1
|
Wang X, Stefanello ST, Shahin V, Qian Y. From Mechanoelectric Conversion to Tissue Regeneration: Translational Progress in Piezoelectric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417564. [PMID: 40434211 DOI: 10.1002/adma.202417564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 05/03/2025] [Indexed: 05/29/2025]
Abstract
Piezoelectric materials, capable of converting mechanical stimuli into electrical signals, have emerged as promising tools in regenerative medicine due to their potential to stimulate tissue repair. Despite a surge in research on piezoelectric biomaterials, systematic insights to direct their translational optimization remain limited. This review addresses the current landscape by bridging fundamental principles with clinical potential. The biomimetic basis of piezoelectricity, key molecular pathways involved in the synergy between mechanical and electrical stimulation for enhanced tissue regeneration, and critical considerations for material optimization, structural design, and biosafety is discussed. More importantly, the current status and translational quagmire of mechanisms and applications in recent years are explored. A mechanism-driven strategy is proposed for the therapeutic application of piezoelectric biomaterials for tissue repair and identify future directions for accelerated clinical applications.
Collapse
Affiliation(s)
- Xinyu Wang
- National Center for Orthopaedics, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Sílvio Terra Stefanello
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Yun Qian
- National Center for Orthopaedics, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| |
Collapse
|
2
|
Chen K, Wang F, Sun X, Ge W, Zhang M, Wang L, Zheng H, Zheng S, Tang H, Zhou Z, Wu G. 3D-printed zinc oxide nanoparticles modified barium titanate/hydroxyapatite ultrasound-responsive piezoelectric ceramic composite scaffold for treating infected bone defects. Bioact Mater 2025; 45:479-495. [PMID: 39717367 PMCID: PMC11664295 DOI: 10.1016/j.bioactmat.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Accepted: 11/10/2024] [Indexed: 12/25/2024] Open
Abstract
Clinically, infectious bone defects represent a significant threat, leading to osteonecrosis, severely compromising patient prognosis, and prolonging hospital stays. Thus, there is an urgent need to develop a bone graft substitute that combines broad-spectrum antibacterial efficacy and bone-inductive properties, providing an effective treatment option for infectious bone defects. In this study, the precision of digital light processing (DLP) 3D printing technology was utilized to construct a scaffold, incorporating zinc oxide nanoparticles (ZnO-NPs) modified barium titanate (BT) with hydroxyapatite (HA), resulting in a piezoelectric ceramic scaffold designed for the repair of infected bone defects. The results indicated that the addition of ZnO-NPs significantly improved the piezoelectric properties of BT, facilitating a higher HA content within the ceramic scaffold system, which is essential for bone regeneration. In vitro antibacterial assessments highlighted the scaffold's potent antibacterial capabilities. Moreover, combining the synergistic effects of low-intensity pulsed ultrasound (LIPUS) and piezoelectricity, results demonstrated that the scaffold promoted notable osteogenic and angiogenic potential, enhancing bone growth and repair. Furthermore, transcriptomics analysis results suggested that the early growth response-1 (EGR1) gene might be crucial in this process. This study introduces a novel method for constructing piezoelectric ceramic scaffolds exhibiting outstanding osteogenic, angiogenic, and antibacterial properties under the combined influence of LIPUS, offering a promising treatment strategy for infectious bone defects.
Collapse
Affiliation(s)
- Kai Chen
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xiumei Sun
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Wenwei Ge
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130021, China
| | - Mingjun Zhang
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Haoyu Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Shikang Zheng
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Haoyu Tang
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130021, China
| | - Zhengjie Zhou
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Guomin Wu
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| |
Collapse
|
3
|
Sun Q, Li CH, Liu QS, Zhang YB, Hu BS, Feng Q, Lang Y. Research status of biomaterials based on physical signals for bone injury repair. Regen Ther 2025; 28:544-557. [PMID: 40027992 PMCID: PMC11872413 DOI: 10.1016/j.reth.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/02/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Bone defects repair continues to be a significant challenge facing the world. Biological scaffolds, bioactive molecules, and cells are the three major elements of bone tissue engineering, which have been widely used in bone regeneration therapy, especially with the rise of bioactive molecules in recent years. According to their physical properties, they can be divided into force, magnetic field (MF), electric field (EF), ultrasonic wave, light, heat, etc. However, the transmission of bioactive molecules has obvious shortcomings that hinder the development of the tissue-rearing process. This paper reviews the mechanism of physical signal induction in bone tissue engineering in recent years. It summarizes the application strategies of physical signal in bone tissue engineering, including biomaterial designs, physical signal loading strategies and related pathways. Finally, the ongoing challenges and prospects for the future are discussed.
Collapse
Affiliation(s)
- Qi Sun
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| | - Chao-Hua Li
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| | - Qi-Shun Liu
- Department of Orthopedics, Zhejiang Medical & Health Group Hangzhou Hospital, Hangzhou, 310015, China
| | - Yuan-Bin Zhang
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| | - Bai-Song Hu
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| | - Qi Feng
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| | - Yong Lang
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| |
Collapse
|
4
|
Chen Z, Sang L, Liu Y, Bai Z. Sono-Piezo Dynamic Therapy: Utilizing Piezoelectric Materials as Sonosensitizer for Sonodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417439. [PMID: 39921482 PMCID: PMC11948011 DOI: 10.1002/advs.202417439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Indexed: 02/10/2025]
Abstract
Sonodynamic therapy (SDT) represents a promising approach for cancer treatment. Compared to photodynamic therapy, SDT offers increased penetration depth and higher precision. However, the practical application of SDT is constrained by the low water solubility, poor tumor specificity, and metabolic susceptibility of most sonosensitizers. Recent research has explored the use of piezoelectric materials as sonosensitizers in cancer treatment and inhibition of bacterial growth. Upon ultrasound excitation, the separation of electron-hole (e--h+) pairs occurs within the piezoelectric material. By improving the crystal structure of the material or incorporating other nanoparticles to prevent rapid recombination of e--h+ pairs, the piezoelectric material accumulates charges in the conduction band and valence band, achieving the redox potential of O2/·O2 -. This enables the piezoelectric material to serve as a sonosensitizer, leading to the concept termed Sono-Piezo Dynamic Therapy (SPDT). This review aims to define the concept of SPDT, provide a systematic overview of the historical development of piezoelectric materials in the application of SDT, and elucidate the potential mechanisms by which piezoelectric materials act as sonosensitizers. Importantly, various piezoelectric materials will be discussed in terms of their feasibility, advantages, and disadvantages as sonosensitizers, offering new perspectives for identifying potential sonosensitizers.
Collapse
Affiliation(s)
- Zhiguang Chen
- Department of UltrasoundThe First Hospital of China Medical UniversityNo. 155, Nanjing North Street, Heping DistrictShenyangLiaoning110001China
| | - Liang Sang
- Department of UltrasoundThe First Hospital of China Medical UniversityNo. 155, Nanjing North Street, Heping DistrictShenyangLiaoning110001China
| | - Yanjun Liu
- Department of UltrasoundThe First Hospital of China Medical UniversityNo. 155, Nanjing North Street, Heping DistrictShenyangLiaoning110001China
| | - ZhiQun Bai
- Department of UltrasoundThe First Hospital of China Medical UniversityNo. 155, Nanjing North Street, Heping DistrictShenyangLiaoning110001China
| |
Collapse
|
5
|
Huang H, Wang K, Liu X, Liu X, Wang J, Suo M, Wang H, Chen S, Chen X, Li Z. Piezoelectric biomaterials for providing electrical stimulation in bone tissue engineering: Barium titanate. J Orthop Translat 2025; 51:94-107. [PMID: 39991455 PMCID: PMC11847244 DOI: 10.1016/j.jot.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
With the increasing clinical demand for orthopedic implants, bone tissue engineering based on a variety of bioactive materials has shown promising applications in bone repair. And various physiological cues, such as mechanical, electrical, and magnetic stimulation, can influence cell fate and participate in bone regeneration. Natural bone has a piezoelectric effect due to the non-centrosymmetric nature of collagen, which can aid in cell adhesion, proliferation and differentiation, and bone growth by converting mechanical stimuli into electrical stimuli. Piezoelectric materials have the same piezoelectric effect as human bone, and they are able to deform in response to physiological movement, thus providing electrical stimulation to cells or damaged tissue without the need for an external power source. Among them, Barium titanate (BaTiO3) is widely used in tumor therapy, tissue engineering, health detection and drug delivery because of its good biocompatibility, low cytotoxicity and good piezoelectric properties. This review describes the piezoelectric effect of natural bone and the characteristics of various types of piezoelectric materials, from the synthesis and physicochemical characteristics of BaTiO3 and its application in biomedicine. And it highlights the great potential of BaTiO3 as piezoelectric biomaterials in the field of bone tissue engineering in anticipation of providing new ideas and opportunities for researchers. The translational potential of this article: This review systematically discusses barium titanate, a bioactive material that can mimic the piezoelectric effect of natural bone tissue, which can intervene in the regenerative repair of bone by providing a sustained electrical microenvironment for bone repair scaffolds. This may help to solve the current problem of poor osteogenic properties of bioactive materials by utilizing barium titanate.
Collapse
Affiliation(s)
- Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kaizhong Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyan Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Chen
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Chen
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, China
| |
Collapse
|
6
|
Li R, Wang J, Lin Q, Yin Z, Zhou F, Chen X, Tan H, Su J. Mechano-Responsive Biomaterials for Bone Organoid Construction. Adv Healthc Mater 2025; 14:e2404345. [PMID: 39740101 DOI: 10.1002/adhm.202404345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/08/2024] [Indexed: 01/02/2025]
Abstract
Mechanical force is essential for bone development, bone homeostasis, and bone fracture healing. In the past few decades, various biomaterials have been developed to provide mechanical signals that mimic the natural bone microenvironment, thereby promoting bone regeneration. Bone organoids, emerging as a novel research approach, are 3D micro-bone tissues that possess the ability to self-renew and self-organize, exhibiting biomimetic spatial characteristics. Incorporating mechano-responsive biomaterials in the construction of bone organoids presents a promising avenue for simulating the mechanical bone microenvironment. Therefore, this review commences by elucidating the impact of mechanical force on bone health, encompassing both cellular interactions and alterations in bone structure. Furthermore, the most recent applications of mechano-responsive biomaterials within the realm of bone tissue engineering are highlighted. Three different types of mechano-responsive biomaterials are introduced with a focus on their responsive mechanisms, construction strategies, and efficacy in facilitating bone regeneration. Based on a comprehensive overview, the prospective utilization and future challenges of mechano-responsive biomaterials in the construction of bone organoids are discussed. As bone organoid technology advances, these biomaterials are poised to become powerful tools in bone regeneration.
Collapse
Affiliation(s)
- Ruiyang Li
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Wang
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Qiushui Lin
- Department of Spine Surgery, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, P. R. China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, P. R. China
| | - Xiao Chen
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Hongbo Tan
- Department of Orthopedics, The 920th Hospital of Joint Logistics Support Force, Yunnan, 650020, P. R. China
| | - Jiacan Su
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
7
|
Zhao X, Yao M, Wang Y, Feng C, Yang Y, Tian L, Bao C, Li X, Zhu X, Zhang X. Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7223-7250. [PMID: 39869030 DOI: 10.1021/acsami.4c16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network. In recent years, increasing research has revealed the critical role of nerves in bone metabolism. Nerve fibers regulate bone cells through neurotransmitters, neuropeptides, and peripheral glial cells. Furthermore, nerves also coordinate with the vascular and immune systems to jointly construct a microenvironment favorable for bone regeneration. As a signaling driver of bone formation, neuroregulation spans the entire process of bone physiological activities from the embryonic formation to postmaturity remodeling and repair. However, there is currently a lack of comprehensive summaries of these regulatory mechanisms. Therefore, this review sketches out the function of nerves during bone formation and regeneration. Then, we elaborate on the mechanisms of neurovascular coupling and neuromodulation of bone immunity. Finally, we discuss several novel strategies for neuro-bone tissue engineering (NBTE) based on neuroregulation of bone, focusing on the coordinated regeneration of nerve and bone tissue.
Collapse
Affiliation(s)
- Xiangrong Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meilin Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Luoqiang Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Al-Samaray ME, Fatalla AA. Biological, Biomechanical, and Histopathological Evaluation of Polyetherketoneketone Bioactive Composite as Implant Material. J Biomed Mater Res B Appl Biomater 2025; 113:e35535. [PMID: 39853931 DOI: 10.1002/jbm.b.35535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025]
Abstract
While polyetherketoneketone is a high-performance thermoplastic polymer, its hydrophobicity and inertness limit bone adhesion. This study aimed to evaluate a novel PEKK/CaSiO3/TeO2 nanocomposite, comparing it to PEKK/15 wt.% CaSiO3 and PEKK groups. The in vitro study, involving 90 discs (n = 30), assessed the cytotoxicity of all groups after 24, 72, and 168 h. The in vivo animal study, using cylinder-type implants (n = 30), evaluated osseointegration through biomechanical push-out tests, descriptive histopathological examinations of decalcified sections stained with hematoxylin and eosin, and histomorphometric analysis of new bone formation area after 2- and 6-week healing intervals. The cytocompatibility of PEKK/15 wt.% CaSiO3/1 wt.% TeO2 composite confirmed its acceptance as a biomedical material. Additionally, in vivo study results showed that the PEKK/15 wt.% CaSiO3/1 wt.% TeO2 had the highest shear strength value and the highest new bone formation area compared to other experimental groups. The multimodal concept of adding CaSiO3 micro fillers and TeO2 nanofillers to PEKK produces a cytocompatible composite that enhances osseointegration and new bone formation in a rabbit's femur after 2- and 6-week healing intervals.
Collapse
Affiliation(s)
- Manar E Al-Samaray
- Department of Prosthodontics, College of Dentistry, Mustansiriyah University, Baghdad, Iraq
| | - Abdalbseet A Fatalla
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
9
|
Sun J, Gao R, Qin N, Yang J. A BMP-2 sustained-release scaffold accelerated bone regeneration in rats via the BMP-2 consistent activation maintained by a non-sulfate polysaccharide. Biomed Mater 2025; 20:025015. [PMID: 39882699 DOI: 10.1088/1748-605x/adad28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Bone morphogenetic protein 2 (BMP-2) and a polysaccharide (SUP) were embedded in the calcium phosphate cement (CPC) scaffold, and the bone repair ability was evaluated. The new scaffolds were characterized using x-ray diffraction, Fourier transform-infrared, scanning electron microscopy, and energy dispersive spectroscopy analyses. CPC-BMP2-SUPH scaffold promoted the BMP-2 release by 1.21 folds of the CPC-BMP2 scaffold on day 3. SUP sustained the release of BMP-2 within 21 d. It enhanced alkaline phosphatase activity by 25.9% in comparison to the CPC scaffold. These results suggest that the SUP consistently activated and sustained BMP-2 releasein vitro. Furthermore, the CPC-BMP2-SUPH scaffold activated the BMP-2/Smads and runt-related transcription factor 2 (Runx-2) pathways in MC3T3-E1 cells to up-regulate the levels of osteogenic relative genes (BMP-2, bone sialoprotein, collagen 1, osteocalcin, osteopontin, and Runx-2). Thein vivoresult showed that the bone defect area in the CPC-BMP2-SUPH scaffold-treated Sprague-Dawley rats lessened significantly compared with the CPC group after 4 weeks. CPC-BNP2-SUPH scaffold also improved collagen regeneration in bone. The bone surface and bone volume in the CPC-BMP2-SUPH group improved by 3.68 and 2.17-fold compared with the CPC group, respectively. In conclusion, the CPC-BMP2-SUPH scaffold represents a novel biomaterial capable of accelerating osteoblast differentiation and promoting bone injury repair.
Collapse
Affiliation(s)
- Jinghe Sun
- School of Food Science and Technology, Dalian Polytechnic University, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China
| | - Rongchun Gao
- School of Food Science and Technology, Dalian Polytechnic University, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China
| | - Ningbo Qin
- School of Food Science and Technology, Dalian Polytechnic University, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China
| | - Jingfeng Yang
- School of Food Science and Technology, Dalian Polytechnic University, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China
| |
Collapse
|
10
|
Navarrete-León C, Doherty A, Strimaite M, Bear JC, Olivo A, Endrizzi M, Patrick PS. Nanoparticle Contrast Agents for Dark-Field X-ray Imaging. NANO LETTERS 2025; 25:1036-1042. [PMID: 39601295 PMCID: PMC11760164 DOI: 10.1021/acs.nanolett.4c04878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
The poor soft tissue contrast of X-ray CT necessitates contrast agent use to improve diagnosis across disease applications, yet their poor detection sensitivity requires high injected doses, which restrict use in at-risk populations. Dark-field X-ray imaging is emerging as a more sensitive alternative to traditional attenuation-based imaging, leveraging scattered radiation to produce contrast. Yet aside from large, short-lived microbubbles, the alternate physics of dark-field detection has yet to be exploited for contrast agent development. Here we demonstrate that high-Z nanoparticles can provide a new means to producing dark-field image contrast, promoting scatter via a higher rather than lower electron density compared to microbubbles, increasing detection sensitivity compared to attenuation-based detection of a clinical iodine-based agent at an equivalent X-ray dose. As the use of dark-field X-ray imaging expands into more common clinical usage, this will support the development of a new class of nanoparticulate contrast agents.
Collapse
Affiliation(s)
- Carlos Navarrete-León
- Department
of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, United Kingdom
- X-ray
microscopy and tomography lab, The Francis
Crick Institute, London, NW1 1AT, United Kingdom
| | - Adam Doherty
- Department
of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, United Kingdom
- X-ray
microscopy and tomography lab, The Francis
Crick Institute, London, NW1 1AT, United Kingdom
| | - Margarita Strimaite
- Centre
for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, United Kingdom
- UCL
School of Pharmacy, Faculty of Life Sciences, University College London, London, WC1N 1AX, United Kingdom
| | - Joseph C. Bear
- School
of Life Sciences, Pharmacy & Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, United Kingdom
| | - Alessandro Olivo
- Department
of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, United Kingdom
| | - Marco Endrizzi
- Department
of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, United Kingdom
- X-ray
microscopy and tomography lab, The Francis
Crick Institute, London, NW1 1AT, United Kingdom
| | - P. Stephen Patrick
- Centre
for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, United Kingdom
| |
Collapse
|
11
|
Karavasili C, Young T, Francis J, Blanco J, Mancini N, Chang C, Bernstock JD, Connolly ID, Shankar GM, Traverso G. Local drug delivery challenges and innovations in spinal neurosurgery. J Control Release 2024; 376:1225-1250. [PMID: 39505215 DOI: 10.1016/j.jconrel.2024.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The development of novel therapeutics in the field of spinal neurosurgery faces a litany of translational challenges. Achieving precise drug targeting within the confined spaces associated with the spinal cord, canal and vertebra requires the development of next generation delivery systems and devices. These must be capable of overcoming inherent barriers related to drug diffusion, whilst concurrently ensuring optimal drug distribution and retention. In this review, we provide an overview of the most recent advances in the therapeutic management of diseases and disorders affecting the spine, including systems and devices capable of releasing small molecules and biopharmaceuticals that help eliminate pain and restore the mechanical function and stability of the spine. We highlight material-based approaches and minimally invasive techniques that can be employed to provide control over drug release kinetics and improve retention. We also seek to explore how the newest advancements in nanotechnology, biomaterials, additive manufacturing technologies and imaging modalities can be employed in this translational pursuit. Finally, we discuss the landscape of clinical trials and recently approved products aimed at overcoming the complexities associated with drug delivery to the spine.
Collapse
Affiliation(s)
- Christina Karavasili
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas Young
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua Francis
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Julianna Blanco
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nicholas Mancini
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Charmaine Chang
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D Bernstock
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ian D Connolly
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ganesh M Shankar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giovanni Traverso
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
12
|
Zeng K, Lin Y, Liu S, Wang Z, Guo L. Applications of piezoelectric biomaterials in dental treatments: A review of recent advancements and future prospects. Mater Today Bio 2024; 29:101288. [PMID: 40018432 PMCID: PMC11866170 DOI: 10.1016/j.mtbio.2024.101288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 03/01/2025] Open
Abstract
Piezoelectric biomaterials have attracted considerable attention in dental medicine due to their unique ability to convert mechanical force into electricity and catalyze reactions. These materials demonstrate biocompatibility, high bioactivity, and stability, making them suitable for applications such as tissue regeneration, caries prevention, and periodontal disease treatment. Despite their significant potential, the clinical application of these materials in treating oral diseases remains limited, facing numerous challenges in clinical translation. Therefore, further research and data are crucial to advance their application in dentistry. The review emphasizes the transformative impact of multifunctional piezoelectric biomaterials on enhancing dental therapies and outlines future directions for their integration into oral healthcare practices.
Collapse
Affiliation(s)
- Kaichen Zeng
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yifan Lin
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shirong Liu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziyan Wang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lvhua Guo
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Guillot-Ferriols M, Costa CM, Correia DM, Rodríguez-Hernández JC, Tsimbouri PM, Lanceros-Méndez S, Dalby MJ, Gómez Ribelles JL, Gallego-Ferrer G. Piezoelectric Stimulation Induces Osteogenesis in Mesenchymal Stem Cells Cultured on Electroactive Two-Dimensional Substrates. ACS APPLIED POLYMER MATERIALS 2024; 6:13710-13722. [PMID: 39606252 PMCID: PMC11590054 DOI: 10.1021/acsapm.4c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Physical cues have been shown to be effective in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we propose piezoelectric stimulation as a potential osteogenic cue mimicking the electroactive properties of bone's extracellular matrix. When combined with a magnetostrictive component, piezoelectric polymers can be used for MSC stimulation by applying an external magnetic field. The deformation of the magnetostrictive component produces a deformation in the polymer matrix, generating a change in the surface charge that induces an electric field that can be transmitted to the cells. Cell adhesion, cytoskeleton changes, and metabolomics are the first evidence of MSC osteoblastogenesis and can be used to study initial MSC response to this kind of stimulation. In the current study, poly(vinylidene) fluoride (PVDF) piezoelectric films with and without cobalt ferrite oxide (CFO) crystallized from the melt in the presence of the ionic liquid 1-butyl-3-methyl-imidazolium chloride ([Bmim][Cl]) were produced. [Bmim][Cl] allowed the production of the β-phase, the most electroactive phase, even without CFO. After ionic liquid removal, PVDF and PVDF-CFO films presented high percentages of the β-phase and similar crystalline content. Incorporating CFO nanoparticles was effective, allowing the electromechanical stimulation of MSCs by applying a magnetic field with a bioreactor. Before stimulation, the initial response of MSCs was characterized in static conditions, showing that the produced films were biocompatible and noncytotoxic, allowing MSC adhesion and proliferation in the short term. Stimulation experiments revealed that MSCs electromechanically stimulated for 3 days in PVDF-CFO supports showed longer focal adhesions and decreased vimentin cytoskeletal density, both signals of early osteogenic differentiation. Furthermore, they rearranged their energy metabolism toward an osteogenic phenotype after 7 days of culture under the same stimulation. The results prove that MSCs respond to electromechanical stimulation by osteogenic differentiation.
Collapse
Affiliation(s)
- Maria Guillot-Ferriols
- Center for
Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia 46022, Spain
| | - Carlos M. Costa
- Physics Centre
of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics
for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga 4710-057, Portugal
| | | | | | - Penelope M. Tsimbouri
- Center for
the Cellular Microenvironment, School of Molecular Biosciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United
Kingdom
| | - Senentxu Lanceros-Méndez
- Physics Centre
of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics
for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU, Science Park, Leioa 48940, Spain
- Basque Foundation
for Science, IKERBASQUE, Bilbao 48009, Spain
| | - Matthew J. Dalby
- Center for
the Cellular Microenvironment, School of Molecular Biosciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United
Kingdom
| | - José Luis Gómez Ribelles
- Center for
Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia 46022, Spain
| | - Gloria Gallego-Ferrer
- Center for
Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia 46022, Spain
| |
Collapse
|
14
|
Wei Y, Liang Y, Qi K, Gu Z, Yan B, Xie H. Exploring the application of piezoelectric ceramics in bone regeneration. J Biomater Appl 2024; 39:409-420. [PMID: 39152927 DOI: 10.1177/08853282241274528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Piezoelectric ceramics are piezoelectric materials with polycrystalline structure and have been widely used in many fields such as medical imaging and sound sensors. As knowledge about this kind of material develops, researchers find piezoelectric ceramics possess favorable piezoelectricity, biocompatibility, mechanical properties, porous structure and antibacterial effect and endeavor to apply piezoelectric ceramics to the field of bone tissue engineering. However, clinically no piezoelectric ceramics have been exercised so far. Therefore, in this paper we present a comprehensive review of the research and development of various piezoelectric ceramics including barium titanate, potassium sodium niobate and zinc oxide ceramics and aims to explore the application of piezoelectric ceramics in bone regeneration by providing a detailed overview of the current knowledge and research of piezoelectric ceramics in bone tissue regeneration.
Collapse
Affiliation(s)
- Yige Wei
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaxian Liang
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kailong Qi
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Bing Yan
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Ma Y, Wang Y, Tong S, Wang Y, Wang Z, Sui R, Yang K, Witte F, Yang S. Porous metal materials for applications in orthopedic field: A review on mechanisms in bone healing. J Orthop Translat 2024; 49:135-155. [PMID: 40226784 PMCID: PMC11993841 DOI: 10.1016/j.jot.2024.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 04/15/2025] Open
Abstract
Background Porous metal materials have been widely studied for applications in orthopedic field, owing to their excellent features and properties in bone healing. Porous metal materials with different compositions, manufacturing methods, and porosities have been developed. Whereas, the systematic mechanisms on how porous metal materials promote bone healing still remain unclear. Methods This review is concerned on the porous metal materials from three aspects with accounts of specific mechanisms, inflammatory regulation, angiogenesis and osteogenesis. We place great emphasis on different cells regulated by porous metal materials, including mesenchymal stem cells (MSCs), macrophages, endothelial cells (ECs), etc. Result The design of porous metal materials is diversified, with its varying pore sizes, porosity material types, modification methods and coatings help researchers create the most experimentally suitable and clinically effective scaffolds. Related signal pathways presented from different functions showed that porous metal materials could change the behavior of cells and the amount of cytokines, achieving good influence on osteogenesis. Conclusion This article summarizes the current progress achieved in the mechanism of porous metal materials promoting bone healing. By modulating the cellular behavior and physiological status of a spectrum of cellular constituents, such as macrophages, osteoblasts, and osteoclasts, porous metal materials are capable of activating different pathways and releasing regulatory factors, thus exerting pivotal influence on improving the bone healing effect. The translational potential of this article Porous metal materials play a vital role in the treatment of bone defects. Unfortunately, although an increasing number of studies have been concentrated on the effect of porous metal materials on osteogenesis-related cells, the comprehensive regulation of porous metal materials on the host cell functions during bone regeneration and the related intrinsic mechanisms remain unclear. This review summarizes different design methods for porous metal materials to fabricate the most suitable scaffolds for bone remodeling, and systematically reviews the corresponding mechanisms on inflammation, angiogenesis and osteogenesis of porous metal materials. This review can provide more theoretical framework and innovative optimization for the application of porous metal materials in orthopedics, dentistry, and other areas, thereby advancing their clinical utility and efficacy.
Collapse
Affiliation(s)
- Yutong Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yi Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Shuang Tong
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuehan Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Zhuoya Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Rongze Sui
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité Medical University, Assmannshauser Strasse 4–6, 14197, Berlin, Germany
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
16
|
Nair AS, Viannie LR. Piezoelectric barium titanate/hydroxyapatite composite coatings on Ti-6Al-4V alloy via electrophoretic deposition. Heliyon 2024; 10:e39102. [PMID: 39640757 PMCID: PMC11620139 DOI: 10.1016/j.heliyon.2024.e39102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Electrophoretic deposition (EPD) is a widely accepted, cost-effective and simple method to obtain conformal coatings of dense nanoparticles via application of a DC voltage. This paper reports the physical and mechanical properties of nanostructured barium titanate/hydroxyapatite (BT/HA) ceramic composites coated onto Ti-6Al-4V alloy via cathodic EPD in various ratios of 40:60, 50:50 and 60:40 (HB4, HB5 and HB6) respectively. Homogenous BT/HA coatings were obtained at a notably low voltage of 10 V. The crystallinity and phase analysis confirmed the formation of tetragonal phase of BT indicating the piezoelectric property. HB6 exhibits maximum piezoelectric coefficient (d33) of 159 pC/N and Vicker's hardness of 242.31 HV. The cross-sectional electron micrographs show well connected and homogeneous coatings with increasing amounts of BT. Human mesenchymal stem cell lines were utilized in biocompatibility experiments, which revealed that HB composites had greater viability of HW-MSCs cells than pure BT, with HB6 exhibiting a maximum cell viability of more than 90 %.
Collapse
Affiliation(s)
- Akhila S Nair
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Leema Rose Viannie
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| |
Collapse
|
17
|
Sun J, Liu SS, Zou D, Ni RH, Wei CB, Wang H, Li WS. A novel porous interbody fusion cage modified by microarc oxidation and hydrothermal treatment technology accelerate osseointegration and spinal fusion in sheep. RSC Adv 2024; 14:31966-31978. [PMID: 39391624 PMCID: PMC11462409 DOI: 10.1039/d3ra08185k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/25/2024] [Indexed: 10/12/2024] Open
Abstract
The clinical outcome of spinal fusion surgery is closely related to the success of bone fusion. Nowadays, the interbody cage which is used to replace the disc for spinal fusion is expected to have biological activity to improve osseointegration, especially for the aging and osteoporotic patients. Here, through micro-arc oxidation and hydrothermal treatment (MAO + HT), a bioactive CaP coating with micro/nano multilevel morphology was developed on 3D printed Ti6Al4V alloy then verified in vitro and in sheep anterior cervical decompression fusion model systematically. In vitro studies have confirmed the positive effects of characteristic micro/nano morphology and hydrophilicity of the coating formed after surface treatment on the adhesion, proliferation, and osteogenic differentiation of osteoblast precursor cells. Furthermore, the MAO + HT treated interbody cage showed a closer integration with the surrounding bone tissue, improved kinetic stability of the implanted segment, and significantly reduced incidence of fusion failure during the early postoperative period, which indicated that such a surface modification strategy is applicable to the biomechanical and biological microenvironment of the intervertebral space.
Collapse
Affiliation(s)
- Jiang Sun
- Peking University Third Hospital Beijing 100191 China
- Engineering Research Center of Bone and Joint Precision Medicine Department of Orthopedics Beijing 100191 China
- Beijing Key Laboratory of Spinal Disease Research Beijing 100191 China
| | - Shan-Shan Liu
- Peking University Third Hospital Beijing 100191 China
- Engineering Research Center of Bone and Joint Precision Medicine Department of Orthopedics Beijing 100191 China
- Beijing Key Laboratory of Spinal Disease Research Beijing 100191 China
| | - Da Zou
- Peking University Third Hospital Beijing 100191 China
- Engineering Research Center of Bone and Joint Precision Medicine Department of Orthopedics Beijing 100191 China
- Beijing Key Laboratory of Spinal Disease Research Beijing 100191 China
| | - Ren-Hua Ni
- Peking University Third Hospital Beijing 100191 China
- Engineering Research Center of Bone and Joint Precision Medicine Department of Orthopedics Beijing 100191 China
- Beijing Key Laboratory of Spinal Disease Research Beijing 100191 China
| | | | - Hao Wang
- Beijing AKec Medical Co., Ltd Beijing 102200 China
| | - Wei-Shi Li
- Peking University Third Hospital Beijing 100191 China
- Engineering Research Center of Bone and Joint Precision Medicine Department of Orthopedics Beijing 100191 China
- Beijing Key Laboratory of Spinal Disease Research Beijing 100191 China
| |
Collapse
|
18
|
Krsek A, Jagodic A, Baticic L. Nanomedicine in Neuroprotection, Neuroregeneration, and Blood-Brain Barrier Modulation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1384. [PMID: 39336425 PMCID: PMC11433843 DOI: 10.3390/medicina60091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Nanomedicine is a newer, promising approach to promote neuroprotection, neuroregeneration, and modulation of the blood-brain barrier. This review includes the integration of various nanomaterials in neurological disorders. In addition, gelatin-based hydrogels, which have huge potential due to biocompatibility, maintenance of porosity, and enhanced neural process outgrowth, are reviewed. Chemical modification of these hydrogels, especially with guanidine moieties, has shown improved neuron viability and underscores tailored biomaterial design in neural applications. This review further discusses strategies to modulate the blood-brain barrier-a factor critically associated with the effective delivery of drugs to the central nervous system. These advances bring supportive solutions to the solving of neurological conditions and innovative therapies for their treatment. Nanomedicine, as applied to neuroscience, presents a significant leap forward in new therapeutic strategies that might help raise the treatment and management of neurological disorders to much better levels. Our aim was to summarize the current state-of-knowledge in this field.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ana Jagodic
- Department of Family Medicine, Community Health Center Krapina, 49000 Krapina, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
19
|
Yuan X, Zhu W, Yang Z, He N, Chen F, Han X, Zhou K. Recent Advances in 3D Printing of Smart Scaffolds for Bone Tissue Engineering and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403641. [PMID: 38861754 DOI: 10.1002/adma.202403641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Indexed: 06/13/2024]
Abstract
The repair and functional reconstruction of bone defects resulting from severe trauma, surgical resection, degenerative disease, and congenital malformation pose significant clinical challenges. Bone tissue engineering (BTE) holds immense potential in treating these severe bone defects, without incurring prevalent complications associated with conventional autologous or allogeneic bone grafts. 3D printing technology enables control over architectural structures at multiple length scales and has been extensively employed to process biomimetic scaffolds for BTE. In contrast to inert and functional bone grafts, next-generation smart scaffolds possess a remarkable ability to mimic the dynamic nature of native extracellular matrix (ECM), thereby facilitating bone repair and regeneration. Additionally, they can generate tailored and controllable therapeutic effects, such as antibacterial or antitumor properties, in response to exogenous and/or endogenous stimuli. This review provides a comprehensive assessment of the progress of 3D-printed smart scaffolds for BTE applications. It begins with an introduction to bone physiology, followed by an overview of 3D printing technologies utilized for smart scaffolds. Notable advances in various stimuli-responsive strategies, therapeutic efficacy, and applications of 3D-printed smart scaffolds are discussed. Finally, the review highlights the existing challenges in the development and clinical implementation of smart scaffolds, as well as emerging technologies in this field.
Collapse
Affiliation(s)
- Xun Yuan
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Wei Zhu
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Yang
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Ning He
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Feng Chen
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Xiaoxiao Han
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
20
|
Wu Y, Zou J, Tang K, Xia Y, Wang X, Song L, Wang J, Wang K, Wang Z. From electricity to vitality: the emerging use of piezoelectric materials in tissue regeneration. BURNS & TRAUMA 2024; 12:tkae013. [PMID: 38957661 PMCID: PMC11218788 DOI: 10.1093/burnst/tkae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 07/04/2024]
Abstract
The unique ability of piezoelectric materials to generate electricity spontaneously has attracted widespread interest in the medical field. In addition to the ability to convert mechanical stress into electrical energy, piezoelectric materials offer the advantages of high sensitivity, stability, accuracy and low power consumption. Because of these characteristics, they are widely applied in devices such as sensors, controllers and actuators. However, piezoelectric materials also show great potential for the medical manufacturing of artificial organs and for tissue regeneration and repair applications. For example, the use of piezoelectric materials in cochlear implants, cardiac pacemakers and other equipment may help to restore body function. Moreover, recent studies have shown that electrical signals play key roles in promoting tissue regeneration. In this context, the application of electrical signals generated by piezoelectric materials in processes such as bone healing, nerve regeneration and skin repair has become a prospective strategy. By mimicking the natural bioelectrical environment, piezoelectric materials can stimulate cell proliferation, differentiation and connection, thereby accelerating the process of self-repair in the body. However, many challenges remain to be overcome before these concepts can be applied in clinical practice, including material selection, biocompatibility and equipment design. On the basis of the principle of electrical signal regulation, this article reviews the definition, mechanism of action, classification, preparation and current biomedical applications of piezoelectric materials and discusses opportunities and challenges for their future clinical translation.
Collapse
Affiliation(s)
- Yifan Wu
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| | - Junwu Zou
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Kai Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Ying Xia
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Xixi Wang
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Baidi Road, Nankai District, Tianjin 300192, China
| | - Lili Song
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Baidi Road, Nankai District, Tianjin 300192, China
| | - Jinhai Wang
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Kai Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| | - Zhihong Wang
- Institute of Transplant Medicine, School of Medicine, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| |
Collapse
|
21
|
Chen L, Yang J, Cai Z, Huang Y, Xiao P, Wang J, Wang F, Huang W, Cui W, Hu N. Electroactive Biomaterials Regulate the Electrophysiological Microenvironment to Promote Bone and Cartilage Tissue Regeneration. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe incidence of large bone and articular cartilage defects caused by traumatic injury is increasing worldwide; the tissue regeneration process for these injuries is lengthy due to limited self‐healing ability. Endogenous bioelectrical phenomenon has been well recognized to play an important role in bone and cartilage homeostasis and regeneration. Studies have reported that electrical stimulation (ES) can effectively regulate various biological processes and holds promise as an external intervention to enhance the synthesis of the extracellular matrix, thereby accelerating the process of bone and cartilage regeneration. Hence, electroactive biomaterials have been considered a biomimetic approach to ensure functional recovery by integrating various physiological signals, including electrical, biochemical, and mechanical signals. This review will discuss the role of endogenous bioelectricity in bone and cartilage tissue, as well as the effects of ES on cellular behaviors. Then, recent advances in electroactive materials and their applications in bone and cartilage tissue regeneration are systematically overviewed, with a focus on their advantages and disadvantages as tissue repair materials and performances in the modulation of cell fate. Finally, the significance of mimicking the electrophysiological microenvironment of target tissue is emphasized and future development challenges of electroactive biomaterials for bone and cartilage repair strategies are proposed.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Jianye Yang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Zhengwei Cai
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yanran Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Pengcheng Xiao
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Juan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Fan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wei Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Ning Hu
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| |
Collapse
|
22
|
Liu X, Wan X, Sui B, Hu Q, Liu Z, Ding T, Zhao J, Chen Y, Wang ZL, Li L. Piezoelectric hydrogel for treatment of periodontitis through bioenergetic activation. Bioact Mater 2024; 35:346-361. [PMID: 38379699 PMCID: PMC10876489 DOI: 10.1016/j.bioactmat.2024.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an anti-inflammatory and pro-regenerative niche through switching M1 macrophages to the M2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation.
Collapse
Affiliation(s)
- Xin Liu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Baiyan Sui
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Quanhong Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
| | - Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tingting Ding
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Jiao Zhao
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Yuxiao Chen
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
23
|
Tang Z, Yu D, Bao S, Li C, Wu H, Dong H, Wang N, Liu Y, Wu Q, Chen C, Wang M, Cao P, Zheng Z, Huang H, Li X, Guo Z. Porous Titanium Scaffolds with Mechanoelectrical Conversion and Photothermal Function: A Win-Win Strategy for Bone Reconstruction of Tumor-Resected Defects. Adv Healthc Mater 2024; 13:e2302901. [PMID: 38102773 DOI: 10.1002/adhm.202302901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Bone metastases severely threaten the lives of patients. Although surgical treatment combined with adjuvant chemotherapy significantly improves the survival rate of patients, tumor recurrence, or metastasis after surgical resection and bone defects caused by surgical treatment remain major challenges for clinicians. Given the abovementioned clinical requirements, barium titanate-containing iron-coated porous titanium alloy scaffolds have been proposed to promote bone defect repair and inhibit tumor recurrence. Fortunately, in vitro and in vivo experimental research confirms that barium titanate containing iron-coated porous titanium alloy scaffolds promote osteogenesis and bone reconstruction in defect repair via mechanoelectric conversion and inhibit tumor recurrence via photothermal effects. Furthermore, the underlying and intricate mechanisms of bone defect repair and tumor recurrence prevention of barium titanate-containing iron-coated porous titanium alloy scaffolds are explored. A win-win strategy for mechanoelectrical conversion and photothermal functionalization provides promising insights into bone reconstruction of tumor-resected defects.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Dongmei Yu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Shusen Bao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Chenyu Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hao Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hui Dong
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Ning Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yichao Liu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Qi Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Changcheng Chen
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Mo Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Pengfei Cao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zenghui Zheng
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hai Huang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xiaokang Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| |
Collapse
|
24
|
Sun J, Liu SS, Zou D, He X, Shi ZZ, Li WS. How surface-to-volume ratio affects degradation of magnesium: in vitro and in vivo studies. RSC Adv 2024; 14:6805-6814. [PMID: 38405068 PMCID: PMC10887483 DOI: 10.1039/d3ra08927d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
Despite the many studies carried out over the past decade to determine the biodegradation performance of magnesium and its alloys, few studies focused on the effect of altered surface area to volume ratio on in vitro and in vivo degradation rate and osteogenesis. Here, high purity magnesium cylindrical rods with gradient of surface area to volume ratio were processed by excavating different numbers of grooves on the side surface. The immersion test in SBF solution and the rat femoral condylar bone defect model were used to evaluate the degradation of magnesium rods in vitro and in vivo, respectively. We demonstrated that, the increased number of grooves on the HP magnesium surface represented a decrease in the percentage of residual volume over time, not necessarily an increase in absolute degradation volume or a regular change in corrosion rate. Furthermore, there were strong linear correlations between the relative degradation volume and the initial surface-to-volume ratio of HP magnesium rods both in vitro and in vivo. The difference in the slope of this relationship in vitro and in vivo might help to determine the possible range of in vivo degradation rates via in vitro data. In addition, the corrosion rate is more suitable for evaluating bone formation surrounding the different HP magnesium rods. Our findings in this work may facilitate adjusting the in vivo degradation and osteogenesis of different kinds of orthopedic implants made of the same magnesium-based material, and thus, accelerate the clinical popularization and application.
Collapse
Affiliation(s)
- Jiang Sun
- Peking University Third Hospital Beijing 100191 China
- Engineering Research Center of Bone and Joint Precision Medicine Department of Orthopedics Beijing 100191 China
- Beijing Key Laboratory of Spinal Disease Research Beijing 100191 China
| | - Shan-Shan Liu
- Peking University Third Hospital Beijing 100191 China
- Engineering Research Center of Bone and Joint Precision Medicine Department of Orthopedics Beijing 100191 China
- Beijing Key Laboratory of Spinal Disease Research Beijing 100191 China
| | - Da Zou
- Peking University Third Hospital Beijing 100191 China
- Engineering Research Center of Bone and Joint Precision Medicine Department of Orthopedics Beijing 100191 China
- Beijing Key Laboratory of Spinal Disease Research Beijing 100191 China
| | - Xuan He
- Peking University Third Hospital Beijing 100191 China
- Engineering Research Center of Bone and Joint Precision Medicine Department of Orthopedics Beijing 100191 China
- Beijing Key Laboratory of Spinal Disease Research Beijing 100191 China
| | - Zhang-Zhi Shi
- University of Science and Technology Beijing Beijing 100083 China
| | - Wei-Shi Li
- Peking University Third Hospital Beijing 100191 China
- Engineering Research Center of Bone and Joint Precision Medicine Department of Orthopedics Beijing 100191 China
- Beijing Key Laboratory of Spinal Disease Research Beijing 100191 China
| |
Collapse
|
25
|
Badali V, Checa S, Zehn MM, Marinkovic D, Mohammadkhah M. Computational design and evaluation of the mechanical and electrical behavior of a piezoelectric scaffold: a preclinical study. Front Bioeng Biotechnol 2024; 11:1261108. [PMID: 38274011 PMCID: PMC10808828 DOI: 10.3389/fbioe.2023.1261108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Piezoelectric scaffolds have been recently developed to explore their potential to enhance the bone regeneration process using the concept of piezoelectricity, which also inherently occurs in bone. In addition to providing mechanical support during bone healing, with a suitable design, they are supposed to produce electrical signals that ought to favor the cell responses. In this study, using finite element analysis (FEA), a piezoelectric scaffold was designed with the aim of providing favorable ranges of mechanical and electrical signals when implanted in a large bone defect in a large animal model, so that it could inform future pre-clinical studies. A parametric analysis was then performed to evaluate the effect of the scaffold design parameters with regard to the piezoelectric behavior of the scaffold. The designed scaffold consisted of a porous strut-like structure with piezoelectric patches covering its free surfaces within the scaffold pores. The results showed that titanium or PCL for the scaffold and barium titanate (BT) for the piezoelectric patches are a promising material combination to generate favorable ranges of voltage, as reported in experimental studies. Furthermore, the analysis of variance showed the thickness of the piezoelectric patches to be the most influential geometrical parameter on the generation of electrical signals in the scaffold. This study shows the potential of computer tools for the optimization of scaffold designs and suggests that patches of piezoelectric material, attached to the scaffold surfaces, can deliver favorable ranges of electrical stimuli to the cells that might promote bone regeneration.
Collapse
Affiliation(s)
- Vahid Badali
- Department of Structural Mechanics and Analysis, Technische Universität Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Checa
- Department of Structural Mechanics and Analysis, Technische Universität Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Manfred M. Zehn
- Department of Structural Mechanics and Analysis, Technische Universität Berlin, Berlin, Germany
| | - Dragan Marinkovic
- Department of Structural Mechanics and Analysis, Technische Universität Berlin, Berlin, Germany
| | - Melika Mohammadkhah
- Department of Structural Mechanics and Analysis, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
26
|
Erdogan YK, Uslu E, Aydınol MK, Saglam ASY, Odabas S, Ercan B. Morphology of Nanostructured Tantalum Oxide Controls Stem Cell Differentiation and Improves Corrosion Behavior. ACS Biomater Sci Eng 2024; 10:377-390. [PMID: 38078685 DOI: 10.1021/acsbiomaterials.3c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tantalum is receiving increasing attention in the biomedical field due to its biocompatible nature and superior mechanical properties. However, the bioinert nature of tantalum still poses a challenge and limits its integration into the bone tissue. To address these issues, we fabricated nanotubular (NT), nanocoral (NC), and nanodimple morphologies on tantalum surfaces via anodization. The size of these nanofeatures was engineered to be approximately 30 nm for all anodized samples. Thus, the influence of the anodized nanostructured morphology on the chemical and biological properties of tantalum was evaluated. The NT and NC samples exhibited higher surface roughness, surface energy, and hydrophilicity compared to the nonanodized samples. In addition, the NT samples exhibited the highest corrosion resistance among all of the investigated samples. Biological experiments indicated that NT and NC samples promoted human adipose tissue-derived mesenchymal stem cell (hADMSC) spreading and proliferation up to 5 days in vitro. ALP, COL1A1, and OSC gene expressions as well as calcium mineral synthesis were upregulated on the NT and NC samples in the second and third weeks in vitro. These findings highlight the significance of nanostructured feature morphology for anodized tantalum, where the NT morphology was shown to be a potential candidate for orthopedic applications.
Collapse
Affiliation(s)
- Yasar Kemal Erdogan
- Biomedical Engineering Program, Middle East Technical University, Cankaya, Ankara 06800, Turkey
- Department of Biomedical Engineering, Isparta University of Applied Science, Isparta 32260, Turkey
| | - Ece Uslu
- Institute of Bioengineering, School of Engineering, EPFL, Lausanne 1015, Switzerland
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Cankaya, Ankara 06800, Turkey
| | - Mehmet Kadri Aydınol
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Cankaya, Ankara 06800, Turkey
| | - Atiye Seda Yar Saglam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06500, Turkey
| | - Sedat Odabas
- Department of Chemistry, Faculty of Science, Ankara University, Besevler, Ankara 06560, Turkey
- Faculty of Science, Department of Chemistry, Biomaterials and Tissue Engineering Laboratory (BteLAB), Ankara University, Ankara 06100, Turkey
- Interdisciplinary Research Unit for Advanced Materials (INTRAM), Ankara University, Ankara 06560, Turkey
| | - Batur Ercan
- Biomedical Engineering Program, Middle East Technical University, Cankaya, Ankara 06800, Turkey
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Cankaya, Ankara 06800, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Cankaya, Ankara 06800, Turkey
| |
Collapse
|
27
|
Zhang J, Zhuang Y, Sheng R, Tomás H, Rodrigues J, Yuan G, Wang X, Lin K. Smart stimuli-responsive strategies for titanium implant functionalization in bone regeneration and therapeutics. MATERIALS HORIZONS 2024; 11:12-36. [PMID: 37818593 DOI: 10.1039/d3mh01260c] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
With the increasing and aging of global population, there is a dramatic rise in the demand for implants or substitutes to rehabilitate bone-related disorders which can considerably decrease quality of life and even endanger lives. Though titanium and its alloys have been applied as the mainstream material to fabricate implants for load-bearing bone defect restoration or temporary internal fixation devices for bone fractures, it is far from rare to encounter failed cases in clinical practice, particularly with pathological factors involved. In recent years, smart stimuli-responsive (SSR) strategies have been conducted to functionalize titanium implants to improve bone regeneration in pathological conditions, such as bacterial infection, chronic inflammation, tumor and diabetes mellitus, etc. SSR implants can exert on-demand therapeutic and/or pro-regenerative effects in response to externally applied stimuli (such as photostimulation, magnetic field, electrical and ultrasound stimulation) or internal pathology-related microenvironment changes (such as decreased pH value, specific enzyme secreted by bacterial and excessive production of reactive oxygen species). This review summarizes recent progress on the material design and fabrication, responsive mechanisms, and in vitro and in vivo evaluations for versatile clinical applications of SSR titanium implants. In addition, currently existing limitations and challenges and further prospective directions of these strategies are also discussed.
Collapse
Affiliation(s)
- Jinkai Zhang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Yu Zhuang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Ruilong Sheng
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - Helena Tomás
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - João Rodrigues
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - Guangyin Yuan
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xudong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| |
Collapse
|
28
|
Li G, Li Z, Min Y, Chen S, Han R, Zhao Z. 3D-Printed Piezoelectric Scaffolds with Shape Memory Polymer for Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302927. [PMID: 37264732 DOI: 10.1002/smll.202302927] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Indexed: 06/03/2023]
Abstract
The application of piezoelectric nanoparticles with shape memory polymer (SMP) to 3D-printed piezoelectric scaffolds for bone defect repair is an attractive research direction. However, there is a significant difference in dielectric constants between the piezoelectric phase and polymer phase, limiting the piezoelectric property. Therefore, novel piezoelectric acrylate epoxidized soybean oil (AESO) scaffolds doped with piezoelectric Ag-TMSPM-pBT (ATP) nanoparticles (AESO-ATP scaffolds) are prepared via digital light procession 3D-printing. The Ag-TMSPM-pBT nanoparticles improve the piezoelectric properties of the AESO scaffolds by TMSPM covalent functionalization and conductive Ag nanoparticles. The AESO scaffolds doped with 10 wt% Ag-TMSPM-pBT nanoparticles (AESO-10ATP scaffolds) exhibit promising piezoelectrical properties, with a piezoelectric coefficient (d33) of 0.9 pC N-1 and an output current of 146.4 nA, which are close to the piezoelectric constants of bone tissue. In addition, these scaffolds exhibit good shape memory function and can quickly recover their original shape under near-infrared (NIR) light irradiation. The results of osteogenesis capability evaluation indicate that the AESO-10ATP scaffolds can promote osteogenic differentiation of BMSCs in vitro and bone defect repair in vivo, indicating the 3D-printed AESO-10ATP piezoelectric scaffolds may have great application potential for bone regeneration.
Collapse
Affiliation(s)
- Guanlin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Zehao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Yajun Min
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Shilu Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ruijia Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572000, China
| |
Collapse
|
29
|
Alvarez-Lorenzo C, Zarur M, Seijo-Rabina A, Blanco-Fernandez B, Rodríguez-Moldes I, Concheiro A. Physical stimuli-emitting scaffolds: The role of piezoelectricity in tissue regeneration. Mater Today Bio 2023; 22:100740. [PMID: 37521523 PMCID: PMC10374602 DOI: 10.1016/j.mtbio.2023.100740] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
The imbalance between life expectancy and quality of life is increasing due to the raising prevalence of chronic diseases. Musculoskeletal disorders and chronic wounds affect a growing percentage of people and demand more efficient tools for regenerative medicine. Scaffolds that can better mimic the natural physical stimuli that tissues receive under healthy conditions and during healing may significantly aid the regeneration process. Shape, mechanical properties, pore size and interconnectivity have already been demonstrated to be relevant scaffold features that can determine cell adhesion and differentiation. Much less attention has been paid to scaffolds that can deliver more dynamic physical stimuli, such as electrical signals. Recent developments in the precise measurement of electrical fields in vivo have revealed their key role in cell movement (galvanotaxis), growth, activation of secondary cascades, and differentiation to different lineages in a variety of tissues, not just neural. Piezoelectric scaffolds can mimic the natural bioelectric potentials and gradients in an autonomous way by generating the electric stimuli themselves when subjected to mechanical loads or, if the patient or the tissue lacks mobility, ultrasound irradiation. This review provides an analysis on endogenous bioelectrical signals, recent developments on piezoelectric scaffolds for bone, cartilage, tendon and nerve regeneration, and their main outcomes in vivo. Wound healing with piezoelectric dressings is addressed in the last section with relevant examples of performance in animal models. Results evidence that a fine adjustment of material composition and processing (electrospinning, corona poling, 3D printing, annealing) provides scaffolds that act as true emitters of electrical stimuli that activate endogenous signaling pathways for more efficient and long-term tissue repair.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Mariana Zarur
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alejandro Seijo-Rabina
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Barbara Blanco-Fernandez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Isabel Rodríguez-Moldes
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
30
|
Wang Y, Li H, Zhao C, Zi Q, He F, Wang W. VEGF-modified PLA/HA nanocomposite fibrous membrane for cranial defect repair in rats. J Biomater Appl 2023; 38:455-467. [PMID: 37610341 DOI: 10.1177/08853282231198157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A major obstacle to bone tissue repair is the difficulty in establishing a rapid blood supply areas of bone defects. Vascular endothelial growth factor (VEGF)-infused tissue-engineered scaffolds offer a possible therapeutic option for these types of injuries. Their role is to accelerate angiogenesis and improve bone healing. In this study, we used electrostatic spinning and biofactor binding to construct polylactic acid (PLA)/hydroxyapatite (HA)-VEGF scaffold materials and clarify their pro-vascular role in bone defect areas for efficient bone defect repair. PLA/HA nanocomposite fibrous membranes were manufactured by selecting suitable electrostatic spinning parameters. Heparin and VEGF were bound sequentially, and then the VEGF binding and release curves of the fiber membranes were calculated. A rat cranial defect model was constructed, and PLA/HA fiber membranes bound with VEGF and unbound with VEGF were placed for treatment. Finally, we compared bone volume recovery and vascular recovery in different fibrous membrane sites. A VEGF concentration of 2.5 µg/mL achieved the maximum binding and uniform distribution of PLA/HA fibrous membranes. Extended-release experiments showed that VEGF release essentially peaked at 14 days. In vivo studies showed that PLA/HA fibrous membranes bound with VEGF significantly increased the number of vessels at the site of cranial defects, bone mineral density, bone mineral content, bone bulk density, trabecular separation, trabecular thickness, and the number of trabeculae at the site of defects in rats compared with PLA/HA fibrous membranes not bound with VEGF. VEGF-bound PLA/HA fibrous membranes demonstrate the slow release of VEGF. The VEGF binding process does not disrupt the morphology and structure of the fibrous membranes. The fibrous membranes could stimulate both osteogenesis and angiogenesis. Taken together, this research provides a new strategy for critical-sized bone defects repairing.
Collapse
Affiliation(s)
- Yanghao Wang
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Haohan Li
- Kunming Medical University, Kunming, Yunnan, China
| | - Cuicui Zhao
- Kunming Medical University, Kunming, Yunnan, China
| | - Qihan Zi
- Kunming Medical University, Kunming, Yunnan, China
| | - Fei He
- Department of orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Weizhou Wang
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
31
|
Jiang P, Zhang Y, Hu R, Shi B, Zhang L, Huang Q, Yang Y, Tang P, Lin C. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioact Mater 2023; 27:15-57. [PMID: 37035422 PMCID: PMC10074421 DOI: 10.1016/j.bioactmat.2023.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Titanium (Ti) and its alloys have been widely used as orthopedic implants, because of their favorable mechanical properties, corrosion resistance and biocompatibility. Despite their significant success in various clinical applications, the probability of failure, degradation and revision is undesirably high, especially for the patients with low bone density, insufficient quantity of bone or osteoporosis, which renders the studies on surface modification of Ti still active to further improve clinical results. It is discerned that surface physicochemical properties directly influence and even control the dynamic interaction that subsequently determines the success or rejection of orthopedic implants. Therefore, it is crucial to endow bulk materials with specific surface properties of high bioactivity that can be performed by surface modification to realize the osseointegration. This article first reviews surface characteristics of Ti materials and various conventional surface modification techniques involving mechanical, physical and chemical treatments based on the formation mechanism of the modified coatings. Such conventional methods are able to improve bioactivity of Ti implants, but the surfaces with static state cannot respond to the dynamic biological cascades from the living cells and tissues. Hence, beyond traditional static design, dynamic responsive avenues are then emerging. The dynamic stimuli sources for surface functionalization can originate from environmental triggers or physiological triggers. In short, this review surveys recent developments in the surface engineering of Ti materials, with a specific emphasis on advances in static to dynamic functionality, which provides perspectives for improving bioactivity and biocompatibility of Ti implants.
Collapse
Affiliation(s)
- Pinliang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanmei Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ren Hu
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin Shi
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Lihai Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Peifu Tang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Changjian Lin
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
32
|
Omer SA, McKnight KH, Young LI, Song S. Stimulation strategies for electrical and magnetic modulation of cells and tissues. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:21. [PMID: 37391680 DOI: 10.1186/s13619-023-00165-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/01/2023] [Indexed: 07/02/2023]
Abstract
Electrical phenomena play an important role in numerous biological processes including cellular signaling, early embryogenesis, tissue repair and remodeling, and growth of organisms. Electrical and magnetic effects have been studied on a variety of stimulation strategies and cell types regarding cellular functions and disease treatments. In this review, we discuss recent advances in using three different stimulation strategies, namely electrical stimulation via conductive and piezoelectric materials as well as magnetic stimulation via magnetic materials, to modulate cell and tissue properties. These three strategies offer distinct stimulation routes given specific material characteristics. This review will evaluate material properties and biological response for these stimulation strategies with respect to their potential applications in neural and musculoskeletal research.
Collapse
Affiliation(s)
- Suleyman A Omer
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Kaitlyn H McKnight
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Lucas I Young
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Shang Song
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA.
- Departments of Neuroscience GIDP, Materials Science and Engineering, BIO5 Institute, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
33
|
Adolpho LF, Ribeiro LMS, Freitas GP, Lopes HB, Gomes MPO, Ferraz EP, Gimenes R, Beloti MM, Rosa AL. Mesenchymal Stem Cells Combined with a P(VDF-TrFE)/BaTiO 3 Scaffold and Photobiomodulation Therapy Enhance Bone Repair in Rat Calvarial Defects. J Funct Biomater 2023; 14:306. [PMID: 37367270 DOI: 10.3390/jfb14060306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Tissue engineering and cell therapy have been the focus of investigations on how to treat challenging bone defects. This study aimed to produce and characterize a P(VDF-TrFE)/BaTiO3 scaffold and evaluate the effect of mesenchymal stem cells (MSCs) combined with this scaffold and photobiomodulation (PBM) on bone repair. METHODS AND RESULTS P(VDF-TrFE)/BaTiO3 was synthesized using an electrospinning technique and presented physical and chemical properties suitable for bone tissue engineering. This scaffold was implanted in rat calvarial defects (unilateral, 5 mm in diameter) and, 2 weeks post-implantation, MSCs were locally injected into these defects (n = 12/group). Photobiomodulation was then applied immediately, and again 48 and 96 h post-injection. The μCT and histological analyses showed an increment in bone formation, which exhibited a positive correlation with the treatments combined with the scaffold, with MSCs and PBM inducing more bone repair, followed by the scaffold combined with PBM, the scaffold combined with MSCs, and finally the scaffold alone (ANOVA, p ≤ 0.05). CONCLUSIONS The P(VDF-TrFE)/BaTiO3 scaffold acted synergistically with MSCs and PBM to induce bone repair in rat calvarial defects. These findings emphasize the need to combine a range of techniques to regenerate large bone defects and provide avenues for further investigations on innovative tissue engineering approaches.
Collapse
Affiliation(s)
- Leticia Faustino Adolpho
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | | | - Gileade Pereira Freitas
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
- School of Dentistry, Federal University of Goiás, Goiânia 74605-020, GO, Brazil
| | - Helena Bacha Lopes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Maria Paula Oliveira Gomes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Emanuela Prado Ferraz
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Rossano Gimenes
- Institute of Physics and Chemistry, University of Itajubá, Itajubá 37500-903, MG, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| |
Collapse
|
34
|
Zheng Y, Zhao L, Li Y, Zhang X, Zhang W, Wang J, Liu L, An W, Jiao H, Ma C. Nanostructure Mediated Piezoelectric Effect of Tetragonal BaTiO 3 Coatings on Bone Mesenchymal Stem Cell Shape and Osteogenic Differentiation. Int J Mol Sci 2023; 24:4051. [PMID: 36835464 PMCID: PMC9961896 DOI: 10.3390/ijms24044051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
In recent years, porous titanium (Ti) scaffolds with BaTiO3 coatings have been designed to promote bone regeneration. However, the phase transitions of BaTiO3 have been understudied, and their coatings have yielded low effective piezoelectric coefficients (EPCs < 1 pm/V). In addition, piezoelectric nanomaterials bring many advantages in eliciting cell-specific responses. However, no study has attempted to design a nanostructured BaTiO3 coating with high EPCs. Herein, nanoparticulate tetragonal phase BaTiO3 coatings with cube-like nanoparticles but different effective piezoelectric coefficients were fabricated via anodization combining two hydrothermal processes. The effects of nanostructure-mediated piezoelectricity on the spreading, proliferation, and osteogenic differentiation of human jaw bone marrow mesenchymal stem cells (hJBMSCs) were explored. We found that the nanostructured tetragonal BaTiO3 coatings exhibited good biocompatibility and an EPC-dependent inhibitory effect on hJBMSC proliferation. The nanostructured tetragonal BaTiO3 coatings of relatively smaller EPCs (<10 pm/V) exhibited hJBMSC elongation and reorientation, broad lamellipodia extension, strong intercellular connection and osteogenic differentiation enhancement. Overall, the improved hJBMSC characteristics make the nanostructured tetragonal BaTiO3 coatings promising for application on implant surfaces to promote osseointegration.
Collapse
Affiliation(s)
- Yafei Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Lingzhou Zhao
- Air Force Medical Center, The Fourth Military Medical University, 30 Fucheng Road, Beijing 100089, China
| | - Ying Li
- Air Force Medical Center, The Fourth Military Medical University, 30 Fucheng Road, Beijing 100089, China
| | - Xinyuan Zhang
- School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Wei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Jing Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Lipeng Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Weikang An
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Hua Jiao
- School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Chufan Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Air Force Medical Center, The Fourth Military Medical University, 30 Fucheng Road, Beijing 100089, China
| |
Collapse
|
35
|
Alimohammadi M, Ramazani S A A. Surface modification of polyether ether ketone implant with a novel nanocomposite coating containing poly (vinylidene fluoride) toward improving piezoelectric and bioactivity performance. Colloids Surf B Biointerfaces 2023; 222:113098. [PMID: 36529036 DOI: 10.1016/j.colsurfb.2022.113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Polyether ether ketone (PEEK) is an appropriate biomaterial for orthopedic implant applications due to its superior mechanical properties, chemical resistance, nontoxicity, and Magnetic resonance imaging (MRI) compatibility. Unfortunately, the inherent bio-inertness of PEEK restricted its application and required some modification to provide better bioactivity. Besides it, the generated electrical signals in the bone due to its piezoelectricity features have a vital role in regulating bone repair and regeneration. We aimed to modify the surface of PEEK with a dual-functionality nanocomposite that provides surface bioactivity and simulates the piezoelectricity of bone. So, we introduced a novel piezoelectric-bioactive nanocomposite of dispersed poly (vinylidene fluoride) (PVDF) in a sulfonated PEEK (SPEEK) matrix containing Nanohydroxyapatite (nHA) and Carbon nanofiber (CNF) fillers for coating on PEEK substrate to improve its biological activity and simulate the electrical microenvironment for bone tissue. Furthermore, sulfonation of the PEEK surface was conducted as an intermediate layer to prepare better adhesion between the coating nanocomposite and the PEEK sublayer. Surface and cross-section morphology, apatite formation, and cell attachment were investigated on the different treated PEEK surfaces using field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray analysis (EDX). Also, piezoelectric performance, electrical conductivity, contact angle, and mechanical properties were examined on the prepared samples. Moreover, cell viability and cell morphology were investigated for biological evaluation with human osteoblast-like MG-63 cells. Collectively, the hydrophilicity of modified PEEK (mPEEK) coated with nanocomposite was improved due to the synergistic effects of SPEEK functional groups and nHA. Also, comprehensive investigation on the mPEEK treated with nanocomposite indicated a noticeably better bone-like apatite formation, cell proliferation, and cell attachments in the presence of nHA. The transfer of induced piezoelectric charges from dispersed PVDF in the matrix to the surface of nanocomposite containing 2 wt% of CNF increased output voltage to 1893 mV. On the other hand, the presence of CNF in nanocomposites enhanced tensile strength and Young's modulus by 92% and 117%, respectively.
Collapse
Affiliation(s)
| | - Ahmad Ramazani S A
- Department of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
36
|
Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds promotes anti-inflammatory polarization of macrophages and bone repair via MAPK/JNK inhibition and OXPHOS activation. Biomaterials 2023; 293:121990. [PMID: 36586147 DOI: 10.1016/j.biomaterials.2022.121990] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
Bone regeneration is a highly synchronized process that requires multiple biochemical, bioelectrical, mechanical, and other physiological cues. The restoration and delivery of electrical cues locally through piezoelectric materials have been demonstrated to facilitate osteogenesis in vitro and bone repair in vivo. However, the underlying mechanism by which piezoelectric stimulation promotes osteogenesis and bone repair remains unclear yet, limiting the design and clinical application of piezoelectric materials for bone repair. Herein, a piezoelectric BaTiO3/Ti6Al4V (BT/Ti) scaffold was prepared by hydrothermal synthesis of a uniform BaTiO3 layer on three dimensionally printed Ti6Al4V scaffold. The BT/Ti scaffolds exhibited piezoelectricity and favorable biocompatibility with RAW264.7 macrophages after polarization. In vitro results demonstrated that the piezoelectric effects of the poled BT/Ti scaffolds promoted M2 polarization of macrophages and immunoregulatory osteogenesis of MC-3T3 osteoblasts. In a subcutaneous implantation model, a higher proportion of CD68+ CD206+ M2 macrophages was observed in the tissues around the poled BT/Ti scaffolds under low intensity pulsed ultrasound (LIPUS) stimulation. Improvements in macrophage M2 polarization and bone regeneration were further identified in a sheep cervical corpectomy model. RNA sequencing and mechanistic investigation revealed that the piezoelectric BT/Ti (poled) scaffolds inhibited the inflammatory MAPK/JNK signaling cascade and activated oxidative phosphorylation (OXPHOS) and ATP synthesis in macrophages. Collectively, our study provides a promising method for regulating the immune microenvironment and enhancing bone regeneration using polarized piezoelectric BT/Ti scaffolds.
Collapse
|
37
|
Ji J, Yang C, Shan Y, Sun M, Cui X, Xu L, Liang S, Li T, Fan Y, Luo D, Li Z. Research Trends of Piezoelectric Nanomaterials in Biomedical Engineering. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Jianying Ji
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning 530004 China
| | - Chunyu Yang
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- State Key Laboratory of Heavy Oil Processing College of New Energy and Materials Beijing Key Laboratory of Biogas Upgrading Utilization China University of Petroleum (Beijing) Beijing 102249 China
- Institute of Engineering Medicine School of Life Science Beijing Institute of Technology Beijing 100081 China
| | - Yizhu Shan
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
| | - Mingjun Sun
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- State Key Laboratory of Heavy Oil Processing College of New Energy and Materials Beijing Key Laboratory of Biogas Upgrading Utilization China University of Petroleum (Beijing) Beijing 102249 China
- Institute of Engineering Medicine School of Life Science Beijing Institute of Technology Beijing 100081 China
| | - Xi Cui
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
| | - Lingling Xu
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 China
| | - Shiyuan Liang
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
| | - Tong Li
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning 530004 China
| | - Yijie Fan
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
| | - Dan Luo
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhou Li
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning 530004 China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
38
|
Dai X, Yao X, Zhang W, Cui H, Ren Y, Deng J, Zhang X. The Osteogenic Role of Barium Titanate/Polylactic Acid Piezoelectric Composite Membranes as Guiding Membranes for Bone Tissue Regeneration. Int J Nanomedicine 2022; 17:4339-4353. [PMID: 36160471 PMCID: PMC9491370 DOI: 10.2147/ijn.s378422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/21/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Biopiezoelectric materials have good biocompatibility and excellent piezoelectric properties, and they can generate local currents in vivo to restore the physiological electrical microenvironment of the defect and promote bone regeneration. Previous studies of guided bone regeneration membranes have rarely addressed the point of restoring it, so this study prepared a Barium titanate/Polylactic acid (BT/PLA) piezoelectric composite membrane and investigated its bone-formation, with a view to providing an experimental basis for clinical studies of guided bone tissue regeneration membranes. Methods BT/PLA composite membranes with different BT ratio were prepared by solution casting method, and piezoelectric properties were performed after corona polarization treatment. The optimal BT ratio was selected and then subjected to in vitro cytological experiments and in vivo osteogenic studies in rats. The effects on adhesion, proliferation and osteogenic differentiation of the pre-osteoblastic cell line (MC3T3-E1) were investigated. The effect of composite membranes on bone repair of cranial defects in rats was investigated after 4 and 12 weeks. Results The highest piezoelectric coefficient d33 were obtained when the BT content was 20%, reaching (7.03 ± 0.26) pC/N. The value could still be maintained at (4.47±0.17) pC/N after 12 weeks, meeting the piezoelectric constant range of bone. In vitro, the MC3T3-E1 cells showed better adhesion and proliferative activity in the group of polarized 20%BT. The highest alkaline phosphatase (ALP) content was observed in cells of this group. In vivo, it promoted rapid bone regeneration. At 4 weeks postoperatively, new bone formation was evident at the edges of the defect, with extensive marrow cavity formation; after 12 weeks, the defect was essentially completely closed, with density approximating normal bone tissue and significant mineralization. Conclusion The BT/PLA piezoelectric composite membrane has good osteogenic properties and provides a new idea for guiding the research of membrane materials for bone tissue regeneration.
Collapse
Affiliation(s)
- Xianglin Dai
- College of Stomatology, North China University of Science and Technology, Tangshan, 063200, People's Republic of China
| | - Xijun Yao
- College of Stomatology, North China University of Science and Technology, Tangshan, 063200, People's Republic of China
| | - Wenfeng Zhang
- College of Stomatology, North China University of Science and Technology, Tangshan, 063200, People's Republic of China
| | - Hongyuan Cui
- College of Electrical Engineering, North China University of Science and Technology, Tangshan, 063200, People's Republic of China
| | - Yifan Ren
- College of Stomatology, North China University of Science and Technology, Tangshan, 063200, People's Republic of China
| | - Jiupeng Deng
- College of Stomatology, North China University of Science and Technology, Tangshan, 063200, People's Republic of China
| | - Xia Zhang
- Library, North China University of Science and Technology, Tangshan, 063200, People's Republic of China
| |
Collapse
|
39
|
Influence of P(VDF-TrFE) Membranes with Different Surface Potentials on the Activity and Angiogenic Function of Human Umbilical Vein Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5693994. [PMID: 36199755 PMCID: PMC9529516 DOI: 10.1155/2022/5693994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
During bone tissue regeneration, neovascularization is critical, and the formation of a blood supply network is crucial for bone growth stimulation and remodeling. Previous studies suggest that bioelectric signals facilitate the process of angiogenesis. Owing to their biomimetic electroactivity, piezoelectric membranes have garnered substantial interest in the field of guided bone regeneration. Nevertheless, the knowledge of their influence due to varying surface potentials on the progression of angiogenesis remains ambiguous. Therefore, we proposed the preparation of an electroactive material, P(VDF-TrFE), and investigated its effects on the activity and angiogenic functions of human umbilical vein endothelial cells (HUVECs). The HUVECs were directly cultured on P(VDF-TrFE) membranes with different surface potentials. Subsequently, cell viability, proliferation, migration, tube formation, and expressions of related factors were assessed through appropriate assays. Our results revealed that the negative surface potential groups exerted differential effects on the modulation of angiogenesis in vitro. The P(VDF-TrFE) membranes with negative surface potential exhibited the greatest effect on cellular behaviors, including proliferation, migration, tube formation, and promotion of angiogenesis by releasing key factors such as VEGF-A and CD31. Overall, these results indicated that the surface potential of piezoelectric P(VDF-TrFE) membranes could exert differential effects on angiogenesis in vitro. We present a novel approach for designing bioactive materials for guided bone regeneration.
Collapse
|
40
|
Guillot-Ferriols M, Lanceros-Méndez S, Gómez Ribelles JL, Gallego Ferrer G. Electrical stimulation: Effective cue to direct osteogenic differentiation of mesenchymal stem cells? BIOMATERIALS ADVANCES 2022; 138:212918. [PMID: 35913228 DOI: 10.1016/j.bioadv.2022.212918] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Mesenchymal stem cells (MSCs) play a major role in bone tissue engineering (BTE) thanks to their capacity for osteogenic differentiation and being easily available. In vivo, MSCs are exposed to an electroactive microenvironment in the bone niche, which has piezoelectric properties. The correlation between the electrically active milieu and bone's ability to adapt to mechanical stress and self-regenerate has led to using electrical stimulation (ES) as physical cue to direct MSCs differentiation towards the osteogenic lineage in BTE. This review summarizes the different techniques to electrically stimulate MSCs to induce their osteoblastogenesis in vitro, including general electrical stimulation and substrate mediated stimulation by means of conductive or piezoelectric cell culture supports. Several aspects are covered, including stimulation parameters, treatment times and cell culture media to summarize the best conditions for inducing MSCs osteogenic commitment by electrical stimulation, from a critical point of view. Electrical stimulation activates different signaling pathways, including bone morphogenetic protein (BMP) Smad-dependent or independent, regulated by mitogen activated protein kinases (MAPK), extracellular signal-regulated kinases (ERK) and p38. The roles of voltage gate calcium channels (VGCC) and integrins are also highlighted according to their application technique and parameters, mainly converging in the expression of RUNX2, the master regulator of the osteogenic differentiation pathway. Despite the evident lack of homogeneity in the approaches used, the ever-increasing scientific evidence confirms ES potential as an osteoinductive cue, mimicking aspects of the in vivo microenvironment and moving one step forward to the translation of this approach into clinic.
Collapse
Affiliation(s)
- M Guillot-Ferriols
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| | - S Lanceros-Méndez
- Centre of Physics of Minho and Porto Universities, Universidade do Minho, 4710-058 Braga, Portugal; BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - J L Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - G Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| |
Collapse
|
41
|
Huang G, Pan ST, Qiu JX. The osteogenic effects of porous Tantalum and Titanium alloy scaffolds with different unit cell structure. Colloids Surf B Biointerfaces 2021; 210:112229. [PMID: 34875470 DOI: 10.1016/j.colsurfb.2021.112229] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022]
Abstract
Porous scaffolds have long been regarded as optimal substitute for bone tissue repairing. In order to explore the influence of unit cell structure and inherent material characteristics on the porous scaffolds in terms of mechanical and biological performance, selective laser melting (SLM) technology was used to fabricate porous tantalum (Ta) and titanium alloy (Ti6Al4V) with diamond (Di) or rhombic dodecahedron (Do) unit cell structure. The mechanical strength of all the porous scaffolds could match that of trabecular bone, while the biological performance of each scaffold was diverse from each other. Moreover, the ILK/ERK1/2/Runx2 signaling pathway had been verified to be involved in the osteogenic differentiation of rat bone mesenchymal stem cells (rBMSCs) cultured on those porous scaffolds. Unit cell structure and material characteristics of the porous Ta and Ti6Al4V scaffolds can synergistically modulate this axis and further impact on the osteogenic effects. Our results hence illustrate that porous Ta scaffold with diamond unit cell structure possesses excellent osteogenic effects and moderate mechanical strength and porous Ti6Al4V scaffold with rhombic dodecahedron unit cell structure has the highest mechanical strength and moderate osteogenic effects. Both porous Ta and Ti6Al4V can be applied in different settings requiring either better biological performance or higher mechanical demand.
Collapse
Affiliation(s)
- Gan Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shu-Ting Pan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
42
|
Kang Y, Liu C, Wang M, Wang C, Yan YG, Wang WJ. A novel rat model of interbody fusion based on anterior lumbar corpectomy and fusion (ALCF). BMC Musculoskelet Disord 2021; 22:965. [PMID: 34794408 PMCID: PMC8603486 DOI: 10.1186/s12891-021-04822-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Rats have been widely used as experimental animals when performing fundamental research because they are economical, rapidly reproducing, and heal quickly. While the rat interbody fusion model has been applied in basic studies, existing rat models generally have shortcomings, such as insufficiently simulating clinical surgery. The purpose of this study was to develop a novel rat model of interbody fusion which more closely represents clinical surgery. METHODS The internal fixation was designed based on physical measurements of the rats' lumbar spine. Then, ten rats divided into two groups (A and B) underwent anterior lumbar corpectomy and fusion of the L5 vertebrae. Groups A and B were sacrificed four and 8 weeks post-surgery, respectively. Micro-CT and histological examination were used to evaluate the model. Fusion rate, bone volume fraction (BV/TV), trabecular bone number (Tb.N), trabecular bone thickness (Tb.Th), and the area ratio of newly formed bone (NB) were calculated for quantitative analysis. RESULTS Based on the L5 body dimensions of individual rats, 3D-printed titanium cage of the appropriate size were printed. The operations were successfully completed in all ten rats, and X-ray confirmed that internal fixation was good without migration. Micro-CT suggested that fusion rates in group B (100%) were greater than group A (40%, P < 0.05). The BV/TV (B: 42.20 ± 10.50 vs. A: 29.02 ± 3.25, P < 0.05) and Tb.N (B: 4.66 ± 1.23 vs. A: 1.97 ± 0.40, P < 0.05) were greater in group B than A, and the Tb.Th in group B was lower than group A (B: 0.10 ± 0.04 vs. A: 0.15 ± 0.02, P < 0.05). Histomorphometry results demonstrated that the area ratio of NB in group B were greater than group A (B: 35.72 ± 12.80 vs. A: 12.36 ± 16.93, P < 0.05). CONCLUSION A rat interbody fusion model based on anterior lumbar corpectomy and fusion has successfully been constructed and verified. It could provide a new choice for fundamental research using animal models of spinal fusion.
Collapse
Affiliation(s)
- Yu Kang
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Orthopedicsity, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Chao Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ming Wang
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Cheng Wang
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Yi-Guo Yan
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wen-Jun Wang
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
43
|
Tang Z, Wei X, Li T, Wu H, Xiao X, Hao Y, Li S, Hou W, Shi L, Li X, Guo Z. Three-Dimensionally Printed Ti2448 With Low Stiffness Enhanced Angiogenesis and Osteogenesis by Regulating Macrophage Polarization via Piezo1/YAP Signaling Axis. Front Cell Dev Biol 2021; 9:750948. [PMID: 34869337 PMCID: PMC8634253 DOI: 10.3389/fcell.2021.750948] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
Previous studies have found that the novel low-elastic-modulus Ti2448 alloy can significantly reduce stress shielding and contribute to better bone repair than the conventional Ti6Al4V alloy. In this study, the promotion of osteogenesis and angiogenesis by three-dimensionally printed Ti2448 were also observed in vivo. However, these were not significant in a series of in vitro tests. The stiffness of materials has been reported to greatly affect the response of macrophages, and the immunological regulation mediated by macrophages directly determines the fate of bone implants. Therefore, we designed more experiments to explore the role of three-dimensionally printed Ti2448 in macrophage activation and related osteogenesis and angiogenesis. As expected, we found a significant increase in the number of M2 macrophages around Ti2448 implants, as well as better osteogenesis and angiogenesis in vivo. In vitro studies also showed that macrophages pre-treated with Ti2448 alloy significantly promoted angiogenesis and osteogenic differentiation through increased PDGF-BB and BMP-2 secretion, and the polarization of M2 macrophages was enhanced. We deduced that Ti2448 promotes angiogenesis and osteogenesis through Piezo1/YAP signaling axis-mediated macrophage polarization and related cytokine secretion. This research might provide insight into the biological properties of Ti2448 and provide a powerful theoretical supplement for the future application of three-dimensionally printed Ti2448 implants in orthopaedic surgery.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinghui Wei
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Hao Wu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xin Xiao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yulin Hao
- Institute of Metal Research, Chinese Academy of Science, Shenyang, China
| | - Shujun Li
- Institute of Metal Research, Chinese Academy of Science, Shenyang, China
| | - Wentao Hou
- Institute of Metal Research, Chinese Academy of Science, Shenyang, China
| | - Lei Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaokang Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
44
|
Wei X, Tang Z, Wu H, Zuo X, Dong H, Tan L, Wang W, Liu Y, Wu Z, Shi L, Wang N, Li X, Xiao X, Guo Z. Biofunctional magnesium-coated Ti6Al4V scaffolds promote autophagy-dependent apoptosis in osteosarcoma by activating the AMPK/mTOR/ULK1 signaling pathway. Mater Today Bio 2021; 12:100147. [PMID: 34704011 PMCID: PMC8523865 DOI: 10.1016/j.mtbio.2021.100147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
The recurrence of osteosarcoma (OS) after reconstruction using Ti6Al4V prostheses remains a major problem in the surgical treatment of OS. Modification of the surfaces of Ti6Al4V prostheses with antitumor functions is an important strategy for improving therapeutic outcomes. Magnesium (Mg) coating has been shown to be multifunctional: it exhibits osteogenic and angiogenic properties and the potential to inhibit OS. In this study, we determined the proper concentration of released Mg2+ with respect to OS inhibition and biosafety and evaluated the anti-OS effects of Mg-coated Ti6Al4V scaffolds. We found that the release of Mg2+ during short-term and long-term degradation could significantly inhibit the proliferation and migration of HOS and 143B cells. Increased cell apoptosis and excessive autophagy were also observed, and further evidence of AMPK/mTOR/ULK1 signaling pathway activation was obtained both in vitro and in vivo, which suggested that the biofunctional scaffolds induce OS inhibition. Our study demonstrates the ability of an Mg coating to inhibit OS and may contribute to the further application of Mg-coated Ti6Al4V prostheses. Multifunctional Mg coating is considerable surface modification for Ti6Al4V prostheses. Mg2+ releasing by the scaffolds could significantly inhibit the proliferation and migration of OS cells. The biofunctional scaffolds could inhibit OS by activating autophagy-dependent apoptosis. The AMPK/mTOR/ULK-1 pathway was involved in autophagy-depended apoptosis induced by the scaffolds.
Collapse
Affiliation(s)
- X Wei
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Z Tang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - H Wu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - X Zuo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - H Dong
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - L Tan
- Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, PR China
| | - W Wang
- Department of Immunology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Y Liu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Z Wu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - L Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - N Wang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - X Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| | - X Xiao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Z Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| |
Collapse
|
45
|
Sun J, Xing F, Braun J, Traub F, Rommens PM, Xiang Z, Ritz U. Progress of Phototherapy Applications in the Treatment of Bone Cancer. Int J Mol Sci 2021; 22:ijms222111354. [PMID: 34768789 PMCID: PMC8584114 DOI: 10.3390/ijms222111354] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Bone cancer including primary bone cancer and metastatic bone cancer, remains a challenge claiming millions of lives and affecting the life quality of survivors. Conventional treatments of bone cancer include wide surgical resection, radiotherapy, and chemotherapy. However, some bone cancer cells may remain or recur in the local area after resection, some are highly resistant to chemotherapy, and some are insensitive to radiotherapy. Phototherapy (PT) including photodynamic therapy (PDT) and photothermal therapy (PTT), is a clinically approved, minimally invasive, and highly selective treatment, and has been widely reported for cancer therapy. Under the irradiation of light of a specific wavelength, the photosensitizer (PS) in PDT can cause the increase of intracellular ROS and the photothermal agent (PTA) in PTT can induce photothermal conversion, leading to the tumoricidal effects. In this review, the progress of PT applications in the treatment of bone cancer has been outlined and summarized, and some envisioned challenges and future perspectives have been mentioned. This review provides the current state of the art regarding PDT and PTT in bone cancer and inspiration for future studies on PT.
Collapse
Affiliation(s)
- Jiachen Sun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Joy Braun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Frank Traub
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Pol Maria Rommens
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
- Correspondence: (Z.X.); (U.R.)
| | - Ulrike Ritz
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Correspondence: (Z.X.); (U.R.)
| |
Collapse
|
46
|
Chen J, Li S, Jiao Y, Li J, Li Y, Hao YL, Zuo Y. In Vitro Study on the Piezodynamic Therapy with a BaTiO 3-Coating Titanium Scaffold under Low-Intensity Pulsed Ultrasound Stimulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49542-49555. [PMID: 34610736 DOI: 10.1021/acsami.1c15611] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To solve the poor sustainability of electroactive stimulation in clinical therapy, a strategy of combining a piezoelectric BaTiO3-coated Ti6Al4V scaffold and low-intensity pulsed ultrasound (LIPUS) was unveiled and named here as piezodynamic therapy. Thus, cell behavior could be regulated phenomenally by force and electricity simultaneously. First, BaTiO3 was deposited uniformly on the surface of the three-dimensional (3D) printed porous Ti6Al4V scaffold, which endowed the scaffold with excellent force-electricity responsiveness under pulsed ultrasound exposure. The results of live/dead staining, cell scanning electron microscopy, and F-actin staining showed that cells had better viability, better pseudo-foot adhesion, and more muscular actin bundles when they underwent the piezodynamic effect of ultrasound and piezoelectric coating. This piezodynamic therapy activated more mitochondria at the initial stage that intervened in the cell cycle by promoting cells' proliferation and weakened the apoptotic damage. The quantitative real-time polymerase chain reaction data further confirmed that the costimulation of the ultrasound and the piezoelectric scaffolds could trigger adequate current to upregulated the expression of osteogenic-related genes. The continuous electric cues could be generated by the BaTiO3-coated scaffold and intermittent LIPUS stimulation; thereon, more efficient bone healing would be promoted by piezodynamic therapy in future treatment.
Collapse
Affiliation(s)
- Jie Chen
- Research Center for Nano Biomaterials, and Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Shujun Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, People's Republic of China
| | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, People's Republic of China
| | - Jidong Li
- Research Center for Nano Biomaterials, and Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yubao Li
- Research Center for Nano Biomaterials, and Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yu-Lin Hao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, People's Republic of China
| | - Yi Zuo
- Research Center for Nano Biomaterials, and Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
47
|
He M, Huang Y, Xu H, Feng G, Liu L, Li Y, Sun D, Zhang L. Modification of polyetheretherketone implants: From enhancing bone integration to enabling multi-modal therapeutics. Acta Biomater 2021; 129:18-32. [PMID: 34020056 DOI: 10.1016/j.actbio.2021.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
Polyetheretherketone (PEEK) is a popular thermoplastic material widely used in engineering applications due to its favorable mechanical properties and stability at high temperatures. With the first implantable grade PEEK being commercialized in 1990s, the use of PEEK has since grown exponentially in the biomedical field and has rapidly transformed a large section of the medical devices landscape. Nowadays, PEEK is a standard biomaterial used across a wide range of implant applications, however, its bioinertness remains a limitation for bone repair applications. The increasing demand for enhanced treatment efficacy/improved patient quality of life, calls for next-generation implants that can offer fast bone integration as well as other desirable therapeutic functions. As such, modification of PEEK implants has progressively shifted from offering desirable mechanical properties, enhancing bioactivity/fast osteointegration, to more recently, tackling post-surgery bacterial infection/biofilm formation, modulation of inflammation and management of bone cancers. Such progress is also accompanied by the evolution of the PEEK manufacturing technologies, to meet the ever increasing demand for more patient specific devices. However, no review has comprehensively covered the recently engaged application areas to date. This paper provides an up-to-date review on the development of PEEK-based biomedical devices in the past 10 years, with particularly focus on modifying PEEK for multi-modal therapeutics. The aim is to provide the peers with a timely update, which may guide and inspire the research and development of next generation PEEK-based healthcare products. STATEMENT OF SIGNIFICANCE: Significant progress has been made in PEEK processing and modification techniques in the past decades, which greatly contributed to its wide applications in the biomedical field. Despite the high volume of published literature on PEEK implant related research, there is a lack of review on its emerging applications in multi-modal therapeutics, which involve bone regeneration, anti-bacteria/anti-inflammation, and cancer inhibition, etc. This timely review covers the state-of-the-art in these exciting areas and provides the important guidance for next generation PEEK based biomedical device research and development.
Collapse
|
48
|
Dang W, Yi K, Ju E, Jin Y, Xu Y, Wang H, Chen WC, Wang K, Wang Y, Tao Y, Li M. 3D Printed Bioceramic Scaffolds as a Universal Therapeutic Platform for Synergistic Therapy of Osteosarcoma. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18488-18499. [PMID: 33856761 DOI: 10.1021/acsami.1c00553] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The postoperative tumor recurrence and chemotherapy resistance in clinical osteosarcoma treatment have raised an imperative need to develop local implants for selectively killing residual tumor cells and simultaneously provide a scaffold for effectively filling the tumor resection-induced bone defects. Herein, a multifunctional platform is developed through successively coating TiN microparticles and doxorubicin (DOX) on the surface of tricalcium phosphate (TCP) scaffolds to achieve synergetic effects of photothermal therapy and chemotherapy for osteosarcoma. The content of TiN and DOX in the scaffolds can be flexibly adjusted by immersing the scaffolds into the solution containing different concentrations of TiN and DOX. The excellent therapeutic effect was achieved both in vitro and in vivo through the precise photothermal therapy and localized controlled-release chemotherapy. Moreover, the overall bulk scaffolds provide the mechanical support for bone tissue when implanting scaffolds into bone defects resulting from surgical removal of osteosarcoma. Importantly, using the poly(d,l-lactide) (PDLLA) as the medium, the scaffolds can be exploited as a universal platform for loading different kinds of therapeutic agents. This study may provide insights into designing multifunctional local implantation for eradicating tumors after surgical interventions with mitigated side effects.
Collapse
Affiliation(s)
- Wentao Dang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Wei-Chih Chen
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Kun Wang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| |
Collapse
|
49
|
Beta-Titanium Alloy Covered by Ferroelectric Coating–Physicochemical Properties and Human Osteoblast-Like Cell Response. COATINGS 2021. [DOI: 10.3390/coatings11020210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Beta-titanium alloys are promising materials for bone implants due to their advantageous mechanical properties. For enhancing the interaction of bone cells with this perspective material, we developed a ferroelectric barium titanate (BaTiO3) coating on a Ti39Nb alloy by hydrothermal synthesis. This coating was analyzed by scanning electron and Raman microscopy, X-ray diffraction, piezoresponse force microscopy, X-ray photoelectron spectroscopy, nanoindentation, and roughness measurement. Leaching experiments in a saline solution revealed that Ba is released from the coating. A progressive decrease of Ba concentration in the material was also found after 1, 3, and 7 days of cultivation of human osteoblast-like Saos-2 cells. On day 1, the Saos-2 cells adhered on the BaTiO3 film in higher initial numbers than on the bare alloy, but they were less spread, and their initial proliferation rate was slower. These cells also contained a lower amount of beta1-integrins and vinculin, i.e., molecules involved in cell adhesion, and produced a lower amount of collagen I. This cell behavior was attributed to a higher surface roughness of BaTiO3 film rather than to its potential cytotoxicity, because the cell viability on this film was very high, reaching almost 99%. The amount of alkaline phosphatase, an enzyme involved in bone matrix mineralization, was similar in cells on the BaTiO3-coated and uncoated alloy, and on day 7, the cells on BaTiO3 film attained a higher final cell population density. These results indicate that after some improvements, particularly in its roughness and stability, the hydrothermal ferroelectric BaTiO3 film could be promising coating for improved osseointegration of bone implants.
Collapse
|