1
|
Huang Y, Li Q, He F, Yang T, Zhou Q, Zheng Y, Li Y. Cationic Azobenzene Tag to Enhance Liposomal Prodrug Retention and Tumor-Targeting Prodrug Activation for Improved Antitumor Efficacy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26323-26337. [PMID: 40285708 DOI: 10.1021/acsami.5c01634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
In this study, we reported a cationic azobenzene (Azo) tag to increase the retention of camptothecin (CPT) prodrugs in liposomes driven by π-π stacking interaction between Azo. Compared with a cationic CPT prodrug without Azo, the liposome-encapsulating Azo-linked CPT prodrugs (AzoCPT-Lips) exhibited slower prodrug leakage in plasma and a longer blood circulation time in mice. The AzoCPT-Lips had a high encapsulation efficiency (95%), loading capacity (20%, by weight), and good storage stability. The AzoCPT was efficiently taken up by 4T1 tumor cells (100-fold higher than CPT) and readily converted into active CPT in the cytoplasm to exert 10-fold higher cytotoxicity than free CPT. More importantly, AzoCPT-Lips resulted in 5-20 times higher tumor distribution of active CPT than that of CPT solution or those in other tissues, which further led to more potent antitumor activity and lower toxicities in the 4T1 breast cancer xenograft. Such a cationic Azo tag represents an effective strategy for developing liposomal antitumor drugs with improved antitumor efficacy.
Collapse
Affiliation(s)
- Yuanyuan Huang
- Department of Pharmaceutics, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Qiunan Li
- Department of Pharmaceutics, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Fei He
- Department of Pharmaceutics, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tao Yang
- Department of Pharmaceutics, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu 610051, China
| | - Yaxin Zheng
- Key Laboratory of Structure-Specific Small Molecule Drugs at Chengdu Medical College of Sichuan Province, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yang Li
- Department of Pharmaceutics, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Borges J, Zeng J, Liu XQ, Chang H, Monge C, Garot C, Ren K, Machillot P, Vrana NE, Lavalle P, Akagi T, Matsusaki M, Ji J, Akashi M, Mano JF, Gribova V, Picart C. Recent Developments in Layer-by-Layer Assembly for Drug Delivery and Tissue Engineering Applications. Adv Healthc Mater 2024; 13:e2302713. [PMID: 38116714 PMCID: PMC11469081 DOI: 10.1002/adhm.202302713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Surfaces with biological functionalities are of great interest for biomaterials, tissue engineering, biophysics, and for controlling biological processes. The layer-by-layer (LbL) assembly is a highly versatile methodology introduced 30 years ago, which consists of assembling complementary polyelectrolytes or biomolecules in a stepwise manner to form thin self-assembled films. In view of its simplicity, compatibility with biological molecules, and adaptability to any kind of supporting material carrier, this technology has undergone major developments over the past decades. Specific applications have emerged in different biomedical fields owing to the possibility to load or immobilize biomolecules with preserved bioactivity, to use an extremely broad range of biomolecules and supporting carriers, and to modify the film's mechanical properties via crosslinking. In this review, the focus is on the recent developments regarding LbL films formed as 2D or 3D objects for applications in drug delivery and tissue engineering. Possible applications in the fields of vaccinology, 3D biomimetic tissue models, as well as bone and cardiovascular tissue engineering are highlighted. In addition, the most recent technological developments in the field of film construction, such as high-content liquid handling or machine learning, which are expected to open new perspectives in the future developments of LbL, are presented.
Collapse
Grants
- GA259370 ERC "BIOMIM"
- GA692924 ERC "BioactiveCoatings"
- GA790435 ERC "Regenerbone"
- ANR-17-CE13-022 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR-18-CE17-0016 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- 192974 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR-20-CE19-022 BIOFISS Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR22-CE19-0024 SAFEST Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- DOS0062033/0 FUI-BPI France
- 883370 European Research Council "REBORN"
- 2020.00758.CEECIND Portuguese Foundation for Science and Technology
- UIDB/50011/2020,UIDP/50011/2020,LA/P/0006/2020 FCT/MCTES (PIDDAC)
- 751061 European Union's Horizon 2020 "PolyVac"
- 11623 Sidaction
- 20H00665 JSPS Grant-in-Aid for Scientific Research
- 3981662 BPI France Aide Deep Tech programme
- ECTZ60600 Agence Nationale de Recherches sur le Sida et les Hépatites Virales
- 101079482 HORIZON EUROPE Framework Programme "SUPRALIFE"
- 101058554 Horizon Europe EIC Accelerator "SPARTHACUS"
- Sidaction
- Agence Nationale de Recherches sur le Sida et les Hépatites Virales
Collapse
Affiliation(s)
- João Borges
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Jinfeng Zeng
- Division of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Xi Qiu Liu
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hao Chang
- Hangzhou Institute of MedicineChinese Academy of SciencesHangzhouZhejiang310022China
| | - Claire Monge
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI)UMR5305 CNRS/Universite Claude Bernard Lyon 17 Passage du VercorsLyon69367France
| | - Charlotte Garot
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| | - Ke‐feng Ren
- Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Paul Machillot
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| | - Nihal E. Vrana
- SPARTHA Medical1 Rue Eugène BoeckelStrasbourg67000France
| | - Philippe Lavalle
- SPARTHA Medical1 Rue Eugène BoeckelStrasbourg67000France
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Université de StrasbourgFaculté de Chirurgie Dentaire1 place de l'HôpitalStrasbourg67000France
| | - Takami Akagi
- Building Block Science Joint Research ChairGraduate School of Frontier BiosciencesOsaka University1–3 YamadaokaSuitaOsaka565–0871Japan
| | - Michiya Matsusaki
- Division of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Jian Ji
- Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Mitsuru Akashi
- Building Block Science Joint Research ChairGraduate School of Frontier BiosciencesOsaka University1–3 YamadaokaSuitaOsaka565–0871Japan
| | - João F. Mano
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Université de StrasbourgFaculté de Chirurgie Dentaire1 place de l'HôpitalStrasbourg67000France
| | - Catherine Picart
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| |
Collapse
|
4
|
Chen WH, Chen QW, Chen Q, Cui C, Duan S, Kang Y, Liu Y, Liu Y, Muhammad W, Shao S, Tang C, Wang J, Wang L, Xiong MH, Yin L, Zhang K, Zhang Z, Zhen X, Feng J, Gao C, Gu Z, He C, Ji J, Jiang X, Liu W, Liu Z, Peng H, Shen Y, Shi L, Sun X, Wang H, Wang J, Xiao H, Xu FJ, Zhong Z, Zhang XZ, Chen X. Biomedical polymers: synthesis, properties, and applications. Sci China Chem 2022; 65:1010-1075. [PMID: 35505924 PMCID: PMC9050484 DOI: 10.1007/s11426-022-1243-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Biomedical polymers have been extensively developed for promising applications in a lot of biomedical fields, such as therapeutic medicine delivery, disease detection and diagnosis, biosensing, regenerative medicine, and disease treatment. In this review, we summarize the most recent advances in the synthesis and application of biomedical polymers, and discuss the comprehensive understanding of their property-function relationship for corresponding biomedical applications. In particular, a few burgeoning bioactive polymers, such as peptide/biomembrane/microorganism/cell-based biomedical polymers, are also introduced and highlighted as the emerging biomaterials for cancer precision therapy. Furthermore, the foreseeable challenges and outlook of the development of more efficient, healthier and safer biomedical polymers are discussed. We wish this systemic and comprehensive review on highlighting frontier progress of biomedical polymers could inspire and promote new breakthrough in fundamental research and clinical translation.
Collapse
Affiliation(s)
- Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Shun Duan
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Yun Liu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Meng-Hua Xiong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123 China
| | - Kuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Zhanzhan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xu Zhen
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Xiqun Jiang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| |
Collapse
|
5
|
Qian HL, Huang WP, Fang Y, Zou LY, Yu WJ, Wang J, Ren KF, Xu ZK, Ji J. Fabrication of "Spongy Skin" on Diversified Materials Based on Surface Swelling Non-Solvent-Induced Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57000-57008. [PMID: 34816710 DOI: 10.1021/acsami.1c18333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porous surfaces have attracted tremendous interest for customized incorporation of functional agents on biomedical devices. However, the versatile preparation of porous structures on complicated devices remains challenging. Herein, we proposed a simple and robust method to fabricate "spongy skin" on diversified polymeric substrates based on non-solvent-induced phase separation (NIPS). Through the swelling and the subsequent phase separation process, interconnected porous structures were directly formed onto the polymeric substrates. The thickness and pore size could be regulated in the ranges of 5-200 and 0.3-0.75 μm, respectively. The fast capillary action of the porous structure enabled controllable loading and sustained release of ofloxacin and bovine albumin at a high loading dosage of 79.9 and 24.1 μg/cm2, respectively. We verified that this method was applicable to diversified materials including polymethyl methacrylate, polystyrene, thermoplastic polyurethane, polylactide acid, and poly(lactic-co-glycolic acid) and can be realized onto TCPS cell culture plates. This NIPS-based method is promising to generate porous surfaces on medical devices for incorporating therapeutic agents.
Collapse
Affiliation(s)
- Hong-Lin Qian
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei-Pin Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu Fang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling-Yun Zou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei-Jiang Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|