawn great attention because they combine the advantages of both heterogeneous solid and homogeneous molecular catalysts. In particular, recently emerged metal-phenolic networks (MPNs) show promise as electrocatalysts for various electrochemical reactions owing to their unique features. They can be easily synthesized under mild conditions, making them eco-friendly, form uniform and conformal thin films on various kinds of substrates, accommodate various metal ions in a single-atom manner, and have excellent charge-transfer ability. In this minireview, we summarize the development of various MPN-based electrocatalysts for diverse electrochemical reactions, such as the hydrogen evolution reaction, the oxygen evolution reaction, the CO2 reduction reaction, and the N2 reduction reaction. We believe that this article provides insight into molecularly designable heterogeneous electrocatalysts based on MPNs and guidelines for broadening the applications of MPNs as electrocatalysts.
Collapse
Affiliation(s)
- Nayeong Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Inhui Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yuri Choi
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
10
|
Asghar M, Ali A, Haider A, Zaheer M, Nisar T, Wagner V, Akhter Z. Electrochemically Deposited Amorphous Cobalt-Nickel-Doped Copper Oxide as an Efficient Electrocatalyst toward Water Oxidation Reaction. ACS OMEGA 2021; 6:19419-19426. [PMID: 34368529 PMCID: PMC8340103 DOI: 10.1021/acsomega.1c01251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Production of hydrogen through water splitting is one of the green and the most practical solutions to cope with the energy crisis and greenhouse effect. However, oxygen evolution reaction (OER) being a sluggish step, the use of precious metal-based catalysts is the main impediment toward the viability of water splitting. In this work, amorphous copper oxide and doped binary- and ternary-metal oxides (containing CoII, NiII, and CuII) have been prepared on the surface of fluorine-doped tin oxide by a facile electrodeposition route followed by thermal treatment. The fabricated electrodes have been employed as efficient binder-free OER electrocatalysts possessing a high electrochemical surface area due to their amorphous nature. The cobalt-nickel-doped copper oxide (ternary-metal oxide)-based electrode showed promising OER activity with a high current density of 100 mA cm-2 at 1.65 V versus RHE that escalates to 313 mA cm-2 at 1.76 V in alkaline media at pH 14. The high activity of the ternary-metal oxide-based electrode was further supported by a smaller semicircle in the Nyquist plot. Furthermore, all metal-oxide-based electrodes offered high stability when tested for continuous production of oxygen for 50 h. This work highlights the synthesis of efficient and cost-effective amorphous metal-based oxide catalysts to execute electrocatalytic OER employing an electrodeposition approach.
Collapse
Affiliation(s)
| | - Abid Ali
- Department
of Chemistry, The University of Lahore, 1-Km Defence Road, Lahore 54000, Pakistan
| | - Ali Haider
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Pakistan
Academy of Science, 3-Constitution
Avenue Sector G-5/2, Islamabad 44000, Pakistan
| | - Muhammad Zaheer
- Department
of Chemistry and Chemical Engineering, Syed Babar Ali School of Science
and Engineering Lahore University of Management
Sciences (LUMS), Lahore 54792, Pakistan
| | - Talha Nisar
- Physics
and Earth Sciences, Jacobs University Bremen, Campus Ring 1, Bremen 28759, Germany
| | - Veit Wagner
- Physics
and Earth Sciences, Jacobs University Bremen, Campus Ring 1, Bremen 28759, Germany
| | - Zareen Akhter
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
11
|
Zhang JY, Wang X, Chang Z, Zhang Z, Wang X, Lin H. Two flexible bis(pyrazole)-bis(amide) ligand directed β-octamolybdate-based metal–organic complexes with different adsorption activities towards organic dyes and electrocatalytic properties. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Zhang JY, Chang ZH, Wang XL, Wang X, Lin HY. Different Anderson-type polyoxometalate-based metal–organic complexes exhibiting –OH group-directed structures and electrochemical sensing performance. NEW J CHEM 2021. [DOI: 10.1039/d0nj05517d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Four new Anderson-type polyoxometalate (POM)-based metal–organic complexes were hydrothermally synthesized and the –OH groups in POMs have significant effects on their structures and electrochemical performance.
Collapse
Affiliation(s)
- Jing-Yuan Zhang
- College of Chemistry and Materials Engineering, Bohai University
- Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell
- Jinzhou
- P. R. China
| | - Zhi-Han Chang
- College of Chemistry and Materials Engineering, Bohai University
- Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell
- Jinzhou
- P. R. China
| | - Xiu-Li Wang
- College of Chemistry and Materials Engineering, Bohai University
- Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell
- Jinzhou
- P. R. China
| | - Xiang Wang
- College of Chemistry and Materials Engineering, Bohai University
- Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell
- Jinzhou
- P. R. China
| | - Hong-Yan Lin
- College of Chemistry and Materials Engineering, Bohai University
- Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell
- Jinzhou
- P. R. China
| |
Collapse
|
13
|
Si C, Ma P, Han Q, Jiao J, Du W, Wu J, Li M, Niu J. A Polyoxometalate-Based Inorganic Porous Material with both Proton and Electron Conductivity by Light Actuation: Photocatalysis for Baeyer–Villiger Oxidation and Cr(VI) Reduction. Inorg Chem 2020; 60:682-691. [DOI: 10.1021/acs.inorgchem.0c02658] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Chen Si
- Henan Key Laboratory of Polyoxometalate Chemisty, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemisty, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Qiuxia Han
- Henan Key Laboratory of Polyoxometalate Chemisty, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Jiachen Jiao
- Henan Key Laboratory of Polyoxometalate Chemisty, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Wei Du
- Henan Key Laboratory of Polyoxometalate Chemisty, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Jingpin Wu
- Henan Key Laboratory of Polyoxometalate Chemisty, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Mingxue Li
- Henan Key Laboratory of Polyoxometalate Chemisty, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemisty, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| |
Collapse
|