1
|
Canimkurbey B, Isik F, Delikanli S, Bozkaya I, Unal E, Isik AT, Dikmen Z, Shabani F, Ozkan I, Piravadili S, Demir HV. Flexible Colloidal Light-Emitting Diodes of Self-Assembled Quantum Well Monolayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502314. [PMID: 40317681 DOI: 10.1002/smll.202502314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/07/2025] [Indexed: 05/07/2025]
Abstract
Quasi-2D semiconductor nanocrystals, also known as colloidal quantum wells (CQWs), with their high quantum yield in the visible range, ultra-narrow emission, and in-plane oriented transition dipole moments, provide potentially an excellent platform for flexible light-emitting diodes (f-LEDs). In this study, it is proposed and demonstrated colloidal f-LEDs of a single layer face-down oriented CdSe/CdZnS core/hot injection shell-grown CQWs employed as an emissive monolayer in a flexible platform for the first time. The obtained f-LEDs are shown to be immune to a large number of bending, enabled by the use of only a single emitter layer and their configuration all being face-down in the layer. These f-LEDs exhibit a maximum external quantum efficiency of 14.12%, an intense luminance of ≈33 700 cd m-2, a low turn-on voltage of <2 V, and a highly saturated red color. Here, orienting these CQWs only in face-down configuration is essential to efficient charge injection thanks to its extremely low roughness and increased outcoupling efficiency owing to in-plane oriented transition dipoles. Therefore, these f-LEDs of face-down CQW monolayers, with their excellent luminance properties and stable emission, stand out as exceptional candidates for future advanced flexible display and lighting applications as well as wearables.
Collapse
Affiliation(s)
- Betul Canimkurbey
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Department of Physics, Polatlı Faculty of Arts and Sciences, Ankara Hacı Bayram Veli University, Ankara, 06900, Turkey
| | - Furkan Isik
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Savas Delikanli
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Iklim Bozkaya
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Emre Unal
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ahmet Tarik Isik
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Zeynep Dikmen
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Faculty of Engineering, Department of Biomedical Engineering, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Farzan Shabani
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Ilayda Ozkan
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Selin Piravadili
- Material Technologies, The Scientific and Technological Research Council of Turkey (TUBITAK) - Marmara Research Center (MAM), Gebze/Kocaeli, 41470, Türkiye
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
2
|
Fan J, Kuo YC, Yin T, Guan P, Meng L, Chen F, Feng Z, Liu C, Wan T, Han Z, Hu L, Peng S, Wu T, Chu D. One-Step Synthesis of Graphene-Covered Silver Nanowires with Enhanced Stability for Heating and Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39600-39612. [PMID: 39041667 DOI: 10.1021/acsami.4c06483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Solution-processed silver nanowire (AgNW) networks have been considered as promising electrode candidates for next-generation electronic devices. However, they suffer from poor thermal and electrical stability and low mechanical properties, hindering their practical applications. In this work, graphene nanosheets are successfully introduced into AgNW via a facile one-step solvothermal process. Benefiting from increased conductive paths, the resultant AgNW/graphene films exhibit high electrical conductivity. More importantly, the interlocking NW morphology can be maintained under high temperature and applied voltage due to suppressed Ag migration, which is enabled by the introduction of graphene. This feature leads to enhanced thermal and electrical stability, making them suitable for use as transparent heaters. Furthermore, the composite films present excellent mechanical performance, and negligible resistance change is observed after 10 000 repeated bending cycles. To demonstrate their feasibility toward sensor applications, sandwiched strain sensors are designed, which can endure larger tensile strains and show higher sensitivity and repeatability compared with pure AgNW-based device. Furthermore, various hand gestures can be easily recognized by the resultant sensors based on unique combinations of sensing response. This work not only provides a low-cost method to realize large-scale synthesis of AgNW/graphene composites but also offers guidance to prepare high-performance electrodes for advanced electronics.
Collapse
Affiliation(s)
- Jiajun Fan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yu-Chieh Kuo
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Tao Yin
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Peiyuan Guan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Linghui Meng
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Fandi Chen
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ziheng Feng
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Chao Liu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhaojun Han
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, New South Wales 2070, Australia
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, UNSW, Sydney, New South Wales 2052, Australia
| | - Tom Wu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 310028, China
| | - Dewei Chu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
3
|
Ding Y, Xiong S, Sun L, Wang Y, Zhou Y, Li Y, Peng J, Fukuda K, Someya T, Liu R, Zhang X. Metal nanowire-based transparent electrode for flexible and stretchable optoelectronic devices. Chem Soc Rev 2024; 53:7784-7827. [PMID: 38953906 DOI: 10.1039/d4cs00080c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
High-quality transparent electrodes are indispensable components of flexible optoelectronic devices as they guarantee sufficient light transparency and electrical conductivity. Compared to commercial indium tin oxide, metal nanowires are considered ideal candidates as flexible transparent electrodes (FTEs) owing to their superior optoelectronic properties, excellent mechanical flexibility, solution treatability, and higher compatibility with semiconductors. However, certain key challenges associated with material preparation and device fabrication remain for the practical application of metal nanowire-based electrodes. In this review, we discuss state-of-the-art solution-processed metal nanowire-based FTEs and their applications in flexible and stretchable optoelectronic devices. Specifically, the important properties of FTEs and a cost-benefit analysis of existing technologies are introduced, followed by a summary of the synthesis strategy, key properties, and fabrication technologies of the nanowires. Subsequently, we explore the applications of metal-nanowire-based FTEs in different optoelectronic devices including solar cells, photodetectors, and light-emitting diodes. Finally, the current status, future challenges, and emerging strategies in this field are presented.
Collapse
Affiliation(s)
- Yu Ding
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
| | - Sixing Xiong
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yiying Wang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yaowen Li
- College of Chemistry, Soochow University, Suzhou 215123, P. R. China
| | - Jun Peng
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Kenjiro Fukuda
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Xiaohong Zhang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
4
|
Yuan S, Fan Z, Wang G, Chai Z, Wang T, Zhao D, Busnaina AA, Lu X. Fabrication of Flexible and Transparent Metal Mesh Electrodes Using Surface Energy-Directed Assembly Process for Touch Screen Panels and Heaters. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304990. [PMID: 37818769 DOI: 10.1002/advs.202304990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Indexed: 10/13/2023]
Abstract
Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh-based TCEs are either costly or having limited resolution and throughput. Here, a two-step surface energy-directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two-step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three-phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non-pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two-step SEDA process rather than a one-step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two-step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two-step SEDA process for the fabrication of TCEs for optoelectronic applications.
Collapse
Affiliation(s)
- Siqing Yuan
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zebin Fan
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Guangji Wang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhimin Chai
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Tongqing Wang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Dewen Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ahmed A Busnaina
- NSF Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing (CHN), Northeastern University, Boston, Massachusetts, 02115, USA
| | - Xinchun Lu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Qin F, Li T, Lu M, Sun S, Lu P, Li X, Feng N, Zhang Y, Gao Y, Wu Z, Hu J, Yan F, Bai X. Highly Efficient and Flexible Perovskite Nanocrystal Light-Emitting Diodes on Disposable Paper Substrates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47278-47285. [PMID: 37774397 DOI: 10.1021/acsami.3c10070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Perovskite nanocrystals have been widely applied in the field of light-emitting diodes (LEDs) due to their excellent optoelectronic properties. However, there is generally a serious degradation of device efficiency when transferring the device from rigid to flexible substrates due to the high roughness, poor wettability, and low endurance temperature of flexible substrates. Herein, a highly flexible perovskite light-emitting diode (PeLED) by utilizing label paper as substrates and poly(methyl methacrylate) (PMMA) as the modified layer was reported. Compared with the reference device based on commonly used polyethylene terephthalate (PET) substrates, the label paper/PMMA-based devices did not show the degraded device performance when transferring from rigid to flexible substrates. This is mainly because of low roughness and good wettability of PMMA-modified label paper, which significantly improve the film-forming ability of the bottom electrode and functional layer. Furthermore, the flexibility of both devices was explored by a three-point bending flexural test, indicating that the label paper-based device has better bending stability than the polyethylene terephthalate-based one due to the lower flexural modulus for label paper. As a result, the label paper-based flexible PeLEDs exhibited the highest external quantum efficiency (EQE) of 14.3% among perovskite nanocrystal-based flexible LEDs and preeminent flexibility with 29% luminance degradation after bending for 1000 cycles at a small radius of 1.5 mm. This extension of the substrate to paper will widen the opportunity of PeLEDs in extremely flexible and inexpensive applications.
Collapse
Affiliation(s)
- Feisong Qin
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Ting Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Siqi Sun
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Po Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xin Li
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Nannan Feng
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yanbo Gao
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Junhua Hu
- Key Laboratory of Materials Physics of Ministry of Education Department of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Fengping Yan
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Liu L, Yang H, Zhang Z, Wang Y, Piao J, Dai Y, Cai B, Shen W, Cao K, Chen S. Photopatternable and Highly Conductive PEDOT:PSS Electrodes for Flexible Perovskite Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21344-21353. [PMID: 37096872 DOI: 10.1021/acsami.3c03108] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Flexible perovskite light-emitting diodes (PeLEDs) constitute an emerging technology opening new opportunities in the fields of lighting and display for portable and wearable electronics. Poly(3,4-ethylenedioxythiophene):poly(stryrenesulfonate) (PEDOT:PSS) as one of the most promising flexible electrode materials has attracted extensive attention. However, the patterning and conductivity issues of PEDOT:PSS electrodes should be addressed primarily. Here, a photopolymerizable additive is proposed to endow the PEDOT:PSS electrodes with photopatternability. Moreover, this additive can also improve the conductivity of the PEDOT:PSS electrode from 0.16 to 627 S/cm because of the phase separation between PEDOT and PSS components and conformation transition of PEDOT chains. Eventually, highly conductive PEDOT:PSS electrodes with various patterns are applied in flexible PeLEDs, demonstrating a high luminance of 25972 cd/m2 and a current efficiency of 25.1 cd/A. This work provides a facile and effective method of patterning and improving the conductivity of PEDOT:PSS electrodes simultaneously, demonstrating the great potential of PEDOT:PSS electrodes in flexible perovskite optoelectronics.
Collapse
Affiliation(s)
- Lihui Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Hao Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Zhongjin Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yun Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Junxian Piao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yujun Dai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Bo Cai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Wei Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Kun Cao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Shufen Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
7
|
Hou S, Liu J, Shi F, Zhao GX, Tan JW, Wang G. Recent Advances in Silver Nanowires Electrodes for Flexible Organic/Perovskite Light-Emitting Diodes. Front Chem 2022; 10:864186. [PMID: 35360530 PMCID: PMC8960315 DOI: 10.3389/fchem.2022.864186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Flexible organic light-emitting diodes and perovskite light-emitting diodes (PeLEDs) have been investigated as an innovative category of revolutionary LED devices for next-generation flat display and lighting applications. A transparent conductive electrode is a key component in flexible OLEDs and PeLEDs, and has been the limitation of the development in this area. Silver nanowires (AgNWs) have been regarded as the most suitable alternative material in TCEs, due to the economical solution synthesis and compatibility with roll-to-roll technology. This mini-review addresses the advances in silver nanowires electrodes for flexible organic/perovskite light-emitting diodes, and the relationship between electrode optimization and device performance is demonstrated. Moreover, the potential strategies and perspectives for their further development of AgNWs-based flexible OLEDs and PeLEDs are presented.
Collapse
Affiliation(s)
- Shuping Hou
- School of Information Engineering, Tianjin University of Commerce, Tianjin, China
- *Correspondence: Shuping Hou, ; Gong Wang,
| | - Jie Liu
- School of Information Engineering, Tianjin University of Commerce, Tianjin, China
| | - Feipeng Shi
- School of Information Engineering, Tianjin University of Commerce, Tianjin, China
| | - Guo-Xu Zhao
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
| | - Jia-Wei Tan
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
| | - Gong Wang
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
- *Correspondence: Shuping Hou, ; Gong Wang,
| |
Collapse
|
8
|
Kang H, Kim JS, Choi SR, Kim YH, Kim DH, Kim JG, Lee TW, Cho JH. Electroplated core-shell nanowire network electrodes for highly efficient organic light-emitting diodes. NANO CONVERGENCE 2022; 9:1. [PMID: 34985608 PMCID: PMC8733141 DOI: 10.1186/s40580-021-00295-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
In this study, we performed metal (Ag, Ni, Cu, or Pd) electroplating of core-shell metallic Ag nanowire (AgNW) networks intended for use as the anode electrode in organic light-emitting diodes (OLEDs) to modify the work function (WF) and conductivity of the AgNW networks. This low-cost and facile electroplating method enabled the precise deposition of metal onto the AgNW surface and at the nanowire (NW) junctions. AgNWs coated onto a transparent glass substrate were immersed in four different metal electroplating baths: those containing AgNO3 for Ag electroplating, NiSO4 for Ni electroplating, Cu2P2O7 for Cu electroplating, and PdCl2 for Pd electroplating. The solvated metal ions (Ag+, Ni2+, Cu2+, and Pd2+) in the respective electroplating baths were reduced to the corresponding metals on the AgNW surface in the galvanostatic mode under a constant electric current achieved by linear sweep voltammetry via an external circuit between the AgNW networks (cathode) and a Pt mesh (anode). The amount of electroplated metal was systematically controlled by varying the electroplating time. Scanning electron microscopy images showed that the four different metals (shells) were successfully electroplated on the AgNWs (core), and the nanosize-controlled electroplating process produced metal NWs with varying diameters, conductivities, optical transmittances, and WFs. The metal-electroplated AgNWs were successfully employed as the anode electrodes of the OLEDs. This facile and low-cost method of metal electroplating of AgNWs to increase their WFs and conductivities is a promising development for the fabrication of next-generation OLEDs.
Collapse
Affiliation(s)
- Hyungseok Kang
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Joo Sung Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seok-Ryul Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Young-Hoon Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jung-Gu Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Nano Systems Institute (NSI), BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|