1
|
Sun L, Zeng Y, Li J, Wang H, Hua Q, Lu S. Enhancing Water Electrolysis through Interfacial Design of Nickel Foam. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1539-1546. [PMID: 39791966 DOI: 10.1021/acs.langmuir.4c04714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Water electrolysis recognizes nickel foam (NF) as an effective current collector due to its excellent conductivity. However, recent studies highlighted NF's effect on the efficacy of various electrocatalytic reactions, primarily due to the presence of electroactive chemical species at its interface. In contrast, numerous reports suggested that NF has a negligible impact on overall electrocatalytic activity. When evaluated against other current collectors, NF-supported catalysts demonstrate better electrochemical activity, predominantly due to NF's interfacial design. This study presents an electrochemically relevant NF with a flexible interfacial design, supported by case studies and insights into promising future directions. This Perspective reveals the advantages, challenges, and overall applicability of NF's interfacial design with the context of electrocatalytic water splitting in mind.
Collapse
Affiliation(s)
- Lingling Sun
- School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Yi Zeng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jitao Li
- School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Haoqi Wang
- Radiation Technology Institute, Beijing Academy of Science and Technology, Beijing 100875, China
| | - Qingsong Hua
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
2
|
Jeon D, Kim DY, Kim H, Kim N, Lee C, Seo DH, Ryu J. Electrochemical Evolution of Ru-Based Polyoxometalates into Si,W-Codoped RuO x for Acidic Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304468. [PMID: 37951714 DOI: 10.1002/adma.202304468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Despite intensive studies over decades, the development of electrocatalysts for acidic water splitting still relies on platinum group metals, especially Pt and Ir, which are scarce, expensive, and poorly sustainable. Because such problems can be alleviated, Ru-based bifunctional catalysts such as rutile RuO2 have recently emerged. However, RuO2 has a relatively low activity for hydrogen evolution reactions (HER) and low stability for oxygen evolution reactions (OER) under acidic conditions. In this study, the synthesis of a RuOx -based bifunctional catalyst (RuSiW) for acidic water splitting via the electrochemical evolution from Ru-based polyoxometalates at cathodic potentials is reported. RuSiW consists of the nanocrystalline RuO2 core and Si,W-codoped RuOx shell. RuSiW exhibits outstanding HER and OER activity comparable to Pt/C and RuO2 , respectively, with high stability. Computational analysis suggests that the codoping of RuOx with W and Si synergistically improves the HER activity of otherwise poor RuO2 by shifting the d-band center and optimizing atomic configurations beneficial for proper hydrogen adsorption. This study provides insights into the design and synthesis of unprecedented bifunctional electrocatalysts using catalytically inactive and less explored elements, such as Si and W.
Collapse
Affiliation(s)
- Dasom Jeon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dong Yeon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyeongoo Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Nayeong Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Cheolmin Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dong-Hwa Seo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jungki Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Renewable Carbon, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
3
|
Li R, Chen L, Zhang H, Humayun M, Duan J, Xu X, Fu Y, Bououdina M, Wang C. Exceptional green hydrogen production performance of a ruthenium-modulated nickel selenide. NANOSCALE 2023. [PMID: 38018426 DOI: 10.1039/d3nr04454h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Developing low-cost, high-efficiency and stable electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) is crucial but highly challenging. Density functional theory (DFT) calculations reveal that doping ruthenium (Ru) into catalysts can effectively optimize their electronic structure, hence leading to an optimal Gibbs free energy on the catalyst surface. Herein, an ultra-low Ru (about 2.34 wt%)-doped Ni3Se2 nanowire catalyst (i.e., Ru/Ni3Se2) supported on nickel foam has been fabricated by a hydrothermal reaction followed by a chemical etching process. The unique three-dimensional (3D) interconnected nanowires not only endow Ru and Ni3Se2 with uniform distribution and coupling, but also provide higher electrical conductivity, more active sites, an optimized electronic structure and favorable reaction kinetics. Therefore, the as-obtained Ru/Ni3Se2 catalyst exhibits excellent electrocatalytic performance, with low overpotentials of 24 and 211 mV to supply a current density value of 10 mA cm-2 towards the HER and OER in an alkaline environment, respectively. Notably, the as-fabricated Ru/Ni3Se2 catalyst only requires a low voltage of 1.476 V to derive a current density of 10 mA cm-2 in the constructed two-electrode alkaline electrolyzer and exhibits exceptionally high stability. This work will provide a novel strategy for the design and fabrication of low-cost and high-performance bifunctional electrocatalysts for hydrogen production by water electrolysis.
Collapse
Affiliation(s)
- Rong Li
- Jiangxi Province Key Laboratory of Optoelectronic Information Science and Technology, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China.
| | - Lanli Chen
- School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Huaming Zhang
- Jiangxi Province Key Laboratory of Optoelectronic Information Science and Technology, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China.
| | - Muhammad Humayun
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia.
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Junhong Duan
- Jiangxi Province Key Laboratory of Optoelectronic Information Science and Technology, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China.
| | - Xuefei Xu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Yanjun Fu
- Jiangxi Province Key Laboratory of Optoelectronic Information Science and Technology, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China.
| | - Mohamed Bououdina
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia.
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia.
| |
Collapse
|
4
|
Singh AP, Ghosh S. BaRuO 3 coated Ti plate as an efficient and stable electro-catalyst for water splitting reaction in alkaline medium. Heliyon 2023; 9:e20870. [PMID: 37867895 PMCID: PMC10585303 DOI: 10.1016/j.heliyon.2023.e20870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Water splitting using an electrochemical device to produce hydrogen fuel is a green and economic approach to solve the energy and environmental crisis. The realistic design of durable electro-catalysts and their synthesis using a simplistic technique is a great challenge to produce hydrogen by water electrolysis. Herein, we report a stable highly active barium ruthenium oxide (BRO) electro-catalysts over Ti plate using a soft chemical method at low temperature. The synthesized material shows facile hydrogen evolution reaction (HER) as well as oxygen evolution reaction (OER) in alkaline medium with over-potentials of 195 mV and 300 mV, respectively at a current density of 10 mA cm-2. The excellent stability lasts for at least 24 h without any degradation for both the HER and OER at the current density of 10 mA cm-2, inferring the practical applications of the material toward production of green hydrogen energy. Certainly, the synthesized catalyst is capable adequately for the overall water splitting at a cell voltage of 1.60 V at a current density of 10 mA cm-2 with an impressive stability for at least 24 h, showing a minimum loss of potential. Thus the present work contributes to the rational design of stable and efficient electro-catalysts for overall water splitting reaction in alkaline media.
Collapse
Affiliation(s)
- Alok Pratap Singh
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Susanta Ghosh
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
5
|
Liu H, Jiang Y, Mao Y, Jiang Y, Shen W, Li M, He R. The role of various components in Ru-NiCo alloys in boosting the performance of overall water splitting. J Colloid Interface Sci 2023; 633:189-198. [PMID: 36446211 DOI: 10.1016/j.jcis.2022.11.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Understanding the synergistic mechanism of multi-component alloys is crucial and challenging for overall water splitting. Herein, Ru-NiCo0.5-600 °C and Ru-Ni0.75Co with excellent electrocatalytic activity are designed and synthesized. The Ru-NiCo0.5-600 °C alloy exhibits remarkable HER activity with an overpotential of 42, 77 and 93 mV at 10 mA cm-2 in alkaline, acidic and neutral conditions, and the Ru-Ni0.75Co electrocatalyst presents outstanding OER activity with an overpotential of 176 mV at 10 mA cm-2 in 1.0 M KOH. The Ru-NiCo0.5-600 °C ||Ru-Ni0.75Co cell requires only 1.48 and 1.69 V to reach 10 and 100 mA cm-2 towards overall water splitting. A series of experiments reveal that the strong electronic coupling among Ru, Ni and Co regulates the electronic structure and enhances the intrinsic catalytic activity and stability of the as-synthesized Ru-NiCo electrocatalysts. Systematic experimental and theoretical results prove that Ni atoms act as the active sites of dissociating water, while Ru and Co are respectively the active centers of proton and hydroxyl adsorption for HER and OER. Our work provides a new perspective for profoundly understanding the synergistic effect of multi-component alloys towards water splitting.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yong Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yini Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yimin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
6
|
Wang H, Cheng X, Tong Y. Coupling of ruthenium with hybrid metal nitrides heterostructure as bifunctional electrocatalyst for water electrolysis. J Colloid Interface Sci 2023; 629:155-164. [DOI: 10.1016/j.jcis.2022.08.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
|
7
|
Kitiphatpiboon N, Chen M, Li X, Liu C, Li S, Wang J, Peng S, Abudula A, Guan G. Heterointerface engineering of Ni3S2@NiCo-LDH core-shell structure for efficient oxygen evolution reaction under intermittent conditions. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Yi H, Zhang X, Ai Z, Song S, An Q. Hollow Nanowire Constructed by NiCo Doped RuO 2 Nanoparticles for Robust Hydrogen Evolution at High-Current-Density. CHEMSUSCHEM 2022; 15:e202201532. [PMID: 35999180 DOI: 10.1002/cssc.202201532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Large-current-density electrocatalytic water splitting is essential for industrial hydrogen production, but it is currently hindered by lacking active and robust hydrogen evolution reaction (HER) catalysts. Herein, a novel electrode of hollow nanowire arrays constructed by NiCo modified RuO2 nanoparticles on Ni foam (NiCo@RuO2 HNAs/NF) for high-performance HER was reported. Such efficient electrode was fabricated by ion exchange with NF-supported Ni modified cobalt carbonate hydroxide nanowire arrays template (Ni@CoCH NAs/NF). The formed NiCo@RuO2 HNAs/NF only needed overpotentials of 148.5 and 236.1 mV to deliver 500 and 1000 mA cm-2 , respectively, along with excellent stability at the high-current-density for 300 h. Such remarkable HER performance was mainly attributed to the hollow structure with high surface area, hydrophilic feature, and NiCo@RuO2 with optimized hydrogen evolution kinetics. After coupling with anodic Ni@CoCH NAs/NF, our electrolyzer outperformed Pt/C-IrO2 and most other Ru-based electrolyzers. This work provides a promising Pt alternative catalyst for profitable H2 production.
Collapse
Affiliation(s)
- Hao Yi
- School of Artificial Intelligence, Wuchang University of Technology, Wuhan, Hubei Province, 430223, P. R. China
| | - Xian Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, P. R. China
| | - Zhong Ai
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, P. R. China
| | - Shaoxian Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, P. R. China
| | - Qing An
- School of Artificial Intelligence, Wuchang University of Technology, Wuhan, Hubei Province, 430223, P. R. China
| |
Collapse
|
9
|
Zhang H, Chen C, Wu X, Lv C, Lv Y, Guo J, Jia D. Synergistic Incorporating RuO 2 and NiFeOOH Layers onto Ni 3 S 2 Nanoflakes with Modulated Electron Structure for Efficient Water Splitting. SMALL METHODS 2022; 6:e2200483. [PMID: 35869613 DOI: 10.1002/smtd.202200483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Synergistic electronic modulations is an effective strategy to develop efficient and stable electrocatalysts for the electrochemical hydrogen production via water splitting. Herein, tremella-like Ni3 S2 @RuO2 and Ni3 S2 @NiFeOOH heterostructures catalysts are constructed on Ni foams (NF) by coupling RuO2 and NiFeOOH on Ni3 S2 nanoflake arrays. The resulting Ni3 S2 @RuO2 /NF electrode exhibits top-level hydrogen evolution reaction electrocatalysis with an extremely low overpotential of 12 mV at 10 mA cm-2 and a Tafel slope of 30.7 mV dec-1 , as well as the as-obtained Ni3 S2 @NiFeOOH/NF electrode with tunable binding energy for OH* intermediates shows remarkable oxygen evolution reaction electrocatalysis with an overpotential of 227 mV at 10 mA cm-2 . The electrolyzer employing Ni3 S2 @RuO2 /NF electrode for cathodic H2 production and Ni3 S2 @NiFeOOH/NF for anodic O2 production merely needs a low voltage of 1.47 V to drive 10 mA cm-2 with excellent durability. The combined theoretical calculation and X-ray photoelectron spectroscopy investigation reveal that heterogeneous configuration can induce electron transfer from Ni3 S2 to RuO2 through NiRu/SRu bonds, and thus tailor the d-band center and optimize the activated H2 O/H* Gibbs free energies for enhanced hydrogen evolution reaction on Ni3 S2 @RuO2 . This study may shed new light on the construction of heterostructures as highest-performing electrocatalysts and offer unique insight into the theory mechanism.
Collapse
Affiliation(s)
- Hongmei Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Chu Chen
- Institute of Physical Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Changwu Lv
- Institute of Physical Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Jixi Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| |
Collapse
|
10
|
Wang C, Liu D, Zhang K, Xu H, Yu R, Wang X, Du Y. Defect and Interface Engineering of Three-Dimensional Open Nanonetcage Electrocatalysts for Advanced Electrocatalytic Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38669-38676. [PMID: 35993830 DOI: 10.1021/acsami.2c07792] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Defect engineering and interface engineering are two efficient approaches to promote the electrocatalytic performance of transition metal oxides (TMOs) by modulating the local electronic structure and inducing a synergistic effect but usually require costly and complicated processes. Herein, a facile electrochemical etching method is proposed for the controllable tailoring of the defects in a three-dimensional (3D) open nanonetcage CoZnRuOx heterostructure via the in situ electrochemical etching to remove partial ZnO. The highly open 3D nanostructures, numerous defects, and multicomponent heterointerfaces endow the CoZnRuOx nanonetcages with more accessible active sites, moderated local electronic structure, and strong synergistic effect, thereby enabling them to not only deliver an ultralow overpotential (244 mV @ 10 mA cm-2) for oxygen evolution reaction (OER) but also high-performance overall water electrolysis by coupling with commercial Pt/C, with a potential of 1.52 V at 10 mA cm-2. Moreover, experiments and characterizations also reveal that the remaining Zn2+ can facilitate OH- adsorption and charge transfer, which also further improves the electrocatalytic OER performance. This work proposes a promising strategy for creating surface defects in heterostructured TMOs and provides insights to understand the defect- and interface-induced enhancement of OER electrocatalysis.
Collapse
Affiliation(s)
- Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Dongmei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Kewang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Oil and Gas Storage & Transportation Technology, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Rui Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xiaomei Wang
- School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
11
|
Cui T, Zhai X, Guo L, Chi JQ, Zhang Y, Zhu J, Sun X, Wang L. Controllable synthesis of a self-assembled ultralow Ru, Ni-doped Fe2O3 lily as a bifunctional electrocatalyst for large-current-density alkaline seawater electrolysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64093-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Muthurasu A, Chhetri K, Dahal B, Kim HY. Ruthenium nanoparticles integrated bimetallic metal-organic framework electrocatalysts for multifunctional electrode materials and practical water electrolysis in seawater. NANOSCALE 2022; 14:6557-6569. [PMID: 35420613 DOI: 10.1039/d2nr00060a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is still a significant technical hurdle in the integration of better electrocatalysts with coordinated functional units and morphological integrity that improves reversible electrochemical activity, electrical conductivity, and mass transport capabilities. In this work, ruthenium-integrating porous bimetallic transition metal nanoarrays are efficiently generated from metal-organic framework-covered three-dimensional platforms such as carbon cloth using a simple solution-based deposition technique followed by calcination. Heterostructure ruthenium-cobalt-iron hollow nanoarrays are built to permit exceptionally effective multifunctional activities in reactions including the oxygen evolution reaction, hydrogen evolution reaction, and oxygen reduction reaction. As presumed, the as-synthesized porous nanostructured arrays show remarkable electrochemical performance due to the benefits of copious active reaction sites, and efficient electron and ion transport channels. The oxygen reduction reaction of the porous nanostructured array electrocatalyst has a half-wave potential of 0.875 V vs. reversible hydrogen electrode and can achieve a current density of 10 mA cm-2 at low overpotentials of 220 and 50 mV for the oxygen and hydrogen evolution reactions, respectively, and the needed cell voltage for total water splitting is just 1.49 V at a current density of 10 mA cm-2. The fabricated electrolyzer coupling splits seawater at relatively low cell voltages of 1.54 V at ambient temperature.
Collapse
Affiliation(s)
- Alagan Muthurasu
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Kisan Chhetri
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Bipeen Dahal
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Hak Yong Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
13
|
Wang L, Huang Z, Huang H, Zhong S, Huang M, Isimjan TT, Yang X. Electron-transfer enhanced sponge-like CrP-Re2P as a robust bifunctional electrocatalyst for high-current overall water splitting and Zn–H2O cell. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Hou X, Li J, Zheng J, Li L, Chu W. Introducing Oxygen Vacancies to NiFe LDH through Electrochemistry Reduction to Promote Oxygen Evolution Reaction. Dalton Trans 2022; 51:13970-13977. [DOI: 10.1039/d2dt00749e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transition metal hydroxide NiFe LDH is a promising oxygen evolution reaction (OER) catalyst. Surface engineering, such as the introduction of oxygen vacancies into NiFe LDH, has been reported to...
Collapse
|
15
|
Wang Y, Wang C, Shang H, Yuan M, Wu Z, Li J, Du Y. Self-driven Ru-modified NiFe MOF nanosheet as multifunctional electrocatalyst for boosting water and urea electrolysis. J Colloid Interface Sci 2021; 605:779-789. [PMID: 34371423 DOI: 10.1016/j.jcis.2021.07.124] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/23/2022]
Abstract
Urea electro-oxidation reaction (UOR) has been a promising strategy to replace oxygen evolution reaction (OER) by urea-mediated water splitting for hydrogen production. Naturally, rational design of high-efficiency and multifunctional electrocatalyst towards UOR and hydrogen evolution reaction (HER) is of vital significance, but still a grand challenge. Herein, an innovative 3D Ru-modified NiFe metal-organic framework (MOF) nanoflake array on Ni foam (Ru-NiFe-x/NF) was elaborately designed via spontaneous galvanic replacement reaction (GRR). Notably, the adsorption capability of intermediate species (H*) of catalyst is significantly optimized by Ru modification. Meanwhile, rich high-valence Ni active species can be acquired by self-driven electronic reconstruction in the interface, then dramatically accelerating the electrolysis of water and urea. Remarkably, the optimized Ru-NiFe-③/NF (1.6 at% of Ru) only requires the overpotential of 90 and 310 mV to attain 100 mA cm-2 toward HER and OER in alkaline electrolyte, respectively. Impressively, an ultralow voltage of 1.47 V is required for Ru-NiFe-③/NF to deliver a current density of 100 mA cm-2 in urea-assisted electrolysis cell with superior stability, which is 190 mV lower than that of Pt/C-NF||RuO2/NF couple. This work is desired to explore a facile way to exploit environmentally-friendly energy by coupling hydrogen evolution with urea-rich sewage disposal.
Collapse
Affiliation(s)
- Yuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hongyuan Shang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Mengyu Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|