1
|
Dong J, Ma W, Zhou S, Li X, Deng L, Hou C, Huo D. Tri-Mode CRISPR-Based Biosensor for miRNA Detection: Enhancing Clinical Diagnostics with Cross-Validation. Anal Chem 2025; 97:10938-10946. [PMID: 40360969 DOI: 10.1021/acs.analchem.5c02348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
In vitro diagnostics require the accurate detection of disease-associated target biomolecules at ultralow concentrations. A multimode sensing strategy is considered as a potential method for in vitro diagnosis because it allows cross-validation of test results through data complementation and self-calibration, and provides double confirmation. Here, we present a CRISPR/Cas12a-powered trimode biosensor (CPTMB) for ultrasensitive and reliable analysis of miRNA. Briefly, the presence of target miRNA initiates rolling circle extension-driven loop-mediated isothermal amplification (R-LAMP), which subsequently activates the trans-cleavage activity of CRISPR/Cas12a. Then, the hairpin probe (HP) biogate on nucleic acid-functionalized MB@Fe-MOF signal probe was degraded by Cas12a, leading to the release of methylene blue (MB) signal molecules encapsulated within Fe-MOF nanocarriers. Due to the capability of MB to generate output responses across three distinct modes: electrochemical (EC), fluorescence (FL), and ultraviolet-visible spectroscopy (UV-vis), a trimodal sensing system is achieved. Benefiting from the efficient signal amplification capabilities of R-LAMP and CRISPR/Cas12a, this strategy enables rapid detection of target miRNA at femtomolar levels within 70 min. Furthermore, the detection results across the three modes cross-validate one another, thereby enhancing the reliability of the analysis. More importantly, the platform has been successfully applied to miRNA analysis in real samples, and the detection results are in good agreement with those of the standard method RT-qPCR, indicating its great potential in the clinical diagnosis of early-stage cancer.
Collapse
Affiliation(s)
- Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Wenhao Ma
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Xinyao Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Liyuan Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
2
|
Qiu Y, Qiu Y, Zhou W, Lu D, Wang H, Li B, Liu B, Wang W. Advancements in functional tetrahedral DNA nanostructures for multi-biomarker biosensing: Applications in disease diagnosis, food safety, and environmental monitoring. Mater Today Bio 2025; 31:101486. [PMID: 39935897 PMCID: PMC11810847 DOI: 10.1016/j.mtbio.2025.101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 02/13/2025] Open
Abstract
Deoxyribonucleic acid (DNA) offers the fundamental building blocks for the precisely controlled assemblies due to its inherent self-assembly and programmability. The tetrahedral DNA nanostructure (TDN) stands out as a widely utilized nanostructure, attracting attention for its high biostability, excellent biocompatibility, and versatile modification sites. The capability of DNA tetrahedron to interact with various signal outputs makes it ideal for developing functional DNA nanostructures in biosensing platforms. This review highlights recent advancements in functional tetrahedral DNA nanostructures (FTDN) for various biomarkers monitoring, including nucleic acid, protein, mycotoxin, agent, and metal ion. Additionally, it discusses the potential of FTDN in the fields of disease diagnosis, food safety, and environmental monitoring. The review also introduces the application of FTDN-based biosensors for simultaneous identification of multiple biomarkers. Finally, challenges and prospects are addressed to provide guidance for the continued development of FTDN-based biosensing platforms.
Collapse
Affiliation(s)
- Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wenchao Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Dai Lu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
3
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16287-16379. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
4
|
Lien D. The role of DNA nanotechnology in medical sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1148-1159. [PMID: 39714254 DOI: 10.1039/d4ay01803f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
This paper explores how DNA nanotechnology enhances biosensors in medicine and pharmacology by taking advantage of the unique characteristics of DNA and the unique advantages of DNA origami technology. DNA origami allows the establishment of complex nanoobjects with precise size and complete molecular writability as well as the possibility of seamless integration and biocompatibility with biological systems. Utilizing this, the chemical denaturation of DNA chains allows for the combination of various functions, including organic fluorescence groups and photoreaction elements, etc. This has allowed DNA origami to become a transformative tool in biotechnology and other fields because of its versatility, use in innovative applications improving the design and function of biosensors, and potential to provide greater possibilities for early disease diagnosis and personalized medicine.
Collapse
Affiliation(s)
- Darell Lien
- Troy High School, 2200 Dorothy Ln, Fullerton, CA 92831, USA
| |
Collapse
|
5
|
Wu S, Wang Y, Yang Y, Yang C, Jiensi A, Geng C, Ju H, Chen Y. In Situ and In Vivo Evaluation of Multiplex Protein-Specific Glycosylation of Tumors with a Dual-SERS Encoding Strategy. Anal Chem 2025; 97:936-944. [PMID: 39705316 DOI: 10.1021/acs.analchem.4c05695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
A dual-SERS encoding strategy was designed for in situ and in vivo evaluation of multiplex protein-specific glycosylation of tumors. The dual-SERS encoding strategy consisted of two pairs of dual gold nanoprobes with different diameters of 10 and 30 nm, which were encoded with four different and distinguishable Raman signal molecules. The 10 and 30 nm gold nanoprobes (Au10 and Au30 probes, respectively) were further modified with lectins and aptamers to recognize the target glycans and proteins, respectively. After sequential binding to the target glycans and proteins, the adjacent Au10 and Au30 probes could emit strong surface-enhanced Raman scattering (SERS) signals to indicate the multiplex protein-specific glycosylation information on cells and in vivo, which can reveal in situ the distribution differences of different tumor markers in the central and marginal regions of tumors. This strategy has been successfully applied for in situ imaging and evaluation of the MUC1 and EpCAM-specific Sia and Gal/GalNAc information on cell surfaces and tumor xenografted mice, providing a convenient and powerful tool to study protein-specific glycosylation-related physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Shan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuru Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuhui Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chaoyi Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ayidana Jiensi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chengyao Geng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Nurrohman DT, Cagayan GRA, Chiu NF. Characterization of SPR and cavity modes in one-dimensional (1D) gold nanograting chips: figure of merit analysis and implications for Raman signal enhancement. OPTICS EXPRESS 2025; 33:1542-1555. [PMID: 39876325 DOI: 10.1364/oe.547581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
The optical properties of the 1D nanograting chip have been explored based on computational and experimental studies. Dispersion curve analysis demonstrates cavity and surface plasmon modes in the 1D nanograting chips with periods of 400 nm and 800 nm. In this grating period range, the cut-off period is at a grating period of 644 nm under excitation with a wavelength of 670 nm. Among the two investigated chips, the chip with a grating period of 800 nm is more promising for application as a dual-mode sensor based on SPR/Raman. By using the angle interrogation method, this chip has a figure of merit (FOM), which is 3.23 times higher than the 1D nanograting chip with a period of 400 nm. In the same system, Raman measurements have also been performed using Rhodamine 6 G (R6 G) as the standard material. The experimental results show that the Raman signal measured at the grating resonance angle shows higher intensity than the Raman measurement without Surface Plasmon Resonance (SPR) sensor. SPR-induced electromagnetic enhancement plays an important role in amplifying Raman signals in surface-enhanced Raman scattering (SERS) and this approach is very promising to be further developed to obtain sensors that are not only sensitive but also accurate.
Collapse
|
7
|
Zhou J, Gao W, Wu J, Xiang Z, Zeng J, Wang B, Xu J. Fabrication of high performance 2D flexible SERS substrate based on cellulose nanofibrils and its application for pesticide residue detection. Int J Biol Macromol 2024; 282:137115. [PMID: 39500433 DOI: 10.1016/j.ijbiomac.2024.137115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/21/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Cellulose nanofibrils (CNFs) can serve as an efficient surface enhanced Raman scattering (SERS) platform for in situ detection of trace targets. In this study, a highly reproducible SERS platform based on TEMPO-oxidized CNFs (T-CNFs) was fabricated by the ion-exchange. Self-assembly of silver nanoparticles (AgNPs) was accomplished in only 120 s. The abundant carboxylate groups and good hydrophilicity of T-CNFs facilitated uniform and dense loading of AgNPs over the surface area. The obtained SERS substrate greatly enhanced the Raman signal of different pesticides, and the detection limits of thiram and thiabendazole were 5.81 × 10-8 M and 9.63 × 10-8 M, respectively. SERS substrate could produce homogeneous Raman-enhanced signals (relative standard deviation (RSD) = 6.59 %). In addition, due to the good flexibility, SERS substrate could collect and detect pesticide residues from the surface of apples. The intensities of Raman characteristic peak at 1384 cm-1 showed a good linear relationship with the analyte concentrations (0.96 ng/cm2-9600 ng/cm2). The constructed SERS substrate provided a theoretical basis for the preliminary rapid screening of hazardous chemical residues in food, which was of great value for the SERS technique to become a routine on-site analysis method for pesticide residues.
Collapse
Affiliation(s)
- Junjie Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenhua Gao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jinglin Wu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinsong Zeng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Xu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Yuwen L, Ni J, Liang J, Liu X, Chen Z, Li X, Lv H, Zhang J, Song C. Portable SERS biosensor based on aptamer-assisted catalytic hairpin assembly signal amplification for ultrasensitive detection of Staphylococcus aureus. Talanta 2024; 278:126565. [PMID: 39018762 DOI: 10.1016/j.talanta.2024.126565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Bacteria infections pose a serious threat to public health, and it is urgent to develop facile and accurate detection methods. To meet the important need, a potable and high-sensitive surface enhanced Raman scattering (SERS) biosensor based on aptamer recognition and catalytic hairpin assembly (CHA) signal amplification was proposed for point-of-care detection of Staphylococcus aureus (S. aureus). The SERS biosensor contains three parts: recognition probes, SERS sensing chip, and SERS tags. The feasibility of the strategy was verified by gel electrophoresis, and the one-step test route was optimized. The bacteria SERS biosensor has a good linear relationship ranging from 10 to 107 CFU mL-1 with high sensitivity low to 5 CFU mL-1, and shows excellent specificity, uniformity, and repeatability on S. aureus identification and enumeration, which can distinguish S. aureus from other bacteria. The SERS biosensor shows a good recovery rate (95.73 %-109.65 %) for testing S. aureus spiked in milk, and has good practicability for detecting S. aureus infected mouse wound, which provides a facile and reliable approach for detection of trace bacteria in the real samples.
Collapse
Affiliation(s)
- Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jie Ni
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jing Liang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xinyu Liu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhilong Chen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xiao Li
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Huiming Lv
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chunyuan Song
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| |
Collapse
|
9
|
Parmigiani M, Albini B, Galinetto P, Taglietti A. Dual-Mode Sensing of Fe(III) Based on Etching Induced Modulation of Localized Surface Plasmon Resonance and Surface Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1467. [PMID: 39330626 PMCID: PMC11434494 DOI: 10.3390/nano14181467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024]
Abstract
Convenient, rapid, highly sensitive and on-site iron determination is important for environmental safety and human health. We developed a sensing system for the detection of Fe(III) in water based on 7-mercapto-4-methylcoumarine (MMC)-stabilized silver-coated gold nanostars (GNS@Ag@MMC), exploiting a redox reaction between the Fe(III) cation and the silver shell of the nanoparticles, which causes a severe transformation of the nanomaterial structure, reverting it to pristine GNSs. This system works by simultaneously monitoring changes in the Localized Surface Plasmon Resonance (LSPR) and Surface-Enhanced Raman Spectroscopy (SERS) spectra as a function of added Fe(III). The proposed sensing system is able to detect the Fe(III) cation in the 1.0 × 10-5-1.5 × 10-4 M range, and its selectivity of the GNS@Ag@MMC sensor toward iron has been verified monitoring the LSPR and the SERS response to other cations with a clear selectivity toward Fe(III).
Collapse
Affiliation(s)
- Miriam Parmigiani
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy;
| | - Benedetta Albini
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy; (B.A.); (P.G.)
| | - Pietro Galinetto
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy; (B.A.); (P.G.)
| | - Angelo Taglietti
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy;
| |
Collapse
|
10
|
Awad H, El-Brolossy TA, Abdallah T, Osman A, Negm S, Mansour OI, Girgis SA, Hafez HM, Zaki AM, Talaat H. Accurate and reliable surface-enhanced Raman spectroscopy assay for early detection of SARS-CoV-2 RNA with exceptional sensitivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124184. [PMID: 38608556 DOI: 10.1016/j.saa.2024.124184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
This research proposes a highly sensitive and simple surface-enhanced Raman spectroscopy (SERS) assay for the detection of SARS-CoV-2 RNA using suitably designed probes specific for RdRp and N viral genes attached to a Raman marker. The sensitivity of the assay was optimized through precise adjustments to the conditions of immobilization and hybridization processes of the target RNA, including modifications to factors such as time and temperature. The assay achieved a remarkable sensitivity down to 58.39 copies/mL, comparable to or lower than the sensitivities reported for commercial fluorescent polymerase chain reaction (PCR) based methods. It has good selectivity in discriminating SARS-CoV-2 RNA against other respiratory viruses, respiratory syncytial virus (RSV), and influenza A virus. The reliability of the assay was validated by testing 24 clinical samples, including 12 positive samples with varying cycle threshold (Ct) values and 12 negative samples previously tested using real-time PCR. The assay consistently predicted true results that were in line with the PCR results for all samples. Furthermore, the assay demonstrated a notable limit of detection (LOD) of Ct (38 for RdRp gene and 37.5 for N-gene), indicating its capability to detect low concentrations of the target analyte and potentially facilitating early detection of the pathogen.
Collapse
Affiliation(s)
- Hend Awad
- Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Tamer Abdallah
- Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed Osman
- Institute of Basic and Applied Science - Egpt-Japan University of Science and Technology (E-JUST), Egypt
| | - Sohair Negm
- Department of Physics and Mathematics, Banha University, Banha, Egypt
| | | | | | - Hala M Hafez
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ali M Zaki
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hassan Talaat
- Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Chen M, Fan H, Li W, Ruan J, Yang Y, Mao C, Li R, Liu GL, Hu W. Nanoplasmonic Affinity Analysis System for Molecular Screening Based on Bright‐Field Imaging. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 01/06/2025]
Abstract
AbstractConsidering the improved detection of biological analytes for affinity analysis is highly desirable, a metasurface plasmon resonance (Meta‐SPR)‐based imaging system, incorporating a localized SPR sensing platform with different microfluidic systems and employing simple bright‐field imaging, is established in this study. This system enables low‐level analyte concentration analysis, ranging from 100 pm to 100 nm, with the real‐time removal of nonspecific binding signals within the same device field of view. Combined with microfluidic systems and microdroplet spotting, it is possible to automatically measure the kinetic curves of a sample at ten concentration gradients or detect the specific responses of multiple samples in a single experiment simultaneously. This system can inexpensively and conveniently achieve complex detection functions, demonstrating an innovative breakthrough in sensor detection.
Collapse
Affiliation(s)
- Mingqian Chen
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Hongli Fan
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Wen Li
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Jingyan Ruan
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Yihui Yang
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Cuixuan Mao
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Rui Li
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Gang L. Liu
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Wenjun Hu
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| |
Collapse
|
12
|
Li Y, Jiang L, Yu Z, Jiang C, Zhang F, Jin S. SPRi/SERS dual-mode biosensor based on ployA-DNA/ miRNA/AuNPs-enhanced probe sandwich structure for the detection of multiple miRNA biomarkers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123664. [PMID: 38029598 DOI: 10.1016/j.saa.2023.123664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
MicroRNA (miRNA) has broad application prospects in the early detection of various cancers. In this work, a SPRi/SERS dual-mode biosensor was developed on the same gold chip by AuNPs as the reinforcing medium. High throughput and sensitivity detection of three typical cervical cancer markers miRNA21, miRNA124 and miRNA143 were achieved based on the sandwich structure of polyA blocks-DNA capture probe/target miRNA/AuNPs-assistant probe or SERS nanoprobes. AuNPs greatly improved the SPR response due to mass increase and more sensitive refractive index changes. Meanwhile, due to the LSPR effect of AuNPs, the signal of SERS nanoprobe can be amplified. The miRNAs were detected in serum to verify its practicality. SPRi achieved detection of three miRNAs simultaneously. LODs were 6.3 fM, 5.3 fM and 4.6 fM, respectively, and wide dynamic response range of 500 pM-10 nM. While SERS assay ensured high sensitivity with LODs as low as 1 fM, 0.8 fM and 1.2 fM, respectively, and with the recoveries in the range of 90.0 %-100.2 %. The redundant detection signals of the two modes can provide more reliable data to prevent false positive or false negative detection, and have great application prospects in detection of cancer-related nucleic acids in early stage of disease.
Collapse
Affiliation(s)
- Yifan Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Li Jiang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Zizhen Yu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Cailing Jiang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Fei Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
13
|
Qi J, Li J, Wan Y, Li Y, Pi F. A fluorescence and SERS dual-mode sensing on tetracycline antibiotics based on Ag@NH 2-MIL-101(Al) nanoprobe. Food Chem 2024; 435:137586. [PMID: 37774622 DOI: 10.1016/j.foodchem.2023.137586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Antibiotic residues are becoming more and more concern due to the increasingly serious resistance from bacteria to organism. On-site and accurate evaluation on antibiotics is necessary and urgent to effectively solve such public issue. To provide point-of-care-test (POCT) ideas for antibiotic accurate evaluation, a fluorescence (FL)-surface-enhanced Raman scattering (SERS) dual-mode detection of tetracycline antibiotic (TCs) was realized for the first time. Based on the inner filter effect in Ag@NH2-MIL-101(Al) nanoprobe, the fluorescence quenching was induced and the SERS signal was swiftly turn on through π-π interaction and hydrogen bonding in the presence of TCs. This FL-SERS dual mode sensor displayed excellent detection limits (FL in ∼10-3 ppm, SERS in ∼10-5 ppm), and achieved a reliable detection of TCs in honey with a recovery rate of 84.45%-112.08%. This method combines the advantages of FL and SERS detection, meanwhile, two techniques verified against each other to achieve highly sensitive and specific FL-SERS dual-mode sensor for TCs. We believe that such antibody-or aptamer-independent FL and SERS complementary nanoprobe can be applied to fast, direct and multiple sensing in environment and food hazards.
Collapse
Affiliation(s)
- Junjie Qi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jingkun Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
14
|
Nurrohman DT, Chiu NF. Unraveling the Dynamics of SARS-CoV-2 Mutations: Insights from Surface Plasmon Resonance Biosensor Kinetics. BIOSENSORS 2024; 14:99. [PMID: 38392018 PMCID: PMC10887047 DOI: 10.3390/bios14020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
Surface Plasmon Resonance (SPR) technology is known to be a powerful tool for studying biomolecular interactions because it offers real-time and label-free multiparameter analysis with high sensitivity. This article summarizes the results that have been obtained from the use of SPR technology in studying the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations. This paper will begin by introducing the working principle of SPR and the kinetic parameters of the sensorgram, which include the association rate constant (ka), dissociation rate constant (kd), equilibrium association constant (KA), and equilibrium dissociation constant (KD). At the end of the paper, we will summarize the kinetic data on the interaction between angiotensin-converting enzyme 2 (ACE2) and SARS-CoV-2 obtained from the results of SPR signal analysis. ACE2 is a material that mediates virus entry. Therefore, understanding the kinetic changes between ACE2 and SARS-CoV-2 caused by the mutation will provide beneficial information for drug discovery, vaccine development, and other therapeutic purposes.
Collapse
Affiliation(s)
- Devi Taufiq Nurrohman
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Nan-Fu Chiu
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
15
|
Zhao Y, Kumar A, Yang Y. Unveiling practical considerations for reliable and standardized SERS measurements: lessons from a comprehensive review of oblique angle deposition-fabricated silver nanorod array substrates. Chem Soc Rev 2024; 53:1004-1057. [PMID: 38116610 DOI: 10.1039/d3cs00540b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Recently, there has been an exponential growth in the number of publications focusing on surface-enhanced Raman scattering (SERS), primarily driven by advancements in nanotechnology and the increasing demand for chemical and biological detection. While many of these publications have focused on the development of new substrates and detection-based applications, there is a noticeable lack of attention given to various practical issues related to SERS measurements and detection. This review aims to fill this gap by utilizing silver nanorod (AgNR) SERS substrates fabricated through the oblique angle deposition method as an illustrative example. The review highlights and addresses a range of practical issues associated with SERS measurements and detection. These include the optimization of SERS substrates in terms of morphology and structural design, considerations for measurement configurations such as polarization and the incident angle of the excitation laser, and exploration of enhancement mechanisms encompassing both intrinsic properties induced by the structure and materials, as well as extrinsic factors arising from wetting/dewetting phenomena and analyte size. The manufacturing and storage aspects of SERS substrates, including scalable fabrication techniques, contamination control, cleaning procedures, and appropriate storage methods, are also discussed. Furthermore, the review delves into device design considerations, such as well arrays, flow cells, and fiber probes, and explores various sample preparation methods such as drop-cast and immersion. Measurement issues, including the effect of excitation laser wavelength and power, as well as the influence of buffer, are thoroughly examined. Additionally, the review discusses spectral analysis techniques, encompassing baseline removal, chemometric analysis, and machine learning approaches. The wide range of AgNR-based applications of SERS, across various fields, is also explored. Throughout the comprehensive review, key lessons learned from collective findings are outlined and analyzed, particularly in the context of detailed SERS measurements and standardization. The review also provides insights into future challenges and perspectives in the field of SERS. It is our hope that this comprehensive review will serve as a valuable reference for researchers seeking to embark on in-depth studies and applications involving their own SERS substrates.
Collapse
Affiliation(s)
- Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Amit Kumar
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
16
|
Nasr N, Shafi M, Zhao T, Ali R, Ahmad I, Khan M, Deifalla A, Ragab AE, Zahid Ansari M. A two-fold SPR-SERS sensor utilizing gold nanoparticles and graphene thin membrane as a spacer in a 3D composite structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123331. [PMID: 37688887 DOI: 10.1016/j.saa.2023.123331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/12/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
Localized surface plasmonic resonance (LSPR) biosensing using optical fibers has gained popularity due to its label-free approach and high sensitivity to changes in the nanoparticle surface's local index of refraction. However, improving sensitivity remains a challenge. In this study, a two-step approach was employed to fabricate a composite structure using gold nanoparticles and monolayer graphene (Gr-AuNPs). The combination of AuNPs and graphene membrane demonstrated high potential for Surface-enhanced Raman scattering (SERS) and surface plasmonic resonance (SPR) fiber sensors. The Gr-AuNPs sensor successfully detected R6G molecules with a low detection limit of 10-12 M, indicating promising SERS activity. Numerical simulations confirmed that the graphene generated densely hot spots in the nanogap region between plasmonic layers. It's interesting that the proposed SPR-SERS Sensor can detect both glucose and thiram. This demonstrates the sensors practicality and can help with a basic environmental need to find leftover pesticides in the soil. The combination of SPR-SERS dual-mode detection provides more options for detecting and verifying data, increasing the precision and repeatability of experiments.
Collapse
Affiliation(s)
- Nazia Nasr
- School of Materials Science & Engineering, Northwestern Polytechnical University, Xi'an 710072, China; NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muhammad Shafi
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tingkai Zhao
- School of Materials Science & Engineering, Northwestern Polytechnical University, Xi'an 710072, China; NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Rawaid Ali
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093 Kunming, China
| | - Ishaq Ahmad
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muhammad Khan
- School of Materials Science & Engineering, Northwestern Polytechnical University, Xi'an 710072, China; NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Ahmed Deifalla
- Structural Engineering and Construction Management Department, Future University in Egypt, 11835, Egypt
| | - Adham E Ragab
- Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Mohd Zahid Ansari
- School of Materials Science and Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
17
|
Wang H, Wang T, Yuan X, Wang Y, Yue X, Wang L, Zhang J, Wang J. Plasmonic Nanostructure Biosensors: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:8156. [PMID: 37836985 PMCID: PMC10575025 DOI: 10.3390/s23198156] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Plasmonic nanostructure biosensors based on metal are a powerful tool in the biosensing field. Surface plasmon resonance (SPR) can be classified into localized surface plasmon resonance (LSPR) and propagating surface plasmon polariton (PSPP), based on the transmission mode. Initially, the physical principles of LSPR and PSPP are elaborated. In what follows, the recent development of the biosensors related to SPR principle is summarized. For clarity, they are categorized into three groups according to the sensing principle: (i) inherent resonance-based biosensors, which are sensitive to the refractive index changes of the surroundings; (ii) plasmon nanoruler biosensors in which the distances of the nanostructure can be changed by biomolecules at the nanoscale; and (iii) surface-enhanced Raman scattering biosensors in which the nanostructure serves as an amplifier for Raman scattering signals. Moreover, the advanced application of single-molecule detection is discussed in terms of metal nanoparticle and nanopore structures. The review concludes by providing perspectives on the future development of plasmonic nanostructure biosensors.
Collapse
Affiliation(s)
- Huimin Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Tao Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Xuyang Yuan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Yuandong Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Xinzhao Yue
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Lu Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Jinyan Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Jian Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| |
Collapse
|
18
|
Dong J, Li X, Zhou S, Liu Y, Deng L, Chen J, Hou J, Hou C, Huo D. CRISPR/Cas12a-Powered EC/FL Dual-Mode Controlled-Release Homogeneous Biosensor for Ultrasensitive and Cross-Validated Detection of Messenger Ribonucleic Acid. Anal Chem 2023; 95:12122-12130. [PMID: 37527175 DOI: 10.1021/acs.analchem.3c02335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Accurate detection of cancer-associated mRNAs is beneficial to early diagnosis and potential treatment of cancer. Herein, for the first time, we developed a novel CRISPR/Cas12a-powered electrochemical/fluorescent (EC/FL) dual-mode controlled-release homogeneous biosensor for mRNA detection. A functionalized ssDNA P2-capped Fe3O4-NH2 loaded with methylene blue (P2@MB-Fe3O4-NH2) was synthesized as the signal probe, while survivin mRNA was chosen as the target RNA. In the presence of the target mRNA, the nicking endonuclease-mediated rolling circle amplification (NEM-RCA) was triggered to produce significant amounts of ssDNA, activating the collateral activity of Cas12a toward the surrounding single-stranded DNA. Thus, the ssDNA P1 completely complementary to ssDNA P2 was cleaved, resulting in that the ssDNA P2 bio-gate on Fe3O4-NH2 could not be opened due to electrostatic interactions. As a result, there was no or only a little MB in the supernatant after magnetic separation, and the measured EC/FL signal was exceedingly weak. On the contrary, the ssDNA P2 bio-gate was opened, enabling MB to be released into the supernatant, and generating an obvious EC/FL signal. Benefiting from the accuracy of EC/FL dual-mode cross-verification, high amplification efficiency, high specificity of NEM-RCA and CRISPR/Cas12a, and high loading of mesoporous Fe3O4-NH2 on signal molecules, the strategy shows aM-level sensitivity and single-base mismatch specificity. More importantly, the practical applicability of this dual-mode strategy was confirmed by mRNA quantification in complex serum environments and tumor cell lysates, providing a new way for developing a powerful disease diagnosis tool.
Collapse
Affiliation(s)
- Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Sichuan 400044, PR China
| | - Xinyao Li
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Sichuan 400044, PR China
| | - Shiying Zhou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Sichuan 400044, PR China
| | - Yin Liu
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Sichuan 400044, PR China
| | - Liyuan Deng
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Sichuan 400044, PR China
| | - Jian Chen
- Chongqing University Three Gorges Hospital, Chongqing 404000, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Sichuan 400044, PR China
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 401331, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Sichuan 400044, PR China
- National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240 Puerto Rico, China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Sichuan 400044, PR China
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 401331, PR China
| |
Collapse
|
19
|
Yuwen L, Zhang S, Chao J. Recent Advances in DNA Nanotechnology-Enabled Biosensors for Virus Detection. BIOSENSORS 2023; 13:822. [PMID: 37622908 PMCID: PMC10452139 DOI: 10.3390/bios13080822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Virus-related infectious diseases are serious threats to humans, which makes virus detection of great importance. Traditional virus-detection methods usually suffer from low sensitivity and specificity, are time-consuming, have a high cost, etc. Recently, DNA biosensors based on DNA nanotechnology have shown great potential in virus detection. DNA nanotechnology, specifically DNA tiles and DNA aptamers, has achieved atomic precision in nanostructure construction. Exploiting the programmable nature of DNA nanostructures, researchers have developed DNA nanobiosensors that outperform traditional virus-detection methods. This paper reviews the history of DNA tiles and DNA aptamers, and it briefly describes the Baltimore classification of virology. Moreover, the advance of virus detection by using DNA nanobiosensors is discussed in detail and compared with traditional virus-detection methods. Finally, challenges faced by DNA nanobiosensors in virus detection are summarized, and a perspective on the future development of DNA nanobiosensors in virus detection is also provided.
Collapse
Affiliation(s)
- Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.Y.); (S.Z.)
| | - Shifeng Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.Y.); (S.Z.)
| | - Jie Chao
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
20
|
Huang L, Zhang Z. Recent Advances in the DNA-Mediated Multi-Mode Analytical Methods for Biological Samples. BIOSENSORS 2023; 13:693. [PMID: 37504092 PMCID: PMC10377368 DOI: 10.3390/bios13070693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
DNA-mediated nanotechnology has become a research hot spot in recent decades and is widely used in the field of biosensing analysis due to its distinctive properties of precise programmability, easy synthesis and high stability. Multi-mode analytical methods can provide sensitive, accurate and complementary analytical information by merging two or more detection techniques with higher analytical throughput and efficiency. Currently, the development of DNA-mediated multi-mode analytical methods by integrating DNA-mediated nanotechnology with multi-mode analytical methods has been proved to be an effective assay for greatly enhancing the selectivity, sensitivity and accuracy, as well as detection throughput, for complex biological analysis. In this paper, the recent progress in the preparation of typical DNA-mediated multi-mode probes is reviewed from the aspect of deoxyribozyme, aptamer, templated-DNA and G-quadruplex-mediated strategies. Then, the advances in DNA-mediated multi-mode analytical methods for biological samples are summarized in detail. Moreover, the corresponding current applications for biomarker analysis, bioimaging analysis and biological monitoring are introduced. Finally, a proper summary is given and future prospective trends are discussed, hopefully providing useful information to the readers in this research field.
Collapse
Affiliation(s)
- Lu Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
21
|
Huang L, Huang H, Zhang Z, Li G. Contractile Hairpin DNA-Mediated Dual-Mode Strategy for Simultaneous Quantification of Lactoferrin and Iron Ion by Surface-Enhanced Raman Scattering and Fluorescence Analysis. Anal Chem 2023; 95:5946-5954. [PMID: 36972417 DOI: 10.1021/acs.analchem.2c05473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
DNA-mediated self-assembly technology with good sensitivity and affinity ability has been rapidly developed in the field of probe sensing. The efficient and accurate quantification of lactoferrin (Lac) and iron ions (Fe3+) in human serum and milk samples by the probe sensing method can provide useful clues for human health and early diagnosis of anemia. In this paper, contractile hairpin DNA-mediated dual-mode probes of Fe3O4/Ag-ZIF8/graphitic quantum dot (Fe3O4/Ag-ZIF8/GQD) NPs were prepared to realize the simultaneous quantification of Lac by surface-enhanced Raman scattering (SERS) and Fe3+ by fluorescence (FL). In the presence of targets, these dual-mode probes would be triggered by the recognition of aptamer and release GQDs to produce FL response. Meanwhile, the complementary DNA began to shrink and form a new hairpin structure on the surface of Fe3O4/Ag, which produced hot spots and generated a good SERS response. Thus, the proposed dual-mode analytical strategy possessed excellent selectivity, sensitivity, and accuracy due to the dual-mode switchable signals from "off" to "on" in SERS mode and from "on" to "off" in FL mode. Under the optimized conditions, a good linear range was obtained in the range of 0.5-100.0 μg/L for Lac and 0.01-5.0 μmol/L for Fe3+ and with detection limits of 0.14 μg/L and 3.8 nmol/L, respectively. Finally, the contractile hairpin DNA-mediated SERS-FL dual-mode probes were successfully applied in the simultaneous quantification of iron ion and Lac in human serum and milk samples.
Collapse
Affiliation(s)
- Lu Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Hanbing Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
22
|
Gu MM, Guan PC, Xu SS, Li HM, Kou YC, Lin XD, Kathiresan M, Song Y, Zhang YJ, Jin SZ, Li JF. Ultrasensitive detection of SARS-CoV-2 S protein with aptamers biosensor based on surface-enhanced Raman scattering. J Chem Phys 2023; 158:024203. [PMID: 36641419 DOI: 10.1063/5.0130011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A rapid and accurate diagnostic modality is essential to prevent the spread of SARS-CoV-2. In this study, we proposed a SARS-CoV-2 detection sensor based on surface-enhanced Raman scattering (SERS) to achieve rapid and ultrasensitive detection. The sensor utilized spike protein deoxyribonucleic acid aptamers with strong affinity as the recognition entity to achieve high specificity. The spherical cocktail aptamers-gold nanoparticles (SCAP) SERS substrate was used as the base and Au nanoparticles modified with the Raman reporter molecule that resonates with the excitation light and spike protein aptamers were used as the SERS nanoprobe. The SCAP substrate and SERS nanoprobes were used to target and capture the SARS-CoV-2 S protein to form a sandwich structure on the Au film substrate, which can generate ultra-strong "hot spots" to achieve ultrasensitive detection. Analysis of SARS-CoV-2 S protein was performed by monitoring changes in SERS peak intensity on a SCAP SERS substrate-based detection platform. This assay detects S protein with a LOD of less than 0.7 fg mL-1 and pseudovirus as low as 0.8 TU mL-1 in about 12 min. The results of the simulated oropharyngeal swab system in this study indicated the possibility of it being used for clinical detection, providing a potential option for rapid and accurate diagnosis and more effective control of SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Man-Man Gu
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| | - Peng-Cheng Guan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Shan-Shan Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Hong-Mei Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yi-Chuan Kou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiao-Dong Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Murugavel Kathiresan
- Electro-Organic Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India
| | - Yanling Song
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yue-Jiao Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Shang-Zhong Jin
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| | - Jian-Feng Li
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
23
|
Zhang J, Song C, Zhu Y, Gan H, Fang X, Peng Q, Xiong J, Dong C, Han C, Wang L. A novel cascade signal amplification strategy integrating CRISPR/Cas13a and branched hybridization chain reaction for ultra-sensitive and specific SERS detection of disease-related nucleic acids. Biosens Bioelectron 2023; 219:114836. [PMID: 36327567 DOI: 10.1016/j.bios.2022.114836] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
The molecular diagnosis of disease by high-sensitively and specifically detecting extremely trace amounts of nucleic acid biomarkers in biological samples is still a great challenge, and the powerful sensing strategy has become an urgent need for basic researches and clinical applications. Herein, a novel one-pot cascade signal amplification strategy (Cas13a-bHCR) integrating CRISPR/Cas13a system (Cas13a) and branched hybridization chain reaction (bHCR) was proposed for ultra-highly sensitive and specific SERS assay of disease-related nucleic acids on SERS-active silver nanorods sensing chips. The Cas13a-bHCR based SERS assay of gastric cancer-related miRNA-106a (miR-106a) can be achieved within 60 min and output significantly enhanced SERS signal due to the multiple signal amplification, which possesses a good linear calibration curve from 10 aM to 1 nM with the limit of detection (LOD) low to 8.55 aM for detecting gastric cancer-related miR-106a in human serum. The Cas13a-bHCR based SERS sensing also shows good specificity, uniformity, repeatability and reliability, and has good practicability for detection of miR-106a in clinical samples, which can provide a potential powerful tool for SERS detection of disease-related nucleic acids and promise brighter prospects in the field of clinical diagnosis of early disease.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| | - Yunfeng Zhu
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hongyu Gan
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xinyue Fang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Qian Peng
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingrong Xiong
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chen Dong
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Caiqin Han
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 22116, China.
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
24
|
Hu K, Qin L, Ren X, Guo Z, Wang S, Hu Y. Deoxyribonucleic acid-guided dual-mode electro-chemical/chemiluminescent platform for sensitive and selective examination of Pb2+. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
25
|
Zhang J, Miao X, Song C, Chen N, Xiong J, Gan H, Ni J, Zhu Y, Cheng K, Wang L. Non-enzymatic signal amplification-powered point-of-care SERS sensor for rapid and ultra-sensitive assay of SARS-CoV-2 RNA. Biosens Bioelectron 2022; 212:114379. [PMID: 35635970 PMCID: PMC9110061 DOI: 10.1016/j.bios.2022.114379] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023]
Abstract
The development of rapid and ultra-sensitive detection technology of SARS-CoV-2 RNA for shortening the diagnostic window and achieving early detection of virus infections is a huge challenge to the efficient prevention and control of COVID-19. Herein, a novel ultra-sensitive surface-enhanced Raman spectroscopy (SERS) sensor powered by non-enzymatic signal amplification is proposed for rapid and reliable assay of SARS-CoV-2 RNA based on SERS-active silver nanorods (AgNRs) sensing chips and a specially designed smart unlocking-mediated target recycling signal amplification strategy. The SERS sensing was carried out by a one-pot hybridization of the lock probes (LPs), hairpin DNAs and SERS tags with SARS-CoV-2 RNA samples on an arrayed SERS sensing chip to achieve the recognition of SARS-CoV-2 RNA, the execution of nuclease-free unlocking-mediated target recycling signal amplification, and the combination of SERS tags to generate SERS signal. The SERS sensor for SARS-CoV-2 RNA can be achieved within 50 min with an ultra-high sensitivity low to 51.38 copies/mL, and has good selectivity in discriminating SARS-CoV-2 RNA against other respiratory viruses in representative clinical samples, which is well adapted for rapid, ultra-sensitive, multi-channel and point-of-care testing of viral nucleic acids, and is expected to achieve detection of SARS-CoV-2 infection in earlier detection windows for efficient COVID-19 prevention and control.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xiaping Miao
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, 10 Luoxuan 3rd Road, Guangzhou International Biotech Island, Guangdong, 510005, Guangdong, China; Guangzhou Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China
| | - Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Na Chen
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, 10 Luoxuan 3rd Road, Guangzhou International Biotech Island, Guangdong, 510005, Guangdong, China
| | - Jingrong Xiong
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hongyu Gan
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jie Ni
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yunfeng Zhu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Kaiting Cheng
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, 10 Luoxuan 3rd Road, Guangzhou International Biotech Island, Guangdong, 510005, Guangdong, China; Guangzhou Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China.
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
26
|
Lu X, Yao C, Sun L, Li Z. Plasmon-enhanced biosensors for microRNA analysis and cancer diagnosis. Biosens Bioelectron 2022; 203:114041. [DOI: 10.1016/j.bios.2022.114041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
|
27
|
Park J, Kim J, Park C, Lim JW, Yeom M, Song D, Kim E, Haam S. A flap endonuclease 1-assisted universal viral nucleic acid sensing system using surface-enhanced Raman scattering. Analyst 2022; 147:5028-5037. [DOI: 10.1039/d2an01123a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Flap endonuclease 1 recognizes a specific DNA structure and cleaves Raman tag-labeled probe molecules in a target-specific manner. With SERS-based sensing, the developed detection approach produces sensitive, quantitative, and multiplexable signals.
Collapse
Affiliation(s)
- Joowon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Woo Lim
- Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Minjoo Yeom
- Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Daesub Song
- Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunjung Kim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Department of Bioengineering and Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
28
|
Song C, Zhang J, Jiang X, Gan H, Zhu Y, Peng Q, Fang X, Guo Y, Wang L. SPR/SERS dual-mode plasmonic biosensor via catalytic hairpin assembly-induced AuNP network. Biosens Bioelectron 2021; 190:113376. [PMID: 34098358 DOI: 10.1016/j.bios.2021.113376] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/25/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Highly sensitive and reliable detection of disease-related nucleic acids is still a big challenge in liquid biopsy because of their homologous sequences and low abundance. Herein, a novel surface plasmon resonance/surface-enhanced Raman scattering (SPR/SERS) dual-mode plasmonic biosensor based on catalytic hairpin assembly (CHA)-induced Au nanoparticle (AuNP) network was proposed for highly sensitive and reliable detection of cancer-related miRNA-652. The biosensor includes capture DNA-functionalized AuNPs (Probe 1), H1 and 4-mercaptobenzoic acid (4-MBA) co-modified AuNPs (Probe 2), and 6-carboxyl-Xrhodamine (ROX)-labeled H2 (fuel strands). The Probe 1-Probe 2 networks were formed via the target-triggered CHA reactions, which resulted in the color change of dark-field microscopy (DFM) images and enhanced SERS effect. The SPR sensing was achieved by extracting the integral optical density of dark-field color in DFM images, and the SERS sensing was realized by the ratiometric SERS signals of ROX and internal standards 4-MBA molecules. After characterizing the feasibility and optimality of the sensing strategy, the good performance of biosensors on sensitivity, specificity and uniformity was approved. The practicability of biosensors was confirmed by detecting miRNA-652 in human serum, and both the SPR and SERS assays showed good linear calibration curves and low limit of detections (LODs) of 42.5 fM and 2.91 fM, respectively, with the recovery in the range of 94.67-111.4%. These two modes show complementary advantages, and the combined SPR/SERS dual-mode can provide more options for detection and double check the results to improve the accuracy and reliability of assays, which holds a great application prospect for cancer-related nucleic acids detection in early disease stage.
Collapse
Affiliation(s)
- Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xinyu Jiang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Hongyu Gan
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yunfeng Zhu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Qian Peng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xinyue Fang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yan Guo
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
29
|
Shen H, Qileng A, Yang H, Liang H, Zhu H, Liu Y, Lei H, Liu W. "Dual-Signal-On" Integrated-Type Biosensor for Portable Detection of miRNA: Cas12a-Induced Photoelectrochemistry and Fluorescence Strategy. Anal Chem 2021; 93:11816-11825. [PMID: 34461727 DOI: 10.1021/acs.analchem.1c02395] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The abnormal expression of microRNA (miRNA) can affect the RNA transcription and protein translation, leading to tumor progression and metastasis. Currently, the accurate detection of aberrant expression of miRNA, particularly using a portable detection system, remains a great challenge. Herein, a novel dual-mode biosensor with high sensitivity and robustness for miR-21 detection was developed based on the cis-cleavage and trans-cleavage activities of Cas12a. miRNA can be combined with hairpin DNA-horseradish peroxidase anchored on a CdS/g-C3N4/B-TiO2 photoelectrode, thus the nonenzymatic amplification was triggered to form numerous HRP-modified double-stranded DNA (HRP-dsDNA). Then, HRP-dsDNA can be specifically recognized and efficiently cis-cleaved by Cas12a nucleases to detach HRP from the substrate, while the remaining HRP on HRP-dsDNA can catalyze 4-chloro-1-naphthol (4-CN) to form biocatalytic precipitation (BCP) on the surface of the photoelectrode, and thus the photocurrent can be changed. Meanwhile, the trans-cleavage ability of Cas12a was activated, and nonspecifically degrade the FQ-reporter and a significant fluorescence signal can be generated. Such two different kinds of signals with independent transmission paths can mutually support to improve the performance of the detection platform. Besides, a portable device was constructed for the point-of-care (POC) detection of miR-21. Moreover, the dual-mode detection platform can be easily expanded for the specific detection of other types of biomarkers by changing the sequence of hairpin DNA, thereby promoting the establishment of POC detection for early cancer diagnosis.
Collapse
Affiliation(s)
- Haoran Shen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Aori Qileng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.,Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hui Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongzhi Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongshuai Zhu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.,Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.,Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Weipeng Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
30
|
Liu J, Chen J, Wu D, Huang M, Chen J, Pan R, Wu Y, Li G. CRISPR-/Cas12a-Mediated Liposome-Amplified Strategy for the Surface-Enhanced Raman Scattering and Naked-Eye Detection of Nucleic Acid and Application to Food Authenticity Screening. Anal Chem 2021; 93:10167-10174. [PMID: 34278781 DOI: 10.1021/acs.analchem.1c01163] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has been recognized as a powerful tool for biosensors due to the ultrahigh sensitivity and unique fingerprint information. However, there are some limitations in trace target nucleic acid detection for the restricted signal-transducing and amplification strategies. Inspired by CRISPR/Cas12a with specific target DNA-activated collateral single-strand DNA (ssDNA) cleavage activity and liposome with signal molecule-loading properties, we first proposed a sensitive SERS-based on-site nucleic acid detection strategy mediated by CRISPR/Cas12a with trans-cleavage activity on ssDNA linkers utilized to capture liposomes. Liposomes loading two kinds of signal molecules, 4-nitrothiophenol (4-NTP) and cysteine, could achieve the dual-mode detection of target DNA with SERS and naked eye, respectively. The promptly amplified signals were initiated by the triggered breakdown of signal molecule-loaded liposomes. Emancipated 4-NTP, a biological-silent Raman reporter, would achieve highly selective and sensitive SERS measurement. Released cysteine induced the aggregation of plasmonic gold nanoparticles, leading to an obvious red to blue colorimetric shift to realize portable naked-eye detection. With this strategy, target nucleic acid concentration was dexterously converted into SERS and visualization signals and could be detected as low as 100 aM and 10 pM, respectively. The approach was also successfully applied to determine meat adulteration, achieving the detection of a low adulteration ratio in the complicated food matrix. We anticipate that this strategy will not only be regarded as a universal platform for the on-site detection of food authenticity but also broaden SERS application for the accurate determination of diverse biomarkers.
Collapse
Affiliation(s)
- Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiahui Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Mingquan Huang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jian Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ruiyuan Pan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.,NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
31
|
DNA-functionalized biosensor for amplifying signal detection of DNA methyltransferase activity. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Establishment of a reliable scheme for obtaining highly stable SERS signal of biological serum. Biosens Bioelectron 2021; 189:113315. [PMID: 34049082 DOI: 10.1016/j.bios.2021.113315] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/27/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
As a rapid and non-destructive biological serum detection method, SERS technology was widely used in the screening and medical diagnosis of various diseases by combining the analysis of serum SERS spectrum and multivariate statistical algorithm. Because of the high complexity of serum components and the variability of SERS spectra, which often resulted in the phenomenon that the SERS spectrum of the same biological serum was significantly different due to the different test conditions. In this experiment, through the dilution treatment of the serum and the systematic test of the serum of all concentration gradients with lasers of wavelength of 785, 633 and 532 nm, the most suitable conditions for detecting the serum were investigated. The experimental results showed that only when the serum is diluted to low concentration (10 ppm), the SERS spectrum with high reproducibility and stability could be obtained, furthermore, the low concentration serum had weak tolerance to laser, and 532 nm laser was not suitable for serum detection. In this paper, a set of test scheme for obtaining highly stable serum SERS spectra was established by using high-performance gold nanoparticles (Au NPs) as the active substrate of SERS. Through comparative analysis of SERS spectrum of serum of normal people and cervical cancer, the reliability of the established low-concentration serum test program was verified, as well as its great potential advantages in disease screening and diagnosis.
Collapse
|