1
|
Yue L, Wan X, Türel T, Schenning APHJ, Tomović Ž, Debije MG. Responsive Industrial Polymers: A Marriage of Polyurethanes with Liquid Crystal Elastomers? ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40420536 DOI: 10.1021/acsami.5c09198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Responsive polymers have yet to significantly impact the marketplace. In this Perspective, we offer a glimpse of a possible future industrial-scale responsive polymer. We begin by briefly reviewing two different existing polymer materials, one with high volume, excellent processability, and commercial impact (polyurethanes), the other with stimuli responsive functional properties (liquid crystal elastomers). We explore the possibilities of combining the properties of these two disparate entities into a single material. We offer intriguing possibilities for a bulk polymer with both responsivity and processability that could compete in the market with the long-established residents and discuss some of the research roadblocks that need to be overcome to reach this lofty goal.
Collapse
Affiliation(s)
- Lansong Yue
- Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Xue Wan
- Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Tankut Türel
- Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Albert P H J Schenning
- Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Interactive Polymer Materials (IPM), Eindhoven University of Technology, Eindhoven 5612 AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Željko Tomović
- Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Interactive Polymer Materials (IPM), Eindhoven University of Technology, Eindhoven 5612 AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Michael G Debije
- Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Interactive Polymer Materials (IPM), Eindhoven University of Technology, Eindhoven 5612 AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
2
|
Leow LHT, Le HT, Goto A. Dual Temperature- and pH-Responsive Layered Hydrogels Synthesized via Halogen Bond-Based Solid Phase Radical Polymerization. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9960-9970. [PMID: 39900523 DOI: 10.1021/acsami.4c21919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Stimuli-responsive shape-changing layered hydrogels were, for the first time, prepared via solid-phase polymerization, where halogen bond-based solid-phase radical polymerization was utilized. Monomer cocrystals were assembled to form predetermined layered structures before polymerization, and all layers are polymerized at one time. AB bilayer and ABA and ABC trilayer hydrogel sheets that consisted of temperature- and pH-responsive layers were prepared. The obtained layered sheets were responsive to temperature and pH in dual manners at relatively wide ranges of temperature (5-65 °C) and pH (2.0-11.0). The bilayer sheets exhibited bending upon stimuli. The bending angle was tunable, and the bending direction (negative and positive directions) was also switchable in response to temperature and pH. The trilayer sheets exhibited switchable concave, trapezoid, and convex shape changes with modulated angles, which were unprecedented shape changes. Because of the ease of operation and wide monomer scope (using radical polymerization and halogen bonding), the present method offers a facile and versatile approach to fabricate stimuli-responsive shape-changing hydrogel materials.
Collapse
Affiliation(s)
- Lyly Hui Ting Leow
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Hong Tho Le
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Atsushi Goto
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
3
|
Mahadi N, Rahman A, Prasad C, Govinda V, Choi HY, Shin EJ. Synergistic effects of cellulose nanocrystal on the mechanical and shape memory properties of TPU composites. Int J Biol Macromol 2024; 278:134842. [PMID: 39159801 DOI: 10.1016/j.ijbiomac.2024.134842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Cellulose nanocrystal is a nanomaterial that has a large specific surface area, high surface energy, and high strength. As well, it is biocompatible, environmentally friendly, nontoxic, and can be extracted from biomass resources. Because of these features, cellulose nanocrystals can be used to improve the mechanical properties of polymer matrices with a shape memory effect and as a shape memory switch. In this study, a polytrimethylene ether glycol-based thermoplastic polyurethane (TPU)/cellulose nanocrystal (CNC) composite was prepared via an in-situ polymerization process to create a self-healing polymer matrix. Also, the effect of CNC doses in low concentrations (≤2 wt%) on the different properties of the resulting bio-nanocomposite was investigated. The results showed that the introduction of CNCs affects the hydrogen bonding within the polymer matrix and provides better thermal stability in the high temperature range than pure TPU. Furthermore, the samples with 0 wt%, 0.75 wt%, 1 wt%, and 2 wt% of CNC exhibited an increasing trend in tensile strength with values of 11.71 MPa, 18.95 MPa, 17.88 MPa, and 26.18 MPa, respectively, which indicates a remarkable improvement in mechanical strength. The shape memory behavior was also notably prominent in this polymer composite, where the composite containing 2 wt% of CNC showed the fastest recovery time (240 s) at 75 °C with the highest shape retention. Moreover, their flow behavior and deformation capacity were examined through rheology tests. Besides, docking simulations were conducted in silico to assess the interaction of the TPU/CNC composite with the DNA gyrase enzyme. The interaction between CNC/TPU composite and DNA gyrase was meticulously analyzed across 10 distinct conformations, yielding docking scores ranging from -6.5 Kcal/mol to -5.3 Kcal/mol. Overall, the physico-mechanical properties of the TPU/CNC composites were substantially enhanced with the incorporation of nanofillers.
Collapse
Affiliation(s)
- Naiem Mahadi
- Department of Fashion and Textile, Dong-A University, 550-37 Nakdong-daero, Saha-gu, Busan 49315, Republic of Korea
| | - Ashikur Rahman
- Department of Fashion and Textile, Dong-A University, 550-37 Nakdong-daero, Saha-gu, Busan 49315, Republic of Korea
| | - Cheera Prasad
- Department of Chemical Engineering, Dong-A University, 550-37 Nakdong-daero, Saha-gu, Busan 49315, Republic of Korea
| | - V Govinda
- Department of Chemistry, Gayatri Vidya Parishad College for Degree and PG Courses, Rushikonda Campus, Visakhapatnam -530045, India
| | - Hyeong Yeol Choi
- Department of Fashion and Textile, Dong-A University, 550-37 Nakdong-daero, Saha-gu, Busan 49315, Republic of Korea.
| | - Eun Joo Shin
- Department of Chemical Engineering, Dong-A University, 550-37 Nakdong-daero, Saha-gu, Busan 49315, Republic of Korea.
| |
Collapse
|
4
|
Cecen B, Hassan S, Li X, Zhang YS. Smart Biomaterials in Biomedical Applications: Current Advances and Possible Future Directions. Macromol Biosci 2024; 24:e2200550. [PMID: 37728061 DOI: 10.1002/mabi.202200550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 09/02/2023] [Indexed: 09/21/2023]
Abstract
Smart biomaterials with the capacity to alter their properties in response to an outside stimulus or from within the environment around them have picked up significant attention in the biomedical community. This is primarily due to the interest in their biomedical applications that may be anticipated from them in a considerable number of dynamic structures and devices. Shape-memory materials are some of these materials that have been exclusively used for these applications. They exhibit unique structural reconfiguration features they adapt as per the provided environmental conditions and can be designed for their enhanced biocompatibility. Numerous research initiatives have focused on these smart biocompatible materials over the last few decades to enhance their biomedical applications. Shape-memory materials play a significant role in this regard to meet new surgical and medical devices' requirements for special features and utility cases. Because of the favorable design variety, different biomedical shape-memory materials can be developed by modifying their chemical and physical behaviors to accommodate the desired requirements. In this review, recent advances and characteristics of smart biomaterials for biomedical applications are described. The authors also discuss about their clinical translations in tissue engineering, drug delivery, and medical devices.
Collapse
Affiliation(s)
- Berivan Cecen
- Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey, 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, 08028, USA
| | - Shabir Hassan
- Department of Biology, Khalifa University, Main Campus, Abu Dhabi, 127788, UAE
- Advanced Materials Chemistry Center (AMCC), Khalifa University, SAN Campus, Abu Dhabi, 127788, UAE
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xin Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
5
|
Chiang KT, Lin SH, Ye YZ, Zeng BH, Cheng YL, Lee RH, Lin KYA, Yang H. Leafhopper-inspired reversibly switchable antireflection coating with sugar apple-like structure arrays. J Colloid Interface Sci 2023; 650:81-93. [PMID: 37393770 DOI: 10.1016/j.jcis.2023.06.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Optical coatings with reversibly tunable antireflective characteristics hold a tremendous potential for next generation optical energy-related applications. Bioinpsired by the camouflage behavior of small yellow leafhoppers, silica hollow sphere/shape memory polymer composites are self-assembled using a non-lithography-based approach. The average visible transmittance of the as-patterned hierarchical structure array-covered substrate is increased by ca. 6.3% at normal incident, and even improved by more than 20% for an incident angle of 75°. Interestingly, the broadband omnidirectional antireflection performance can be reversibly erased and recovered by applying external stimuli under ambient conditions. To gain a better understanding, its reversibility, mechanical robustness, and the structure-shape effect on the antireflective properties are systematically investigated in this research.
Collapse
Affiliation(s)
- Kuan-Ting Chiang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Shin-Hua Lin
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Yu-Zhe Ye
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Bo-Han Zeng
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Ya-Lien Cheng
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Rong-Ho Lee
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan.
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan.
| |
Collapse
|
6
|
Razzaq MY, Balk M, Mazurek-Budzyńska M, Schadewald A. From Nature to Technology: Exploring Bioinspired Polymer Actuators via Electrospinning. Polymers (Basel) 2023; 15:4029. [PMID: 37836078 PMCID: PMC10574948 DOI: 10.3390/polym15194029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Nature has always been a source of inspiration for the development of novel materials and devices. In particular, polymer actuators that mimic the movements and functions of natural organisms have been of great interest due to their potential applications in various fields, such as biomedical engineering, soft robotics, and energy harvesting. During recent years, the development and actuation performance of electrospun fibrous meshes with the advantages of high permeability, surface area, and easy functional modification, has received extensive attention from researchers. This review covers the recent progress in the state-of-the-art electrospun actuators based on commonly used polymers such as stimuli-sensitive hydrogels, shape-memory polymers (SMPs), and electroactive polymers. The design strategies inspired by nature such as hierarchical systems, layered structures, and responsive interfaces to enhance the performance and functionality of these actuators, including the role of biomimicry to create devices that mimic the behavior of natural organisms, are discussed. Finally, the challenges and future directions in the field, with a focus on the development of more efficient and versatile electrospun polymer actuators which can be used in a wide range of applications, are addressed. The insights gained from this review can contribute to the development of advanced and multifunctional actuators with improved performance and expanded application possibilities.
Collapse
Affiliation(s)
- Muhammad Yasar Razzaq
- Institut für Kunststofftechnologie und Recycling e. V., Gewerbepark 3, D-6369 Südliches Anhalt, Germany
| | - Maria Balk
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, D-14513 Teltow, Germany
| | | | - Anke Schadewald
- Institut für Kunststofftechnologie und Recycling e. V., Gewerbepark 3, D-6369 Südliches Anhalt, Germany
| |
Collapse
|
7
|
Jung S, Kim J, Bang J, Jung M, Park S, Yun H, Kwak HW. pH-sensitive cellulose/chitin nanofibrillar hydrogel for dye pollutant removal. Carbohydr Polym 2023; 317:121090. [PMID: 37364959 DOI: 10.1016/j.carbpol.2023.121090] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
In this study, a pH-sensitive smart hydrogel was successfully prepared by combining a polyelectrolyte complex using biopolymeric nanofibrils. By adding a green citric acid cross-linking agent to the formed chitin and cellulose-derived nanofibrillar polyelectrolytic complex, a hydrogel with excellent structural stability could be prepared even in a water environment, and all processes were conducted in an aqueous system. The prepared biopolymeric nanofibrillar hydrogel not only enables rapid conversion of swelling degree and surface charge according to pH but can also effectively remove ionic contaminants. The ionic dye removal capacity was 372.0 mg/g for anionic AO and 140.5 mg/g for cationic MB. The surface charge conversion ability according to pH could be easily applied to the desorption of the removed contaminants, and as a result, it showed an excellent contaminant removal efficiency of 95.1 % or more even in the repeated reuse process 5 times. Overall, the eco-friendly biopolymeric nanofibrillar pH-sensitive hydrogel shows potential for complex wastewater treatment and long-term use.
Collapse
Affiliation(s)
- Seungoh Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jungkyu Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junsik Bang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minjung Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sangwoo Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Heecheol Yun
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Ahmad A, Liu G, Cao S, Liu X, Luo J, Han L, Tong H, Xu J. Significantly Improved Dielectric Performance of All-Organic Parylene/Polyimide/Parylene Composite Films with Sandwich Structure. Macromol Rapid Commun 2023; 44:e2200568. [PMID: 36125043 DOI: 10.1002/marc.202200568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/11/2022] [Indexed: 01/26/2023]
Abstract
The development of novel polymer dielectrics with enhanced dielectric performance is a great challenge for application of film capacitors in modern electronics and electrical systems. Herein, an innovative approach of chemical vapor deposition polymerization technology is proposed to prepare the all-organic sandwich structured parylene/polyimide/parylene (Py/PI/Py) composite films by employing poly(chloro-para-xylylene) (parylene C) as the outer layers and polyimide (PI) as the inner layer. The Py/PI/Py composites exhibit superior thermal resistance and outstanding mechanical properties. Moreover, thanks to the interfacial effect which contributes to reinforcing the dielectric response and the thickness effect which facilitates improving the breakdown strength, the dielectric performance of Py/PI/Py composites has been enhanced significantly. Accordingly, dielectric constant of 4.52-5.09, dissipation factor of 0.21-1.01%, and breakdown strength of 307-460 MV m-1 are achieved. Besides, notable energy storage performance is also obtained in Py/PI/Py composite dielectrics. Consequently, this novel application of chemical vapor deposition polymerization method in preparing all-organic multilayered polymer composite films with sandwich structure shows promising potential in film capacitor applications in harsh conditions.
Collapse
Affiliation(s)
- Aftab Ahmad
- Institute of Electrical Engineering, Chinese Academy of Science, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghui Liu
- School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, 450046, China
| | - Shimo Cao
- Institute of Electrical Engineering, Chinese Academy of Science, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuepeng Liu
- Institute of Electrical Engineering, Chinese Academy of Science, Beijing, 100190, China
| | - Jinpeng Luo
- Institute of Electrical Engineering, Chinese Academy of Science, Beijing, 100190, China
| | - Li Han
- Institute of Electrical Engineering, Chinese Academy of Science, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Tong
- Institute of Electrical Engineering, Chinese Academy of Science, Beijing, 100190, China
| | - Ju Xu
- Institute of Electrical Engineering, Chinese Academy of Science, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Application of 4D printing and AI to cardiovascular devices. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Doolan JA, Williams GT, Hilton KLF, Chaudhari R, Fossey JS, Goult BT, Hiscock JR. Advancements in antimicrobial nanoscale materials and self-assembling systems. Chem Soc Rev 2022; 51:8696-8755. [PMID: 36190355 PMCID: PMC9575517 DOI: 10.1039/d1cs00915j] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Antimicrobial resistance is directly responsible for more deaths per year than either HIV/AIDS or malaria and is predicted to incur a cumulative societal financial burden of at least $100 trillion between 2014 and 2050. Already heralded as one of the greatest threats to human health, the onset of the coronavirus pandemic has accelerated the prevalence of antimicrobial resistant bacterial infections due to factors including increased global antibiotic/antimicrobial use. Thus an urgent need for novel therapeutics to combat what some have termed the 'silent pandemic' is evident. This review acts as a repository of research and an overview of the novel therapeutic strategies being developed to overcome antimicrobial resistance, with a focus on self-assembling systems and nanoscale materials. The fundamental mechanisms of action, as well as the key advantages and disadvantages of each system are discussed, and attention is drawn to key examples within each field. As a result, this review provides a guide to the further design and development of antimicrobial systems, and outlines the interdisciplinary techniques required to translate this fundamental research towards the clinic.
Collapse
Affiliation(s)
- Jack A Doolan
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - George T Williams
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Kira L F Hilton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - Rajas Chaudhari
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Jennifer R Hiscock
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| |
Collapse
|
11
|
Cho E, Song S, Kim M, Park J, Park S, Lee S. Investigation of thermal property of plasma‐polymerized fluorocarbon thin films. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Eunmi Cho
- Chemical Materials Solutions Center Korea Research Institute of Chemical Technology (KRICT) Daejeon Republic of Korea
- Department of Materials Science and Engineering Hanyang University Seoul Republic of Korea
| | - Sehwan Song
- Department of Physics Pusan National University Busan Republic of Korea
| | - Mac Kim
- Chemical Materials Solutions Center Korea Research Institute of Chemical Technology (KRICT) Daejeon Republic of Korea
| | - Jin‐Seong Park
- Department of Materials Science and Engineering Hanyang University Seoul Republic of Korea
| | - Sungkyun Park
- Department of Physics Pusan National University Busan Republic of Korea
| | - Sang‐Jin Lee
- Chemical Materials Solutions Center Korea Research Institute of Chemical Technology (KRICT) Daejeon Republic of Korea
| |
Collapse
|
12
|
Tang XY, Liu Z, Xie R, Ju XJ, Wang W, Chu LY. Humidity-Responsive Actuators Based on Firm Heterojunction of Glycerol-Cross-linked Polyvinyl Alcohol and Porous Polyvinylidene Fluoride as Smart Gates for Anti-condensation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin-Yu Tang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
13
|
Sun DX, Gu T, Mao YT, Huang CH, Qi XD, Yang JH, Wang Y. Fabricating High-Thermal-Conductivity, High-Strength, and High-Toughness Polylactic Acid-Based Blend Composites via Constructing Multioriented Microstructures. Biomacromolecules 2022; 23:1789-1802. [PMID: 35344361 DOI: 10.1021/acs.biomac.2c00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The massive accumulation of plastic waste has caused a serious negative impact on the human living environment. Replacing traditional petroleum-based polymers with biobased and biodegradable poly(l-lactic acid) (PLLA) is considered an effective way to solve this problem. However, it is still a great challenge to manufacture PLLA-based composites with high thermal conductivity and excellent mechanical properties via tailoring the microstructures of the blend composites. In the present work, a melt extrusion-stretching method is utilized to fabricate biodegradable PLLA/poly(butylene adipate-co-butylene terephthalate)/carbon nanofiber (PLLA/PBAT/CNF) blend composites. It is found that the incorporation of the extensional flow field induces the formation of multioriented microstructures in the composites, including the oriented PLLA molecular chains, elongated PBAT dispersed phase, and oriented CNFs, which synergistically improve the thermal conductivity and mechanical properties of the blend composites. At a CNF content of 10 wt %, the in-plane thermal conductivity, tensile strength, and elongation at break of the blend composite reach 1.53 Wm-1 K-1, 66.8 MPa, and 56.5%, respectively, which increased by 31.9, 73.5, and 874.1% compared with those of the conventionally hot-compressed sample (1.16 Wm-1 K-1, 38.5 MPa, and 5.8%, respectively). The main mechanism for the improved thermal conductivity is that the multioriented structure promotes the formation of a CNF thermal conductive network in the composites. The strengthening mechanism is attributed to the orientation of both PLLA molecular chains and CNFs in the stretching direction, restricting the movement of PLLA molecular segments around CNFs, and the toughening mechanism is due to the transformation of PLLA molecular chains from low-energy gt conformers to high-energy gg conformers induced by extensional flow field. More interestingly, after the extrusion-stretched samples are annealed, the oriented PLLA molecular chains form oriented crystal structures such as extended-chain lamellae, common "Shish-kebabs," and hybrid Shish-kebabs, which further enhance the thermal conductivity and heat resistance of the samples. This work reveals the effects of the orientation of the matrix molecular chains and crystallites on the thermal conductivity and mechanical properties of composites and provides a new way to prepare high-performance PLLA-based composites with high thermal conductivity, excellent mechanical properties, and high heat resistance.
Collapse
Affiliation(s)
- De-Xiang Sun
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Gu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu-Tong Mao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chen-Hui Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiao-Dong Qi
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jing-Hui Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
14
|
Du Z, Zhang T, Gai H, Sheng L, Guan Y, Wang X, Qin T, Li M, Wang S, Zhang Y, Nie H, Zhang SX. Multi-Component Collaborative Step-by-Step Coloring Strategy to Achieve High-Performance Light-Responsive Color-Switching. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103309. [PMID: 34802199 PMCID: PMC8805571 DOI: 10.1002/advs.202103309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/21/2021] [Indexed: 05/27/2023]
Abstract
Light-responsive color-switching materials (LCMs) are long-lasting hot fields. However, non-ideal comprehensive performance (such as color contrast and retention time cannot be combined, unsatisfactory repeatability, and non-automated coloring mode) significantly hinder their development toward high-end products. Herein, the development of LCMs that exhibit long retention time, good color contrast, repeatability, and the property of automatic coloring is reported. The realization of this goal stems from the adoption of a bio-inspired multi-component collaborative step-by-step coloring strategy. Under this strategy, a conventional one-step photochromic process is divided into a "light+heat" controlled multi-step process for the fabrication of the desired LCMs. The obtained LCMs can effectively resist the long-troubled ambient-light interference and avoid its inherent yellow background, thereby achieving the longest retention time and good repeatability. Multiple colors are generated and ultra-fast imaging compatible with the laser-printing technology is also realized. The application potential of the materials in short-term reusable identity cards, absorptive readers, billboards, and shelf labels is demonstrated. The results reported herein can potentially help in developing and designing various high-performance, switchable materials that can be used for the production of high-end products.
Collapse
Affiliation(s)
- Zhen Du
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Ting Zhang
- School of Materials Science and EngineeringDongguan University of TechnologyGuangdong523710China
| | - Hanqi Gai
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Lan Sheng
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Yu Guan
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Xiaojun Wang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Tianyou Qin
- College of Basic MedicineJilin UniversityChangchun130012China
| | - Minjie Li
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Shuo Wang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Yu‐Mo Zhang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Hui Nie
- College of ChemistryHuazhong University of Science and TechnologyWuhan430074China
| | - Sean Xiao‐An Zhang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| |
Collapse
|
15
|
|
16
|
|
17
|
Pan X, Debije MG, Schenning APHJ, Bastiaansen CWM. Enhanced Thermal Conductivity in Oriented Polyvinyl Alcohol/Graphene Oxide Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28864-28869. [PMID: 34102056 PMCID: PMC8289248 DOI: 10.1021/acsami.1c06415] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Polymer composites have attracted increasing interest as thermal management materials for use in devices owing to their ease of processing and potential lower costs. However, most polymer composites have only modest thermal conductivities, even at high concentrations of additives, resulting in high costs and reduced mechanical properties, which limit their applications. To achieve high thermally conductive polymer materials with a low concentration of additives, anisotropic, solid-state drawn composite films were prepared using water-soluble polyvinyl alcohol (PVA) and dispersible graphene oxide (GO). A co-additive (sodium dodecyl benzenesulfonate) was used to improve both the dispersion of GO and consequently the thermal conductivity. The hydrogen bonding between GO and PVA and the simultaneous alignment of GO and PVA in drawn composite films contribute to an improved thermal conductivity (∼25 W m-1 K-1), which is higher than most reported polymer composites and an approximately 50-fold enhancement over isotropic PVA (0.3-0.5 W m-1 K-1). This work provides a new method for preparing water-processable, drawn polymer composite films with high thermal conductivity, which may be useful for thermal management applications.
Collapse
Affiliation(s)
- Xinglong Pan
- Laboratory
of Stimuli-responsive Functional Materials & Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, Den Dolech 2, 5612
AZ Eindhoven, The Netherlands
| | - Michael G. Debije
- Laboratory
of Stimuli-responsive Functional Materials & Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, Den Dolech 2, 5612
AZ Eindhoven, The Netherlands
| | - Albert P. H. J. Schenning
- Laboratory
of Stimuli-responsive Functional Materials & Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, Den Dolech 2, 5612
AZ Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Cees W. M. Bastiaansen
- Laboratory
of Stimuli-responsive Functional Materials & Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, Den Dolech 2, 5612
AZ Eindhoven, The Netherlands
- School
of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS, United Kingdom
| |
Collapse
|
18
|
Namdari N, Rasel S, Abdul Halim BN, Hossain Bhuiyan ME, Sojoudi H, Rizvi R. Universal Strain Energy-Mediated Dynamic Porosity in Physically Networked Elastomers and Their Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22987-22999. [PMID: 33973776 DOI: 10.1021/acsami.1c04367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mechanical and physical properties of porous polymers are highly dependent on the arrangement of their internal pores, which once synthesized are widely considered static. However, here we introduce an unconventional dynamic porosity strategy in physically networked elastomer polymers, irrespective of their chemistry. This strategy allows for an omnidirectional and reversible reconfiguration of porosity in response to applied mechanical deformations, even at ambient conditions. In particular, the normal contact pressure between human fingers (just 0.62 MPa) applied on thin elastomer films results in a permanent reversion of the pores to a denser and more solid state. The porous-to-solid transition leads to a 3 order of magnitude reduction in pore density and up to a 22% relative volumetric shrinkage of the films, resulting in an opaque-to-transparent transition (OTT) that acts as a visual indication of porosity state (porous vs nonporous). It is shown that the pore reversion pressure onset is dependent on the average pore-to-pore distance that is controllable through process-specific parameters. Furthermore, the porosity transition is reversible for multiple cycles when the through-plane compression activation is coupled with an in-plane stretch (ε = 700%). A strain energy-mediated thermodynamic model is successfully implemented to confirm the effects of mechanical deformations on pore reversion and generation. Finally, applications of the newfound dynamic porosity concept are exploited for pressure indication, on-demand modulation of materials' mechanical and thermal characteristics, and flexible photomasks.
Collapse
Affiliation(s)
- Navid Namdari
- Department of Mechanical Industrial and Manufacturing Engineering, University of Toledo, 2801 W. Bancroft St, MS312, Toledo, Ohio 43606, United States
| | - Sheikh Rasel
- Department of Mechanical Industrial and Manufacturing Engineering, University of Toledo, 2801 W. Bancroft St, MS312, Toledo, Ohio 43606, United States
| | - Bilal Nizar Abdul Halim
- Department of Mechanical Industrial and Manufacturing Engineering, University of Toledo, 2801 W. Bancroft St, MS312, Toledo, Ohio 43606, United States
| | - Md Emran Hossain Bhuiyan
- Department of Mechanical Industrial and Manufacturing Engineering, University of Toledo, 2801 W. Bancroft St, MS312, Toledo, Ohio 43606, United States
| | - Hossein Sojoudi
- Department of Mechanical Industrial and Manufacturing Engineering, University of Toledo, 2801 W. Bancroft St, MS312, Toledo, Ohio 43606, United States
| | - Reza Rizvi
- Department of Mechanical Industrial and Manufacturing Engineering, University of Toledo, 2801 W. Bancroft St, MS312, Toledo, Ohio 43606, United States
- Department of Mechanical Engineering, York University, 4700 Keele St BRG 437, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
19
|
Pan X, Verpaalen RCP, Zhang H, Debije MG, Engels TAP, Bastiaansen CWM, Schenning APHJ. NIR-vis-UV Light-Responsive High Stress-Generating Polymer Actuators with a Reduced Creep Rate. Macromol Rapid Commun 2021; 42:e2100157. [PMID: 33938066 DOI: 10.1002/marc.202100157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Untethered, light-responsive, high-stress-generating actuators based on widely-used commercial polymers are appealing for applications in soft robotics. However, the construction of actuators that are stable and reversibly responsive to low-intensity ultraviolet, visible, and infrared lights remains challenging. Here, transparent, stress-generating actuators are reported based on ultradrawn, ultrahigh molecular weight polyethylene films. The composite films have different draw ratios (30, 70, and 100) and contain a small amount of graphene in combination with ultraviolet and near-infrared-absorbing dyes. The composite actuators respond rapidly (t0.9 < 0.8 s) to different wavelengths of light (i.e., 780, 455, and 365 nm). A maximum photoinduced stress of 35 MPa is achieved at a draw ratio of 70 under near-infrared light irradiation. The photoinduced stress increases linearly with the light intensity, indicating the transfer of light into thermally induced mechanical contraction. Moreover, the addition of additives lead to a reduction in the plastic creep rate of the drawn films compared to their nonmodified counterparts.
Collapse
Affiliation(s)
- Xinglong Pan
- Laboratory of Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Rob C P Verpaalen
- Laboratory of Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Huiyi Zhang
- Supramolecular Polymer Chemistry Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Michael G Debije
- Laboratory of Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Tom A P Engels
- DSM Material Science Center, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands.,Department of Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Cees W M Bastiaansen
- Laboratory of Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands.,School of Engineering and Materials Science, Queen Mary, University of London, London, E1 4NS, UK
| | - Albert P H J Schenning
- Laboratory of Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| |
Collapse
|
20
|
Chen Y, Yang J, Zhang X, Feng Y, Zeng H, Wang L, Feng W. Light-driven bimorph soft actuators: design, fabrication, and properties. MATERIALS HORIZONS 2021; 8:728-757. [PMID: 34821314 DOI: 10.1039/d0mh01406k] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Soft robots that can move like living organisms and adapt to their surroundings are currently in the limelight from fundamental studies to technological applications, due to their advances in material flexibility, human-friendly interaction, and biological adaptation that surpass conventional rigid machines. Light-fueled smart actuators based on responsive soft materials are considered to be one of the most promising candidates to promote the field of untethered soft robotics, thereby attracting considerable attention amongst materials scientists and microroboticists to investigate photomechanics, photoswitch, bioinspired design, and actuation realization. In this review, we discuss the recent state-of-the-art advances in light-driven bimorph soft actuators, with the focus on bilayer strategy, i.e., integration between photoactive and passive layers within a single material system. Bilayer structures can endow soft actuators with unprecedented features such as ultrasensitivity, programmability, superior compatibility, robustness, and sophistication in controllability. We begin with an explanation about the working principle of bimorph soft actuators and introduction of a synthesis pathway toward light-responsive materials for soft robotics. Then, photothermal and photochemical bimorph soft actuators are sequentially introduced, with an emphasis on the design strategy, actuation performance, underlying mechanism, and emerging applications. Finally, this review is concluded with a perspective on the existing challenges and future opportunities in this nascent research Frontier.
Collapse
Affiliation(s)
- Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | | | | | | | | | | | | |
Collapse
|