1
|
Sathish S, Dharmaraj K, Krishnaswamy S, Shanmugan S. Development of Underwater Oleophobic and Underoil Hydrophobic Strontium(II)-Cyclotriphosphazene Hexacarboxylate Framework with Prewetting-Induced Switchable Wettability and Self-Cleanability for Continuous Oil-Water Mixture and Emulsion Separations. Inorg Chem 2025. [PMID: 40415267 DOI: 10.1021/acs.inorgchem.5c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Oil spill management presents significant challenges, particularly when addressing spills that occur beneath the water's surface. In this context, Sr-HCPCP (SRMIST-2) is an innovative MOF with underwater oleophobic and underoil hydrophobic properties, incorporating enhanced coordination, a strong affinity for water and hydrophilic strontium, and a nontoxic, eco-friendly, biocompatible, and hydrophobic cyclotriphosphazene. It is designed with switchable wetting properties and exceptional chemical and thermal stability. SRMIST-2 is synthesized via a hydrothermal reaction between strontium nitrate and hexakis(4-carboxylatophenoxy)-cyclotriphosphazene. Its structure consists of edge-sharing {Sr3(COO)6(H2O)3} polyhedra that form 1-D chains, which pair to create 2-D networks that further interact with HCPCP ligands to construct a three-dimensional framework. When coated onto cotton fiber using polydopamine, the resulting CF-PDA-SRMIST-2 demonstrates excellent oil-water separation. Depending on whether it is prewetted with water or oil, it achieves separation efficiencies of 88-99%, with high flux rates (3409 Lm2-h-1 for water and 2840 Lm2-h-1 for oil) and remains effective over 15 cycles. It effectively separates oil-in-water and water-in-oil emulsions with 98% and 95% efficiency, respectively. CF-PDA-SRMIST-2 remains stable under acidic, alkaline, saline, and extreme temperature conditions. Its self-cleaning, amphiphobic properties ensure durability and reusability. With its low-cost, scalability, and eco-friendly nature, CF-PDA-SRMIST-2 is a promising material for sustainable oil spill remediation and environmental protection.
Collapse
Affiliation(s)
- Sankar Sathish
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kanakarasu Dharmaraj
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Shobhana Krishnaswamy
- Sophisticated Analytical Instrumentation Facility, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Swaminathan Shanmugan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
2
|
Luo F, Liang X, Chen W, Ravi SK, Wang S, Gao X, Zhang Z, Fang Y. Symbiotic defect-reinforced bimetallic MOF-derived fiber components for solar-assisted atmospheric water collection. WATER RESEARCH 2024; 259:121872. [PMID: 38852390 DOI: 10.1016/j.watres.2024.121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Conversion of atmospheric water to sustainable and clean freshwater resources through MOF-based adsorbent has great potential for the renewable environmental industry. However, its daily water production is hampered by susceptibility to agglomeration, slow water evaporation efficiency, and limited water-harvesting capacity. Herein, a solar-assisted bimetallic MOF (BMOF)-derived fiber component that surmounts these limitations and exhibits both optimized water-collect capacity and short adsorption-desorption period is proposed. The proposed strategy involves utilizing bottom-up interface-induced assembly between carboxylated multi-walled carbon nanotube and hygroscopic BMOF on a multi-ply glass fiber support. The designed BMOF (MIL-100(Fe,Al)-3) skeleton constructed using bimetallic-node defect engineering exhibits a high specific surface area (1,535.28 m2/g) and pore volume (0.76 cm3/g), thereby surpassing the parent MOFs and other reported MOFs in capturing moisture. Benefiting from the hierarchical structure of fiber rods and the solar-driven self-heating interface of photothermal layer, the customized BMOF crystals realize efficient loading and optimized water adsorption-desorption kinetics. As a result, the resultant fiber components achieve six adsorption-desorption cycles per day and an impressive water collection of 1.45 g/g/day under medium-high humidity outdoor conditions. Therefore, this work will provide new ideas for optimizing the daily yield of atmospheric water harvesting techniques.
Collapse
Affiliation(s)
- Fan Luo
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xianghui Liang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Weicheng Chen
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Shuangfeng Wang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xuenong Gao
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Zhengguo Zhang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Yutang Fang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
3
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
4
|
Fei L, Shen L, Chen C, Xu J, Wang B, Li B, Lin H. Assembling 99% MOFs into Bioinspired Rigid-Flexible Coupled Membrane with Significant Permeability: The Impacts of Defects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306528. [PMID: 37922525 DOI: 10.1002/smll.202306528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Assembling metal-organic frameworks (MOFs) into high-performance macroscopic membranes is crucial but still challenging. MOF-containing hybrid membranes can effectively integrate the advantages of flexible guest materials and MOFs. Nevertheless, the inherent limitations in fully harnessing the distinct characteristics of MOFs persist due to the substantial guest material content necessitated in membrane fabrication. Herein, inspired by the rigid and flexible structures in biological systems, rigid MIP-202(Zr) and defective MIP-202(Zr) (D-MIP-202(Zr)) modified flexible graphene oxide (GO) sheets are synthesized in situ and then assembled into a rigid-flexible coupled MOF-based membrane. The defects in D-MIP-202(Zr) are introduced by using acetic acid as the modulation agent. The obtained GO@MIP-202(Zr) membrane possesses a hierarchical porous structure with a 99 wt% MOF proportion, which is higher than the GO@D-MIP-202(Zr) (75 wt%) membrane with a compact bulge-structured surface. The water permeability of the GO@MIP-202(Zr) membrane attains remarkedly 5762.92 L h-1 m-2 bar-1 , which is 960 and 2.6 times higher than that of the GO membrane and GO@D-MIP-202(Zr) membrane. Additionally, benefiting from the superhydrophilicity and underwater superoleophobicity, the resultant membrane not only demonstrates high rejection for oil-water emulsions but also exhibits exceptional recyclability and anti-fouling ability. These findings provide valuable insights into the assembly of MOFs into high-performance membranes.
Collapse
Affiliation(s)
- Lingya Fei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiujing Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Boya Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
5
|
Xiang B, Gong J, Sun Y, Li J. Robust PVA/GO@MOF membrane with fast photothermal self-cleaning property for oily wastewater purification. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132803. [PMID: 37866141 DOI: 10.1016/j.jhazmat.2023.132803] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
The poor mechanical durability and weak fouling resistance of oil/water separation membranes severely restrict their applications in industry. Herein, a robust PVA/GO@MOF membrane with fast photothermal self-cleaning capability was developed through facile chemical crosslinking and suction-filtration strategies. Attributed to the powerful underwater superoleophobicity, the PVA/GO@MOF membrane exhibited extraordinary anti-oil adhesion even for high-viscosity crude oil and continuous crude oil emulsion purification capability with stable flux (1020 L m-2 h-1 bar-1) and exceptional efficiency (> 99.3%) even after 60 min. Most importantly, in comparison to reported photocatalytic self-cleaning oil/water separation membranes, the PVA/GO@MOF membrane can degrade organic contaminants more rapidly with a higher degradation rate (99.9%) in 50 min due to the superior photothermal conversion capacity. The synergistic photothermal and photocatalytic effects significantly enhanced photodegradation efficiency, which created opportunities for in-depth treatment of complex oily wastewater. Besides, the obtained membrane displayed excellent chemical and mechanical durability with underwater oil contact angle (UWOCA) above 150° even in harsh environments, such as corrosive solutions, UV irradiation, ultrasound treatment, abrasion experiment and bending test. Therefore, the developed PVA/GO@MOF membrane with robust durability and fast photocatalytic self-cleaning property is highly expected to purify oily wastewater and degrade organic pollutants.
Collapse
Affiliation(s)
- Bin Xiang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Jingling Gong
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yuqing Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
6
|
Yu Z, Jamdade S, Yu X, Cai X, Sholl DS. Efficient Generation of Large Collections of Metal-Organic Framework Structures Containing Well-Defined Point Defects. J Phys Chem Lett 2023; 14:6658-6665. [PMID: 37462949 PMCID: PMC10388356 DOI: 10.1021/acs.jpclett.3c01524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
High-throughput molecular simulations of metal-organic frameworks (MOFs) are a useful complement to experiments to identify candidates for chemical separation and storage. All previous efforts of this kind have used simulations in which MOFs are approximated as defect-free. We introduce a tool to readily generate missing-linker defects in MOFs and demonstrate this tool with a collection of 507 defective MOFs. We introduce the concept of the maximum possible defect concentration; at higher defect concentrations, deviations from the defect-free crystal structure would be readily evident experimentally. We studied the impact of defects on molecular adsorption as a function of defect concentrations. Defects have a slightly negative or negligible influence on adsorption at low pressures for ethene, ethane, and CO2 but a strong positive influence for methanol due to hydrogen bonding with defects. Defective structures tend to have loadings slightly higher than those of defect-free structures for all adsorbates at elevated pressures.
Collapse
Affiliation(s)
- Zhenzi Yu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shubham Jamdade
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xiaohan Yu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xuqing Cai
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David S Sholl
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
7
|
Lorignon F, Gossard A, Medjouel S, Carboni M, Meyer D. Controlling polyHIPE Surface Properties by Tuning the Hydrophobicity of MOF Particles Stabilizing a Pickering Emulsion. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37318840 DOI: 10.1021/acsami.3c02987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) show promise for the capture of greenhouse gases. To be used at a large scale in fixed-bed processes, their shaping under a hierarchical structure is mandatory and remains a major challenge, while keeping available their high specific surface area. For that purpose, we propose herein an original method based on the stabilization of a paraffin-in-water Pickering emulsion by a fluorinated Zr MOF (UiO-66(F4)) with polyHIPEs (polymers from high internal phase emulsions) strategy consisting of the polymerization of monomers in the external phase. After polymerization of the continuous phase and elimination of the paraffin, a hierarchically structured monolith is obtained with the UiO-66(F4) particles embedded in the polymer wall and covering the internal porosity. To avoid the pore blocking induced by the embedment of the MOF particles, our strategy was to modify their hydrophilic/hydrophobic balance with a controlled adsorption of hydrophobic molecules (perfluorooctanoic acid, PFOA) on the UiO-66(F4) particles. This will induce a displacement of the MOF position at the paraffin-water interface in the emulsion and then make the particles less embedded into the polymer wall. This leads to the formation of hierarchically structured monoliths integrating UiO-66(F4) particles with higher accessibility, maintaining their original properties and allowing their application in fixed-bed processes. This strategy was demonstrated by N2 and CO2 capture, and we believe that such original strategy could be applied to other MOF materials.
Collapse
Affiliation(s)
- Fabrice Lorignon
- ICSM, CEA, Univ Montpellier, CNRS, ENSCM, Marcoule, P 17171, Bagnols-sur-Cèze Cedex, France
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, P 17171, Bagnols-sur-Cèze Cedex, France
| | - Alban Gossard
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, P 17171, Bagnols-sur-Cèze Cedex, France
| | - Sabrine Medjouel
- ICSM, CEA, Univ Montpellier, CNRS, ENSCM, Marcoule, P 17171, Bagnols-sur-Cèze Cedex, France
| | - Michaël Carboni
- ICSM, CEA, Univ Montpellier, CNRS, ENSCM, Marcoule, P 17171, Bagnols-sur-Cèze Cedex, France
| | - Daniel Meyer
- ICSM, CEA, Univ Montpellier, CNRS, ENSCM, Marcoule, P 17171, Bagnols-sur-Cèze Cedex, France
| |
Collapse
|
8
|
Kuila SK, Guchhait SK, Mandal D, Kumbhakar P, Chandra A, Tiwary CS, Kundu TK. Dimensionality effects of g-C 3N 4 from wettability to solar light assisted self-cleaning and electrocatalytic oxygen evolution reaction. CHEMOSPHERE 2023; 333:138951. [PMID: 37196791 DOI: 10.1016/j.chemosphere.2023.138951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/23/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Unique interfacial properties of 2D materials make them more functional than their bulk counterparts in a catalytic application. In the present study, bulk and 2D graphitic carbon nitride nanosheet (bulk g-C3N4 and 2D-g-C3N4 NS) coated cotton fabrics and nickel foam electrode interfaces have been applied for solar light-driven self-cleaning of methyl orange (MO) dye and electrocatalytic oxygen evolution reaction (OER), respectively. Compared to bulk, 2D-g-C3N4 coated interfaces show higher surface roughness (1.094 > 0.803) and enhanced hydrophilicity (θ ∼ 32° < 62° for cotton fabric and θ ∼ 25° < 54° for Ni foam substrate) due to oxygen defect induction as confirmed from morphological (HR-TEM and AFM) and interfacial (XPS) characterizations. The self-remediation efficiencies for blank and bulk/2D-g-C3N4 coated cotton fabrics are estimated through colorimetric absorbance and average intensity changes. The self-cleaning efficiency for 2D-g-C3N4 NS coated cotton fabric is 87%, whereas the blank and bulk-coated fabric show 31% and 52% efficiency. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis determines the reaction intermediates for MO cleaning. 2D-g-C3N4 shows lower overpotential (108 mV) and onset potential (1.30 V) vs. RHE for 10 mA cm-2 OER current density in 0.1 M KOH. Also, the decreased charge transfer resistance (RCT = 12 Ω) and lower Tafel's slope (24 mV dec-1) of 2D-g-C3N4 make it the most efficient OER catalyst over bulk-g-C3N4 and state-of-the-art material RuO2. The pseudocapacitance behavior of OER governs the kinetics of electrode-electrolyte interaction through the electrical double layer (EDL) mechanism. The 2D electrocatalyst demonstrates long-term stability (retention ∼94%) and efficacy compared to commercial electrocatalysts.
Collapse
Affiliation(s)
- Saikat Kumar Kuila
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | | | - Debabrata Mandal
- School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Partha Kumbhakar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Amreesh Chandra
- School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India; Department of Physics, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Tarun Kumar Kundu
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
9
|
Zhao Z, Lei R, Zhang Y, Cai T, Han B. Defect controlled MOF-808 for seawater uranium capture with high capacity and selectivity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Liang Q, Jiang B, Yang N, Zhang L, Sun Y, Zhang L. Superhydrophilic Modification of Polyvinylidene Fluoride Membrane via a Highly Compatible Covalent Organic Framework-COOH/Dopamine-Integrated Hierarchical Assembly Strategy for Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45880-45892. [PMID: 36165501 DOI: 10.1021/acsami.2c13402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The integration of membranes with additives such as functionalized nanomaterials can be recognized as an effective method to enhance membrane performance. However, to obtain an efficient nanoparticle-decorated membrane, the compatibility of nanomaterials remains a challenge. Hydrophilic carboxylated covalent organic frameworks (COF-COOH) might be expected to avoid the drawbacks of aggregation and easy shedding of inorganic materials caused by the poor interfacial compatibility. Herein, a highly compatible dip-coating strategy was proposed for the superhydrophilic modification of polyvinylidene fluoride membrane via COF-COOH integrated with dopamine. COF-COOH together with polydopamine nanoparticles were uniformly and stably attached to the membrane due to the high interfacial compatibility, constructing a coating with rough hierarchical nanostructures and abundant carboxyl groups. The synergistic effects of multiscale structures and chemical groups endow the membrane with superhydrophilicity and underwater superoleophobicity, the water contact angle decreased from 123 to 15°, and the underwater oil contact angle increased from 132 to 162°. Accordingly, the modified membrane exhibits an ultrahigh oil rejection ratio (>98%), a high flux (the maximum reaches 1843.48 L m-2 h-1 bar-1), attractive antifouling ability, and impregnable stability. This work would provide a momentous reference for the application of COF-COOH in practical oily wastewater treatment.
Collapse
Affiliation(s)
- Qi Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Bin Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Na Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Longfei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yongli Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Luhong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
11
|
Jajko G, Calero S, Kozyra P, Makowski W, Sławek A, Gil B, Gutiérrez-Sevillano JJ. Defect-induced tuning of polarity-dependent adsorption in hydrophobic-hydrophilic UiO-66. Commun Chem 2022; 5:120. [PMID: 36697947 PMCID: PMC9814431 DOI: 10.1038/s42004-022-00742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/26/2022] [Indexed: 01/28/2023] Open
Abstract
Structural defects in metal-organic frameworks can be exploited to tune material properties. In the case of UiO-66 material, they may change its nature from hydrophobic to hydrophilic and therefore affect the mechanism of adsorption of polar and non-polar molecules. In this work, we focused on understanding this mechanism during adsorption of molecules with different dipole moments, using the standard volumetric adsorption measurements, IR spectroscopy, DFT + D calculations, and Monte Carlo calculations. Average occupation profiles showed that polar and nonpolar molecules change their preferences for adsorption sites. Hence, defects in the structure can be used to tune the adsorption properties of the MOF as well as to control the position of the adsorbates within the micropores of UiO-66.
Collapse
Affiliation(s)
- Gabriela Jajko
- grid.5522.00000 0001 2162 9631Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland
| | - Sofia Calero
- grid.6852.90000 0004 0398 8763Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Paweł Kozyra
- grid.5522.00000 0001 2162 9631Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland
| | - Wacław Makowski
- grid.5522.00000 0001 2162 9631Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland
| | - Andrzej Sławek
- grid.9922.00000 0000 9174 1488AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
| | - Barbara Gil
- grid.5522.00000 0001 2162 9631Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland
| | - Juan José Gutiérrez-Sevillano
- grid.15449.3d0000 0001 2200 2355Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera Km. 1, Seville, ES-41013 Spain
| |
Collapse
|
12
|
|
13
|
|
14
|
He XT, Li BY, Liu JX, Tao WQ, Li Z. Facile fabrication of 2D MOF-Based membrane with hierarchical structures for ultrafast Oil-Water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Liu QQ, Liu SS, Liu XF, Xu XJ, Dong XY, Zhang HJ, Zang SQ. Superprotonic Conductivity of UiO-66 with Missing-Linker Defects in Aqua-Ammonia Vapor. Inorg Chem 2022; 61:3406-3411. [PMID: 35170960 DOI: 10.1021/acs.inorgchem.1c03231] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The design and preparation of proton-conducting metal-organic frameworks (MOFs) with superconductivity are of significance for the proton-exchange membrane fuel cell (PEMFC). Introducing functional structural defects to enhance proton conductivity is a good approach. Here, we synthesized a series of UiO-66 (first synthesized in the University of Oslo) with missing-linker defects and investigated the effect of defect numbers on the proton conductivity of the samples. Among them, 60-UiO-66-1.8 (60 represents the synthesis temperature and 1.8 the number of defects) prepared with 3-mercaptopropionic acid as a modulator has the best proton conductivity, which is 3 × 10-2 S cm-1 at 100 °C and under 98% relative humidity (RH). The acidic sites induced by missing-linker defects further promote the chemisorption of ammonia molecules, resulting in the formation of a richer hydrogen-bond network and hence boosting the proton conductivity to 1.04 × 10-1 S cm-1 at 80 °C, which is one of the highest values among the reported MOF-based proton conductor. Therefore, this work provides a new strategy for enhancing proton conduction in MOF-based materials.
Collapse
Affiliation(s)
- Qing-Qing Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shan-Shan Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xiao-Fei Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Jie Xu
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China.,Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hui-Ju Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Wang S, Zhao L, Fang F, Wang L, Zhang Z, Zhang S, Du L, Zhao QH. A mixed strategy to fabricate two bifunctional ligand-based Ag-complexes with high proton conductivity. NEW J CHEM 2022. [DOI: 10.1039/d2nj03890k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High proton conductivity materials BAg-1 and BAg-2 were obtained using a mixed strategy with the same main bifunctional ligand.
Collapse
Affiliation(s)
- Shuyu Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Lijia Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Fang Fang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Lei Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Zhen Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Suoshu Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Lin Du
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Qi-Hua Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| |
Collapse
|
17
|
Xiaotong H, Wang J, Mousavi B, Klomkliang N, Chaemchuen S. Strategies for induced defects in metal-organic frameworks for enhancing adsorption and catalytic performance. Dalton Trans 2022; 51:8133-8159. [DOI: 10.1039/d2dt01030e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) have emerged among porous materials. The designable structure and specific functionality make them stand out for diverse applications. In conceptual MOF, the metal ions/clusters and organic ligands...
Collapse
|
18
|
Robust superhydrophilic and underwater superoleophobic membrane optimized by Cu doping modified metal-organic frameworks for oil-water separation and water purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119755] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Potts DS, Bregante DT, Adams JS, Torres C, Flaherty DW. Influence of solvent structure and hydrogen bonding on catalysis at solid-liquid interfaces. Chem Soc Rev 2021; 50:12308-12337. [PMID: 34569580 DOI: 10.1039/d1cs00539a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Solvent molecules interact with reactive species and alter the rates and selectivities of catalytic reactions by orders of magnitude. Specifically, solvent molecules can modify the free energies of liquid phase and surface species via solvation, participating directly as a reactant or co-catalyst, or competitively binding to active sites. These effects carry consequences for reactions relevant for the conversion of renewable or recyclable feedstocks, the development of distributed chemical manufacturing, and the utilization of renewable energy to drive chemical reactions. First, we describe the quantitative impact of these effects on steady-state catalytic turnover rates through a rate expression derived for a generic catalytic reaction (A → B), which illustrates the functional dependence of rates on each category of solvent interaction. Second, we connect these concepts to recent investigations of the effects of solvents on catalysis to show how interactions between solvent and reactant molecules at solid-liquid interfaces influence catalytic reactions. This discussion demonstrates that the design of effective liquid phase catalytic processes benefits from a clear understanding of these intermolecular interactions and their implications for rates and selectivities.
Collapse
Affiliation(s)
- David S Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Daniel T Bregante
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jason S Adams
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Chris Torres
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
20
|
Zhao L, Zhu RR, Wang S, He L, Du L, Zhao QH. Multiple Strategies to Fabricate a Highly Stable 2D Cu IICu I-Organic Framework with High Proton Conductivity. Inorg Chem 2021; 60:16474-16483. [PMID: 34657429 DOI: 10.1021/acs.inorgchem.1c02312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Using multifunctional organic ligands with multiple acidic groups (carboxylate and sulfonate groups) to synthesize metal-organic frameworks (MOFs) bearing effective H-bond networks is a promising strategy to obtain highly proton conductive materials. In this work, a highly stable two-dimensional MOF, [CuII5CuI2(μ3-OH)4(H2O)6(L)2(H2L)2]·3H2O (denoted as YCu161; H3L = 6-sulfonaphthalene-1,4-dicarboxylic acid) containing mixed-valence [CuII5CuI2(μ3-OH)4]8+ subunits, was successfully prepared. It exhibited excellent stability and temperature- and humidity-dependent proton conduction properties. Its optimal proton conductivity reached 1.84 × 10-3 S cm-1 at 90 °C and 98% relative humidity. On the basis of a crystal structure analysis, water vapor adsorption test results, and activation energy calculations, we deduced the proton conduction pathway and mechanism. Apparently, uncoordinated sulfonic and carboxyl groups and a network of abundant H-bonds inside the framework were responsible for the efficient proton transfer. Therefore, the strategy of selecting suitable bifunctional ligands to construct two-dimensional Cu-cluster-based MOFs with excellent proton conductivity is feasible.
Collapse
Affiliation(s)
- Lijia Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Rong-Rong Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Shuyu Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Liancheng He
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Qi-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| |
Collapse
|
21
|
Ping Z, Sun Q, Yi J, Li Q, Zhao L, Zhang H, Huang F, Li S, Cheng L. Formulating Multiphase Medium Anti-wetting States in an Air-Water-Oil System: Engineering Defects for Interface Chemical Evolutions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49556-49566. [PMID: 34636235 DOI: 10.1021/acsami.1c15823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Studies which regulate macroscopic wetting states on determined surfaces in multiphase media are of far-reaching significance but are still in the preliminary stage. Herein, inspired by the wettability subassembly of fish scales, Namib desert beetle shell, and lotus leaf upper side, interfaces in the air-water-oil system are programmed by defect engineering to tailor the anti-wetting evolution from double to triple liquid repellency states. By controlling the visible light irradiation and plasma treatment, surface oxygen vacancies on CuxO@TiO2 nanowires (NWs) can be healed or reconstructed. The original membrane or the membrane after plasma treatment possesses abundant surface oxygen vacancies, and the homogeneous hydrophilic membrane shows only double anti-wetting states in the water-oil system. By the unsaturated visible light irradiation time, the surface oxygen vacancy partially healed, the heterogeneous hydrophilic-hydrophobic components occupied the membrane surface, and the anti-wetting state finally changed from double to triple in the air-water-oil system. After the illumination time reaches saturation, it promotes the healing of all surface oxygen vacancies, and the membrane surface only contains uniform hydrophobic components and only maintains double anti-wetting state in the air-oil system. The mechanism of the triple anti-wetting state on a heterogeneous surface is expounded by establishing a wetting model. The wetting state and the adhesion state of the CuxO@TiO2 NW membrane show regional specificity by controlling the illumination time and region. The underwater oil droplets exhibit the "non-adhesive" and "adhesive" state in a region with unsaturated irradiation time or in an unirradiated region, respectively. Underwater oil droplet manipulation can be accomplished easily based on switchable wettability and adhesion. Current studies reveal that defect engineering can be extended to anti-wetting evolution in the air-water-oil system. Constructing an anti-wetting interface by heterogeneous components provides reference for designing the novel anti-wetting interface.
Collapse
Affiliation(s)
- Zhongxin Ping
- Laboratory of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Qingyun Sun
- Laboratory of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Jiuqi Yi
- Laboratory of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Qianqian Li
- Laboratory of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Lukang Zhao
- Laboratory of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Hui Zhang
- Laboratory of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Fangzhi Huang
- Laboratory of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Shikuo Li
- Laboratory of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Longjiu Cheng
- Laboratory of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
22
|
Anyanwu JT, Wang Y, Yang RT. SBA-15 Functionalized with Amines in the Presence of Water: Applications to CO 2 Capture and Natural Gas Desulfurization. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John-Timothy Anyanwu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yiren Wang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ralph T. Yang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Hardian R, Dissegna S, Ullrich A, Llewellyn PL, Coulet MV, Fischer RA. Tuning the Properties of MOF-808 via Defect Engineering and Metal Nanoparticle Encapsulation. Chemistry 2021; 27:6804-6814. [PMID: 33586233 PMCID: PMC8251568 DOI: 10.1002/chem.202005050] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/13/2021] [Indexed: 12/20/2022]
Abstract
Defect engineering and metal encapsulation are considered as valuable approaches to fine-tune the reactivity of metal-organic frameworks. In this work, various MOF-808 (Zr) samples are synthesized and characterized with the final aim to understand how defects and/or platinum nanoparticle encapsulation act on the intrinsic and reactive properties of these MOFs. The reactivity of the pristine, defective and Pt encapsulated MOF-808 is quantified with water adsorption and CO2 adsorption calorimetry. The results reveal strong competitive effects between crystal morphology and missing linker defects which in turn affect the crystal morphology, porosity, stability, and reactivity. In spite of leading to a loss in porosity, the introduction of defects (missing linkers or Pt nanoparticles) is beneficial to the stability of the MOF-808 towards water and could also be advantageously used to tune adsorption properties of this MOF family.
Collapse
Affiliation(s)
- Rifan Hardian
- CNRS, MADIREL (UMR 7246), Aix-Marseille University, Campus St Jérôme, 13013, Marseille, France
| | - Stefano Dissegna
- Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Center, Dept. of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| | - Aladin Ullrich
- Institute of Physics, University of Augsburg, Universitätsstrasse 1, 86159, Augsburg, Germany
| | - Philip L Llewellyn
- CNRS, MADIREL (UMR 7246), Aix-Marseille University, Campus St Jérôme, 13013, Marseille, France
| | - Marie-Vanessa Coulet
- CNRS, MADIREL (UMR 7246), Aix-Marseille University, Campus St Jérôme, 13013, Marseille, France
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Center, Dept. of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| |
Collapse
|
24
|
Chen Z, Lv Z, Lin Z, Chen J, Zhang Y, Wang C, Qing G, Sun Y, Chi Z. A methylation-inspired mesoporous coordination polymer for identification and removal of organic pollutants in aqueous solutions. J Mater Chem B 2021; 9:638-647. [DOI: 10.1039/d0tb02389b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tuning the interfacial chemistry of a metal–biomolecule coordination hybrid via bio-inspired methylation for structure enhancement and selective hazard adsorption/identification.
Collapse
Affiliation(s)
- Zhonghui Chen
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology
- Guangdong Institute of Analysis (China National Analytical Center Guangzhou)
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics
- Shenzhen University
- Shenzhen 518060
- China
| | - Zirong Lin
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology
- Guangdong Institute of Analysis (China National Analytical Center Guangzhou)
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Jun Chen
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology
- Guangdong Institute of Analysis (China National Analytical Center Guangzhou)
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Yifang Zhang
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology
- Guangdong Institute of Analysis (China National Analytical Center Guangzhou)
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Cunli Wang
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Yifeng Sun
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology
- Guangdong Institute of Analysis (China National Analytical Center Guangzhou)
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Zhenguo Chi
- Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films
- State Key Laboratory of OEMT, School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- China
| |
Collapse
|