1
|
Bao C, Li YT, Zhang Q, Hu TL. Copper nanoparticles supported on metal-organic framework with topological defects for CO 2 hydrogenation to methanol. J Colloid Interface Sci 2025; 686:1147-1156. [PMID: 39938282 DOI: 10.1016/j.jcis.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
The catalytic hydrogenation of CO2 to methanol represents a promising strategy to reduce CO2 emissions and mitigate the energy crisis. For this conversion, reoUiO-66 with topological defects was synthesized through acid etching, and a novel Cu-based catalyst (Cu@reoUiO-66) was prepared by incorporating active Cu onto reoUiO-66. The introduction of topological defects enhanced the specific surface area (892.2 m2 g-1) and CO2 capture capacity (35.1 cm3 g-1) of reoUiO-66, surpassing those of UiO-66 (718.3 m2 g-1, 30.9 cm3 g-1), thereby facilitating mass transfer during the reaction. Regarding CO2 hydrogenation, Cu@reoUiO-66 achieved a CO2 conversion rate of 6.1 % and a methanol selectivity of 53.1 %. Moreover, the methanol space-time yield of the Cu@reoUiO-66 reached 336.1 mgMeOH gCat-1h-1 and almost no decreased after continuous reaction for 70 h, which is nearly ten times that of traditional Cu/ZrO2 catalysts and better than many reported metal-organic framework (MOF)-based catalysts. The characterization results showed that the abundant exposed active sites induced by topological defects facilitated the fixation of active metals and reactants, thereby accelerating the activation of reactants. This study demonstrated that structural defects in the support significantly influence catalyst behavior and catalytic activity. Furthermore, it highlighted that MOFs with tunable structures serve as an ideal platform for catalyst design and structure-activity relationship studies.
Collapse
Affiliation(s)
- Chaosheng Bao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350 China
| | - Yan-Ting Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350 China
| | - Qiang Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350 China
| | - Tong-Liang Hu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350 China.
| |
Collapse
|
2
|
Mondal S, Sahoo R, Krishna R, Das MC. A Highly Chemically Robust 2D Zn-MOF as Promising Adsorbent for One-Step Methane Purification From Multicomponent Gas Mixtures. Chemistry 2025; 31:e202500851. [PMID: 40129110 DOI: 10.1002/chem.202500851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 03/26/2025]
Abstract
One-step CH4 purification from C2-hydrocarbons and CO2 gas impurities is essential in the quest for clean energy resources amidst the growing energy crisis. While MOF materials have demonstrated significant progress in binary C2H2/CH4, C2H4/CH4, C2H6/CH4, and CO2/CH4 separations, there is a growing emphasis on the purification of CH4 from multicomponent gas mixtures using a single adsorbent. Toward this direction, a 2D MOF: IITKGP-27, {[Zn(MBPz) (SO2DBA)]·4H2O}n featuring rhombus pores decorated with polar functionalities has been strategically constructed displaying remarkable chemical robustness in water for 7 days, across a wide range of aqueous pH solutions (pH = 2-12), and in open air for 30 days. Interestingly, IITKGP-27 selectively adsorb C2 hydrocarbons (C2H2, C2H4, and C2H6) and CO2 over CH4, attributed to the synergistic effect of favorable host-guest (C2S and CO2) interactions due to the presence of accessible surface functionalities and optimal pore apertures. Moreover, an excellent trade-off between high sorption capacities and moderate separation selectivities was achieved. Transient breakthrough simulations further validated its feasibility toward unexplored CH4 purification from a blend of all such five gases mimicking natural gas composition, demonstrating its viability for this critical application. In addition, the facile bulk scalability, ease of regeneration, excellent recyclability, and outstanding structural stability highlight its potential as a robust solution for efficient CH4 purification from natural gas streams.
Collapse
Affiliation(s)
- Supriya Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904 XH, Amsterdam, 1098, The Netherlands
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
3
|
Pramanik B, Sahoo R, Krishna R, Das MC. A Chemically Robust Microporous Zn-MOF for C 2H 2 Separation from CO 2 and Industrially Relevant Four Component Gas Mixtures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411456. [PMID: 39711264 PMCID: PMC11855262 DOI: 10.1002/smll.202411456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/10/2024] [Indexed: 12/24/2024]
Abstract
The separation and purification of acetylene from the light hydrocarbon gas mixtures is considered as one of the most industrially challenging task for the production of fine chemicals. Though metal-organic frameworks (MOFs) are promising candidates for such separation and offer a cost and energy-efficient pathway, achieving the trade-off between sorption capacity and separation selectivity along with framework robustness is a daunting task and demands effective design. Herein, a new 3D chemically stable MOF, IITKGP-24 (stable over a wide range of aqueous pH solution, pH = 2-12) is developed, displaying excellent separation selectivity of 13.9 for C2H2/CO2 (50:50) even at ambient conditions and maintained a trade-off between sorption capacity and separation selectivity. Most importantly, the breakthrough performance analysis under the industrially relevant gas mixture composition revealed that the developed framework possesses excellent separation of acetylene from not only C2H2/CO2 (50:50) gas mixtures but also from the quaternary C2H2/C2H4/C2H6/CO2 (25:25:25:25) feed gas streams. Separation of C2H2 from such a four component gas mixture by MOFs is unexplored. The exceptional framework robustness, high C2H2/CO2 uptake ratio, low heat of adsorption, and excellent recyclability with easy regenerability made the developed framework promising candidate toward this challenging separation.
Collapse
Affiliation(s)
- Bikram Pramanik
- Department of ChemistryIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| | - Rupam Sahoo
- Department of ChemistryIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| | - Madhab C. Das
- Department of ChemistryIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| |
Collapse
|
4
|
Zhou Z, Xia W, Liu Y, Shi W, Gao Y, Zhang Z, Yang Q, Ren Q, Bao Z. Ultramicroporous Metal-Organic Framework Featuring Multiple Polar Sites for Efficient Xenon Capture and Xe/Kr Separation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39565641 DOI: 10.1021/acsami.4c15522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Efficient adsorption separation of xenon/krypton (Xe/Kr) mixtures is an important technological challenge due to their similar sizes and shapes. Herein, we report an ultramicroporous metal-organic framework (MOF), ZJU-Bao-302a, with pore sizes close to the kinetic diameter of Xe and pore surfaces lined with a high density of polar sites, including methyl groups, amines, and uncoordinated oxygen atoms. The synergistic effect of these polar sites enables ZJU-Bao-302a to exhibit a high Xe uptake of 2.77 mmol g-1 and a balanced Xe/Kr selectivity of 14.6 under ambient conditions. Dynamic breakthrough experiments demonstrate the material's capability to efficiently separate Xe/Kr mixtures (20/80) as well as capture Xe at ultralow concentrations (400 ppmv) from nuclear reprocessing exhausts, achieving a superior dynamic Xe capacity of 24.2 mmol kg-1. Density functional theory calculations reveal that the localized polar groups/atoms in ZJU-Bao-302a provide more effective recognition sites for Xe than Kr, enhancing the thermodynamic selectivity. This study highlights the importance of integrating tailored pore sizes and dense polar sites in metal-organic frameworks for developing high-performance Xe/Kr separation adsorbents.
Collapse
Affiliation(s)
- Zhijie Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Wei Xia
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Yizhou Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Wenbo Shi
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Yanting Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| |
Collapse
|
5
|
Rafiq K, Sabir M, Abid MZ, Hussain E. Unveiling the scope and perspectives of MOF-derived materials for cutting-edge applications. NANOSCALE 2024; 16:16791-16837. [PMID: 39206569 DOI: 10.1039/d4nr02168a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Although synthesis and design of MOFs are crucial factors to the successful implementation of targeted applications, there is still lack of knowledge among researchers about the synthesis of MOFs and their derived composites for practical applications. For example, many researchers manipulate study results, and it has become quite difficult to quit this habit specifically among the young researchers Undoubtedly, MOFs have become an excellent class of compounds but there are many challenges associated with their improvement to attain diverse applications. It has been noted that MOF-derived materials have gained considerable interest owing to their unique chemical properties. These compounds have exhibited excellent potential in various sectors such as energy, catalysis, sensing and environmental applications. It is worth mentioning that most of the researchers rely on commercially available MOFs for use as precursor supports, but it is an unethical and wrong practice because it prevents the exploration of the hidden diversity of similar materials. The reported studies have significant gaps and flaws, they do not have enough details about the exact parameters used for the synthesis of MOFs and their derived materials. For example, many young researchers claim that MOF-based materials cannot be synthesized as per the reported instructions for large-scale implementation. In this regard, current article provides a comprehensive review of the most recent advancements in the design of MOF-derived materials. The methodologies and applications have been evaluated together with their advantages and drawbacks. Additionally, this review suggests important precautions and solutions to overcome the drawbacks associated with their preparation. Applications of MOF-derived materials in the fields of energy, catalysis, sensing and environment have been discussed. No doubt, these materials have become excellent class but there are still many challenges ahead to specify it for the targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Mamoona Sabir
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| |
Collapse
|
6
|
Sei H, Oka K, Hori Y, Shigeta Y, Tohnai N. Network topology diversification of porous organic salts. Chem Sci 2024; 15:8008-8018. [PMID: 38817574 PMCID: PMC11134405 DOI: 10.1039/d4sc01218f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Hydrogen-bonded organic frameworks (HOFs) are porous organic materials constructed via hydrogen bonds. HOFs have solubility in specific high-polar organic solvents. Therefore, HOFs can be returned to their components and can be reconstructed, which indicates their high recyclability. Network topologies, which are the frameworks of porous structures, control the pore sizes and shapes of HOFs. Therefore, they strongly affect the functions of porous materials. However, hydrogen bonds are usually weak interactions, and the design of the intended network topology in HOFs from their components has been challenging. Porous organic salts (POSs) are an important class of HOFs, are hierarchically constructed via strong charge-assisted hydrogen bonds between sulfonic acids and amines, and therefore are expected to have high designability of the porous structure. However, the network topology of POSs has been limited to only dia-topology. Here, we combined tetrasulfonic acid with the adamantane core (4,4',4'',4'''-(adamantane-1,3,5,7-tetrayl)tetrabenzenesulfonic acid; AdPS) and triphenylmethylamines with modified substituents in para-positions of benzene rings (TPMA-X, X = F, methyl (Me), Cl, Br, I). We changed the steric hindrance between the adamantane and substituents (X) in TPMA-X and obtained not only the common dia-topology for POSs but also rare sod-topology, and lon- and uni-topologies that are formed for the first time in HOFs. Changing template molecules under preparation helped in successfully isolating the porous structures of AdPS/TPMA-Me with dia-, lon-, and sod-topologies which exhibited different gas adsorption properties. Therefore, for the first time, we demonstrated that the steric design of HOF components facilitated the formation, diversification, and control of the network topologies and functions of HOFs.
Collapse
Affiliation(s)
- Hiroi Sei
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Kouki Oka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
| | - Yuta Hori
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| |
Collapse
|
7
|
Szufla M, Krawczuk A, Jajko G, Kozyra P, Matoga D. Flattening of a Bent Sulfonated MOF Linker: Impact on Structures, Flexibility, Gas Adsorption, CO 2/N 2 Selectivity, and Proton Conduction. Inorg Chem 2024; 63:151-162. [PMID: 38117683 DOI: 10.1021/acs.inorgchem.3c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Rational design of organic building blocks provides opportunities to control and tune various physicochemical properties of metal-organic frameworks (MOFs), including gas handling, proton conduction, and structural flexibility, the latter of which is responsible for new adsorption phenomena and often superior properties compared to rigid porous materials. In this work, we report synthesis, crystal structures, gas adsorption, and proton conduction for a flexible two-dimensional cadmium-based MOF (JUK-13-SO3H-SO2) containing a new sulfonated 4,4'-oxybis(benzoate) linker with a blocking SO2 bridge. This two-dimensional (2D) MOF is compared in detail with a previously reported three-dimensional Cd-MOF (JUK-13-SO3H), based on analogous, but nonflat, SO2-free sulfonated dicarboxylate. The comprehensive structure-property relationships and the detailed comparisons with insights into the networks flexibility are supported by five guest-dependent structures determined by single-crystal X-ray diffraction (XRD), and corroborated by spectroscopy (IR, 1H NMR), powder XRD, and elemental/thermogravimetric analyses, as well as by volumetric adsorption measurements (for N2, CO2, H2O), ideal adsorbed solution theory (IAST), density-functional theory (DFT+D) quantum chemical and grand-canonical Monte Carlo (GCMC) calculations, and electrochemical impedance spectroscopy (EIS) studies. Whereas both dynamic MOFs show moderate proton conductivity values, they exhibit excellent CO2/N2 selectivity related to the capture of CO2 from flue gases (IAST coefficients for 15:85 mixtures are equal to ca. 250 at 1 bar and 298 K). The presence of terminal sulfonate groups in both MOFs, introduced using a unique prechlorosulfonation strategy, is responsible for their hydrophilicity and water-assisted proton transport ability. The dynamic nature of the MOFs results in the appearance of breathing-type adsorption isotherms that exhibit large hysteresis loops (for CO2 and H2O) attributed to strong host-guest interactions. Theoretical modeling provides information about the adsorption mechanism and supports interpretation of experimental CO2 adsorption isotherms.
Collapse
Affiliation(s)
- Monika Szufla
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, ul. prof. S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Anna Krawczuk
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstr. 4, 37077 Göttingen, Germany
| | - Gabriela Jajko
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, ul. prof. S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Paweł Kozyra
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Dariusz Matoga
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
8
|
Song D, Jiang F, Yuan D, Chen Q, Hong M. Optimizing Sieving Effect for CO 2 Capture from Humid Air Using an Adaptive Ultramicroporous Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302677. [PMID: 37357172 DOI: 10.1002/smll.202302677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Indexed: 06/27/2023]
Abstract
Excessive CO2 in the air can not only lead to serious climate problems but also cause serious damage to humans in confined spaces. Here, a novel metal-organic framework (FJI-H38) with adaptive ultramicropores and multiple active sites is prepared. It can sieve CO2 from air with the very high adsorption capacity/selectivity but the lowest adsorption enthalpy among the reported physical adsorbents. Such excellent adsorption performances can be retained even at high humidity. Mechanistic studies show that the polar ultramicropore is very suitable for molecular sieving of CO2 from N2 , and the distinguishable adsorption sites for H2 O and CO2 enable them to be co-adsorbed. Notably, the adsorbed-CO2 -driven pore shrinkage can further promote CO2 capture while the adsorbed-H2 O-induced phase transitions in turn inhibit H2 O adsorption. Moreover, FJI-H38 has excellent stability and recyclability and can be synthesized on a large scale, making it a practical trace CO2 adsorbent. This will provide a new strategy for developing practical adsorbents for CO2 capture from the air.
Collapse
Affiliation(s)
- Danhua Song
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| |
Collapse
|
9
|
Mondal S, Sahoo R, Das MC. pH-Stable Zn(II) Coordination Polymer as a Multiresponsive Turn-On and Turn-Off Fluorescent Sensor for Aqueous Medium Detection of Al(III) and Cr(VI) Oxo-Anions. Inorg Chem 2023; 62:14124-14133. [PMID: 37589649 DOI: 10.1021/acs.inorgchem.3c02435] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Nowadays, coordination polymers (CPs) are promising candidates as sensory materials for their high sensitivity, improved selectivity, fast responsive nature, as well as good recyclability. However, poor chemical stability often makes their practical usage limited. Herein, employing a mixed ligand approach, we constructed a chemically robust CP, {[Zn2L2(DPA)2]·3H2O}n (IITKGP-70, IITKGP stands for the Indian Institute of Technology Kharagpur), which exhibited excellent framework robustness not only in water but also over a broad range of pH solutions (pH = 3-11). The developed framework displayed high selectivity and sensitivity for the detection of trivalent Al3+ ions and toxic hexavalent Cr(VI)-oxo anions in an aqueous medium. The developed framework exhibited an aqueous medium Al3+ turn-on phenomenon with a limit of detection (LOD) value of 1.29 μM, whereas a turn-off effect was observed for toxic oxo-anions (Cr2O72- and CrO42-) having LOD values of 0.27 and 0.71 μM, respectively. Both turn-on and turn-off mechanisms are speculated via spectroscopic methods coupled with several ex situ studies. Such a multiresponsive nature (both turn-on and turn-off) for aqueous medium detection of targeted cations and anions simultaneously in a single platform coupled with high robustness, ease of scalability, recyclability, and fast-responsive nature makes IITKGP-70 highly fascinating as a sensory material for real-world applications.
Collapse
Affiliation(s)
- Supriya Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| |
Collapse
|
10
|
Xu H, Li J, Liu L, Liang FS, Han ZB. Pore Space Partitioning MIL-88(Co): Developing Robust Adsorbents for CO 2/CH 4 Separation Featured with High CO 2 Adsorption and Rapid Desorption. Inorg Chem 2023; 62:13530-13536. [PMID: 37558207 DOI: 10.1021/acs.inorgchem.3c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted significant attention as sorbents for gas separation and purification. Ideally, an industrially potential adsorbent should combine exceptional gas uptake, excellent stability, and a lower regeneration energy; however, it remains a great challenge. Here, by utilizing the pore space partition (PSP) strategy, we develop three isostructural MOF materials (Co-BDC-TPB, Co-DCBDC-TPB, and Co-DOBDC-TPB) based on pristine MIL-88(Co). The three pore-space-partitioned crystalline microporous MOFs have triangular bipyramid cages and segmented one-dimensional channels, and among them, Co-DOBDC-TPB exhibits the highest CO2 uptake capacity (4.35 mmol g-1) and good CO2/N2 (29.7) and CO2/CH4 (6.2) selectivity. The selectivity-capacity synergy endows it with excellent CO2/N2 and CO2/CH4 separation performance. Moreover, Co-DOBDC-TPB can complete desorption within 10 min. The satisfactory CO2 adsorption ability can be attributed to both microporous aperture arising from PSP and modification of the pore surface by the polar hydroxy group, which enhances the interaction between Co-DOBDC-TPB and CO2 molecules significantly. The exceptional regeneration property may be due to its lower CO2 isosteric heat of adsorption (23.6 kJ/mol). The developed pore-space-partitioned MIL-88(Co) material Co-DOBDC-TPB may have potential application to flue gas and natural gas purification.
Collapse
Affiliation(s)
- Huiqin Xu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jia Li
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Lin Liu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Fu-Shun Liang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Zheng-Bo Han
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
11
|
Singh M, Karmakar A, Seal N, Mondal PP, Kundu S, Neogi S. Redox-Active and Urea-Engineered-Entangled MOFs for High-Efficiency Water Oxidation and Elevated Temperature Advanced CO 2 Separation Cum Organic-Site-Driven Mild-Condition Cycloaddition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24504-24516. [PMID: 37162125 DOI: 10.1021/acsami.3c03619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Development of the multifaceted metal-organic framework (MOF) with in situ engineered task-specific sites can promise proficient oxygen evolution reaction (OER) and high-temperature adsorption cum mild-condition fixation of CO2. In fact, effective assimilation of these attributes onto a single material with advance performance characteristics is practically imperative in view of renewable energy application and carbon-footprint reduction. Herein, we developed a three-fold interpenetrated robust Co(II) framework that embraces both redox-active and hydrogen-bond donor moieties inside the microporous channel. The activated MOF demonstrates notable OER catalysis in alkaline medium via quasi-reversible Co2+/Co3+ couple and unveils low overpotential with impressive 53.5 mV/dec Tafel slope that overpowers some benchmark, commercial, as well as contemporary materials. In particular, significantly increased turnover frequency (3.313 s-1 at 400 mV) and fairly low charge-transfer resistance (3.02 Ω) compared to Co3O4, NiO, and majority of redox-active MOFs together with 91% Faradaic efficiency and notable framework durability after multiple OER cycles endorse high-performance water oxidation. Pore-wall decked urea groups benefit appreciable CO2 adsorption even at elevated temperatures with considerable MOF-CO2 interactions and exhibit recurrent capture-release cycles at diverse temperatures. Interestingly, CO2 selectivity displays radical upsurge with temperature rise, affording 40% improved CO2/N2 value of 200 at 313 K, which outperforms many porous adsorbents and delineates real-time CO2 scavenging potential. The guest-free MOF effectively catalyzes solvent-free CO2 cycloaddition with broad substrate tolerance and satisfactory reusability under relatively mild condition. Opposed to the common Lewis acid-mediated reaction, two-point hydrogen-bonding activates the substrate, as supported from controlled experiments, juxtaposing the performance of an un-functionalized MOF and fluorescence modification-derived framework-epoxide interaction, providing valuable insights on unconventional cycloaddition route in the MOF.
Collapse
Affiliation(s)
- Manpreet Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Nilanjan Seal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
| | - Partha Pratim Mondal
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
| |
Collapse
|
12
|
Li J, Chen SL, Yan RP, Young DJ, Mi Y, Hu FL. Fabrication of ultrathin 2D MOF nanosheets for Folic Acid detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2023. [DOI: 10.1016/j.cjac.2023.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
13
|
Singh M, Neogi S. Largely Entangled Diamondoid Framework with High-Density Urea and Divergent Metal Nodes for Selective Scavenging of CO 2 and Molecular Dimension-Mediated Size-Exclusive H-Bond Donor Catalysis. Inorg Chem 2023; 62:871-884. [PMID: 36580539 DOI: 10.1021/acs.inorgchem.2c03684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pore environment modulation with high-density polarizing groups in metal-organic frameworks (MOFs) can effectively accomplish selective and multicyclic carbon dioxide (CO2) adsorption, whereas the incorporation of task-specific organic sites inside these porous vessels promise to evade self-quenching, solubility, and recyclability issues in hydrogen-bond donating (HBD) catalysis. However, concurrent amalgamation of both these attributes over a single platform is rare but extremely demanding in view of sustainable applications. We designed a robust diamondoid framework CSMCRI-17 (CSMCRI = Central Salt and Marine Chemicals Research Institute) from the mixed-ligand assembly of azo group-containing dicarboxylate ligand, urea-functionalized pyridyl linker, and Zn(II) nodes with specific divergent coordination. Seven-fold interpenetration to the microporous structure largely augments N-rich functionality that facilitates high CO2 uptake in the activated form (17a) with good CO2 selectivity over N2 and CH4 that outperform many reported materials. The framework displays very strong CO2 affinity and no reduction in adsorption capacity over multiple uptake-release cycles. Benefitting from the pore-wall decoration with urea functionality from the pillaring strut, 17a further demonstrates hydrogen-bond-mediated Friedel-Crafts alkylation of indole with β-nitrostyrene under mild conditions, with multicyclic usability and excellent reactivity toward wide ranges of substituted nucleophiles and electrophiles. Interestingly, interpenetration-generated optimum-sized pores induce poor conversion to sterically encumbered substrate via molecular dimension-mediated size selectivity that is alternatively ascribed from additional control experiments and support the occurrence of HBD reaction within the MOF cavity. The catalytic path is detailed in light of the change of emission intensity of the framework by the electrophile as well as the judicious choice of the substrate, which authenticates the prime role of urea moiety-governed two-point hydrogen bonding.
Collapse
Affiliation(s)
- Manpreet Singh
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Subhadip Neogi
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
14
|
Zhang Q, Lian X, Krishna R, Yang SQ, Hu TL. An ultramicroporous metal-organic framework based on octahedral-like cages showing high-selective methane purification from a six-component C1/C2/C3 hydrocarbons mixture. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Control of pore structure by the solvent effect for efficient ethane/ethylene separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Pal SC, Ahmed R, Manna AK, Das MC. Potential of a pH-Stable Microporous MOF for C 2H 2/C 2H 4 and C 2H 2/CO 2 Gas Separations under Ambient Conditions. Inorg Chem 2022; 61:18293-18302. [DOI: 10.1021/acs.inorgchem.2c03275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur721302, West Bengal, India
| | - Raka Ahmed
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati517619, Andhra Pradesh, India
| | - Arun K. Manna
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati517619, Andhra Pradesh, India
| | - Madhab C. Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur721302, West Bengal, India
| |
Collapse
|
17
|
Mukherjee D, Pal A, Pal SC, Saha A, Das MC. A Highly Selective MOF-Based Probe for Turn-On Luminescent Detection of Al 3+, Cr 3+, and Fe 3+ in Solution and Test Paper Strips through Absorbance Caused Enhancement Mechanism. Inorg Chem 2022; 61:16952-16962. [PMID: 36219769 DOI: 10.1021/acs.inorgchem.2c03152] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trivalent metal ions (Cr3+, Al3+, and Fe3+) constitute a major section of the environmental pollutants, and their excess accumulation has a detrimental effect on health, so their detection in trace quantity has been a hot topic of research. A highly scalable 3D porous Zn-based luminescent metal-organic framework (MOF) has been synthesized by exploiting the mixed ligand synthesis concept. The strategic selection of an aromatic π-conjugated organic linker and N-rich spacer containing the azine functionality as metal ion binding sites immobilized across the pore spaces, have made this MOF an ideal turn-on sensor for Al3+, Cr3+, and Fe3+ ions with very high sensitivity, selectivity, and recyclability. An in-depth study revealed absorbance caused enhancement mechanism (ACE) responsible for such turn-on phenomena. In order to make the detection process straightforward, convenient, portable, and economically viable, we have fabricated MOF test paper strips (the MOF could be simply immobilized onto the paper strips) for naked eye visual detection under UV light, which, thus, manifests its potential as a real-time smart sensor for these trivalent ions.
Collapse
Affiliation(s)
- Debolina Mukherjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Arun Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Apu Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| |
Collapse
|
18
|
Pal SC, Mukherjee D, Das MC. pH-Stable Luminescent Metal-Organic Frameworks for the Selective Detection of Aqueous-Phase Fe III and Cr VI Ions. Inorg Chem 2022; 61:12396-12405. [PMID: 35895324 DOI: 10.1021/acs.inorgchem.2c01793] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of chemically stable metal-organic framework (MOF)-based luminescent platforms for toxic ion detection in an aqueous medium is highly challenging because most of the classical MOFs are prone to water degradation, and that is the reason why most of the MOF-based luminescent sensors use a nonaqueous medium for sensing. In this contribution, we report two new water-stable luminescent MOFs (Zn-MOF-1 and Zn-MOF-2), assembled from a mixed-ligand synthesis approach. Because of the presence of a hydrophobic trifluoromethyl group to the backbone and stronger metal-N coordination, these MOFs exhibit excellent stability not only in water but also in acidic/alkaline aqueous solutions (pH = 3-10). Here, we report a green sensing approach by exploiting the significant reduction in photoluminescence of these MOFs in the presence of toxic ions. Fe3+ and CrO42-/Cr2O72- ions could be traced with a detection limit (LOD) in the micromolar range (0.045 and 0.745/0.33 μM for Zn-MOF-1; 125.2 and 114.2/83.5 μM for Zn-MOF-2). The mechanistic study reveals that competitive absorption of the excitation energy coupled with fluorescent resonance energy transfer are responsible for the turn-off quenching. The anti-interference ability and recyclability along with the pH stability gave these MOFs high potential to be used as practical sensors toward FeIII and CrVI ions in water as a greenest medium.
Collapse
Affiliation(s)
- Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Debolina Mukherjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
19
|
Singh M, Neogi S. Selective and Multicyclic CO 2 Adsorption with Visible Light-Driven Photodegradation of Organic Dyes in a Robust Metal-Organic Framework Embracing Heteroatom-Affixed Pores. Inorg Chem 2022; 61:10731-10742. [PMID: 35796254 DOI: 10.1021/acs.inorgchem.2c00950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pore environment modulation with polarizing groups is one of the essential prerequisites for selective carbon dioxide (CO2) adsorption in metal-organic frameworks (MOFs), wherein judicious installation of the photocatalytic feature can promise visible light-triggered degradation of toxic organic dye molecules. However, astute amalgamation of both these attributes over a single MOF is rather rare, yet much anticipated in view of sustainable applications. Pore engineering is effectively harnessed in a Zn(II)-based three-dimensional (3D) MOF, CSMCRI-16 (CSMCRI = Central Salt and Marine Chemicals Research Institute), through mixed-ligand assembly of a N-rich linker (L), 4,4'-oxybis(benzoic acid) (H2oba) ligand, and [Zn2(CO2)4N2] paddle-wheel secondary building units (SBUs). The noninterpenetrated structure contains unbound nitrogen and accessible oxygen atom-decorated porous channels and exhibits admirable stability in diverse organic solvents, open air, and at elevated temperatures. The heteroatom-decorated porous channels facilitated excellent CO2 uptake in the activated MOF (16a) with high selectivity over N2 (CO2/N2: 155.3) at 273 K. The framework further exhibits reasonable CO2 affinity and multicyclic CO2 sorption recurrence without a significant loss in the uptake capacity. Benefitting from the presence of the [Zn2(CO2)4N2] cluster in conjugation with π-conjugated organic ligands, the extended 3D network revealed an optical band gap energy of 2.55 eV, which makes the MOF an efficient photocatalyst toward the degradation of the cationic dyes crystal violet (CV) and methylene blue (MB) in the presence of a simple 40 W visible light lamp without any assistance of external oxidants. The catalyst exhibits multicyclic performance and short reaction time in addition to the fact that catalytic efficiencies (CV: 97.2%, MB: 97.8%) are comparable to those of contemporary materials.
Collapse
Affiliation(s)
- Manpreet Singh
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhadip Neogi
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
20
|
Wang X, Yue L, Zhou P, Fan L, He Y. Lanthanide-Organic Frameworks Featuring Three-Dimensional Inorganic Connectivity for Multipurpose Hydrocarbon Separation. Inorg Chem 2021; 60:17249-17257. [PMID: 34714636 DOI: 10.1021/acs.inorgchem.1c02614] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Implementation of lanthanide-organic frameworks (LOFs) as solid adsorbents has been frequently handicapped by their permanent porosity being difficult to establish owing to the remarkable flexibility and diversity of lanthanide ions in terms of coordination number and geometry. Construction of robust LOFs with permanent porosity for industrially important hydrocarbon separation will greatly expand their application potential. In this work, by distributing N and O donors into an m-terphenyl skeleton, we rationally synthesized a heterofunctional linker, and constructed a pair of isostructural LOFs. Due to the inclusion of a rarely observed three-dimensional metal-carboxylate backbone serving as a highly connected inorganic secondary building unit, their permanent porosities were successfully established by diverse gas isotherms. They can be applied as separating media not only for natural gas purification and removal of carbon dioxide from C2 hydrocarbons but also more importantly for single-step ethylene (C2H4) purification from a three-component C2Hn mixture during the adsorption process. The latter separation is very challenging and has been less reported in the literature. This work provides a unique example of LOFs featuring three-dimensional inorganic connectivity applied to multipurpose hydrocarbon separations.
Collapse
Affiliation(s)
- Xinxin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lianglan Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ping Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lihui Fan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
21
|
C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213998] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Liu L, Chen Y, Yao Z, Chen D, Lin Q, Fan Z, Zhang Z, Chen B, Xiang S. Two Tb-metal organic frameworks with different metal cluster nodes for C 2H 2/CO 2 separation. Dalton Trans 2021; 50:4932-4935. [PMID: 33877190 DOI: 10.1039/d1dt00413a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through regulating the reaction solvent and temperature, two Tb-based metal-organic frameworks, ((CH3)2NH2)2[Tb9(μ3-OH)8(μ2-OH)3(PTB)6]·(DMF)14·(H2O)19 (1) and ((CH3)2NH2)3{[Tb9(μ3-O)2(μ3-OH)12(H2O)6][Tb3(μ3-O)(HCO2)3 (PTB)6]}·(DMF)12·(H2O)7 (2) (H3PTB = pyridine-2,4,6-tribenzoic acid), have been synthesized. Structural analysis showed that the cluster node of 1 is a Tb9 cluster, while 2 contains two different nodes of a Tb3 cluster and a Tb9 cluster, which leads to their different pore structures and may potentially separate C2H2/CO2. Gas adsorption demonstrates that both MOFs can separate C2H2 and CO2, but 2 has a more optimized pore environment than 1 and can exhibit better selective separation of C2H2/CO2.
Collapse
Affiliation(s)
- Lizhen Liu
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350108, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Qin B, Zhang X, Qiu J, Gahungu G, Yuan H, Zhang J. Water-Robust Zinc–Organic Framework with Mixed Nodes and Its Handy Mixed-Matrix Membrane for Highly Effective Luminescent Detection of Fe3+, CrO42–, and Cr2O72– in Aqueous Solution. Inorg Chem 2021; 60:1716-1725. [DOI: 10.1021/acs.inorgchem.0c03214] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bowen Qin
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Xiaoying Zhang
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Jingjing Qiu
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Godefroid Gahungu
- Department of Chemistry, University of Burundi, BP 2700, Bujumbura, Burundi
| | - Haiyan Yuan
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Jingping Zhang
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|