1
|
Jiang H, Wang H, Wang W, Li G. Two-dimensional GaN/Si heterojunctions towards high-performance UV-B photodetectors. MATERIALS HORIZONS 2025. [PMID: 40135507 DOI: 10.1039/d4mh01899k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Two-dimensional (2D) GaN with a tunable bandgap, high electron mobility, and high chemical and thermal stabilities is an ideal choice for high-performance UV-B photodetectors (PDs). However, the realization of 2D GaN based UV-B PDs faces the challenge of simultaneously achieving large-scale preparation and band engineering. In this work, novel UV-B PDs based on wafer-scale 2D GaN/Si heterojunctions have been proposed. Wafer-scale synthesis and band engineering of 2D GaN are realized via a two-step method consisting of magnetron sputtering and high temperature ammonolysis. With well-controlled thickness, the bandgap of 2D GaN is regulated to 3.6 and 4.1 eV. Impressively, novel UV-B PDs based on 2D GaN/Si heterojunctions exhibit a photoresponsivity of 2.2 A W-1 at 308 nm at 1 V, and a fast response speed with a rise/decay time of 1.3/1.1 ms, simultaneously. This work provides a resolution for high-performance UV-B PDs through the controllable growth of 2D GaN, and the proposed synthesis strategy significantly broadens the application prospects of 2D GaN in the field of UV optoelectronics.
Collapse
Affiliation(s)
- Hongsheng Jiang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Haiyan Wang
- China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing, Guangzhou, 510650, P. R. China
| | - Wenliang Wang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guoqiang Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
2
|
Choi SH, Kim Y, Jeon I, Kim H. Heterogeneous Integration of Wide Bandgap Semiconductors and 2D Materials: Processes, Applications, and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411108. [PMID: 39425567 PMCID: PMC11937997 DOI: 10.1002/adma.202411108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Indexed: 10/21/2024]
Abstract
Wide-bandgap semiconductors (WBGs) are crucial building blocks of many modern electronic devices. However, there is significant room for improving the crystal quality, available choice of materials/heterostructures, scalability, and cost-effectiveness of WBGs. In this regard, utilizing layered 2D materials in conjunction with WBG is emerging as a promising solution. This review presents recent advancements in the integration of WBGs and 2D materials, including fabrication techniques, mechanisms, devices, and novel functionalities. The properties of various WBGs and 2D materials, their integration techniques including epitaxial and nonepitaxial growth methods as well as transfer techniques, along with their advantages and challenges, are discussed. Additionally, devices and applications based on the WBG/2D heterostructures are introduced. Distinctive advantages of merging 2D materials with WBGs are described in detail, along with perspectives on strategies to overcome current challenges and unlock the unexplored potential of WBG/2D heterostructures.
Collapse
Affiliation(s)
- Soo Ho Choi
- Department of Nano EngineeringDepartment of Nano Science and TechnologySKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Department of Electrical and Computer EngineeringNick Holonyak, Jr. Micro and Nanotechnology LaboratoryUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Yongsung Kim
- Department of Materials Science and EngineeringNick Holonyak, Jr. Micro and Nanotechnology LaboratoryUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Il Jeon
- Department of Nano EngineeringDepartment of Nano Science and TechnologySKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Hyunseok Kim
- Department of Electrical and Computer EngineeringNick Holonyak, Jr. Micro and Nanotechnology LaboratoryUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
3
|
Cong X, Yin H, Zheng Y, He W. Recent progress of group III-V materials-based nanostructures for photodetection. NANOTECHNOLOGY 2024; 35:382002. [PMID: 38759630 DOI: 10.1088/1361-6528/ad4cf0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
Due to the suitable bandgap structure, efficient conversion rates of photon to electron, adjustable optical bandgap, high electron mobility/aspect ratio, low defects, and outstanding optical and electrical properties for device design, III-V semiconductors have shown excellent properties for optoelectronic applications, including photodiodes, photodetectors, solar cells, photocatalysis, etc. In particular, III-V nanostructures have attracted considerable interest as a promising photodetector platform, where high-performance photodetectors can be achieved based on the geometry-related light absorption and carrier transport properties of III-V materials. However, the detection ranges from Ultraviolet to Terahertz including broadband photodetectors of III-V semiconductors still have not been more broadly development despite significant efforts to obtain the high performance of III-V semiconductors. Therefore, the recent development of III-V photodetectors in a broad detection range from Ultraviolet to Terahertz, and future requirements are highly desired. In this review, the recent development of photodetectors based on III-V semiconductor with different detection range is discussed. First, the bandgap of III-V materials and synthesis methods of III-V nanostructures are explored, subsequently, the detection mechanism and key figures-of-merit for the photodetectors are introduced, and then the device performance and emerging applications of photodetectors are provided. Lastly, the challenges and future research directions of III-V materials for photodetectors are presented.
Collapse
Affiliation(s)
- Xiangna Cong
- College of Electronics and Information Engineering, Institute of Microelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Huabi Yin
- College of Electronics and Information Engineering, Institute of Microelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yue Zheng
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Wenlong He
- College of Electronics and Information Engineering, Institute of Microelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
4
|
Vashishtha P, Abidi IH, Giridhar SP, Verma AK, Prajapat P, Bhoriya A, Murdoch BJ, Tollerud JO, Xu C, Davis JA, Gupta G, Walia S. CVD-Grown Monolayer MoS 2 and GaN Thin Film Heterostructure for a Self-Powered and Bidirectional Photodetector with an Extended Active Spectrum. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31294-31303. [PMID: 38838350 DOI: 10.1021/acsami.4c03902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Photodetector technology has evolved significantly over the years with the emergence of new active materials. However, there remain trade-offs between spectral sensitivity, operating energy, and, more recently, an ability to harbor additional features such as persistent photoconductivity and bidirectional photocurrents for new emerging application areas such as switchable light imaging and filter-less color discrimination. Here, we demonstrate a self-powered bidirectional photodetector based on molybdenum disulfide/gallium nitride (MoS2/GaN) epitaxial heterostructure. This fabricated detector exhibits self-powered functionality and achieves detection in two discrete wavelength bands: ultraviolet and visible. Notably, it attains a peak responsivity of 631 mAW-1 at a bias of 0V. The device's response to illumination at these two wavelengths is governed by distinct mechanisms, activated under applied bias conditions, thereby inducing a reversal in the polarity of the photocurrent. This work underscores the feasibility of self-powered and bidirectional photocurrent detection but also opens new vistas for technological advancements for future optoelectronic, neuromorphic, and sensing applications.
Collapse
Affiliation(s)
- Pargam Vashishtha
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012, India
| | - Irfan H Abidi
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Sindhu P Giridhar
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Ajay K Verma
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012, India
| | - Pukhraj Prajapat
- Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012, India
| | - Ankit Bhoriya
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012, India
| | - Billy J Murdoch
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne 3000, Australia
| | - Jonathan O Tollerud
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Chenglong Xu
- Micro Nano Research Facility, RMIT University, Melbourne 3000, Australia
| | - Jeff A Davis
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Govind Gupta
- Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012, India
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
5
|
Li H, Yang Z. Highly Responsive and Self-Powered Photodetector Based on PtSe 2/MoS 2 Heterostructure. Molecules 2024; 29:2553. [PMID: 38893429 PMCID: PMC11173480 DOI: 10.3390/molecules29112553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, 2D materials and their heterostructures have started to offer an ideal platform for high-performance photodetection devices. In this work, a highly responsive, self-powered photodetector based on PtSe2/MoS2 van der Waals heterostructure is demonstrated. The device achieves a noteworthy wide band spectral response from visible (405 nm) range to the near infrared region (980 nm). The remarkable photoresponsivity and external quantum efficiency up to 4.52 A/W, and 1880% are achieved, respectively, at 405 nm illumination with fast response time of 20 ms. In addition, the photodetector exhibits a decent photoresponsivity of 33.4 mA/W at zero bias, revealing the photodetector works well in the self-driven mode. Our work suggests that a PtSe2/MoS2 heterostructure could be a potential candidate for the high-performance photodetection applications.
Collapse
Affiliation(s)
| | - Zhibin Yang
- Key Laboratory of Optoelectronic Information and Technology, Ministry of Education, and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Du Y, Yin S, Li Y, Chen J, Shi D, Guo E, Zhang H, Wang Z, Qin Q, Zou C, Zhai T, Li L. Liquid-Metal-Assisted Synthesis of Patterned GaN Thin Films for High-Performance UV Photodetectors Array. SMALL METHODS 2024; 8:e2300175. [PMID: 37317014 DOI: 10.1002/smtd.202300175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/31/2023] [Indexed: 06/16/2023]
Abstract
GaN's outstanding physical characteristics allow for a wide range of applications in numerous industries. Although individual GaN-based ultraviolet (UV) photodetectors are the subject of in-depth research in recent decades, the demand for photodetectors array is rising as a result of advances in optoelectronic integration technology. However, as a prerequisite for constructing GaN-based photodetectors array, large-area, patterned synthesis of GaN thin films remains a certain challenge. This work presents a facile technique for pattern growing high-quality GaN thin films for the assembly of an array of high-performance UV photodetectors. This technique uses UV lithography, which is not only very compatible with common semiconductor manufacturing techniques, but also enables precise patterning modification. A typical detector has impressive photo-response performance under 365 nm irradiation, with an extremely low dark current of 40 pA, a high Ilight /Idark ratio over 105 , a high responsivity of 4.23 AW-1 , and a decent specific detectivity of 1.76 × 1012 Jones. Additional optoelectronic studies demonstrate the strong homogeneity and repeatability of the photodetectors array, enabling it to serve as a reliable UV image sensor with enough spatial resolution. These outcomes highlight the proposed patterning technique's enormous potential.
Collapse
Affiliation(s)
- Yuchen Du
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Shiqi Yin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Ying Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jiawang Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Dongfeng Shi
- Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei, 230037, P. R. China
| | - Erjuan Guo
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Hui Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zihan Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Qinggang Qin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Chongwen Zou
- National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, 230029, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Liang Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
7
|
Jian P, Cai X, Zhao Y, Li D, Zhang Z, Liu W, Xu D, Liang W, Zhou X, Dai J, Wu F, Chen C. Large-scale synthesis and exciton dynamics of monolayer MoS 2 on differently doped GaN substrates. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4475-4484. [PMID: 39634704 PMCID: PMC11501315 DOI: 10.1515/nanoph-2023-0503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2024]
Abstract
Mixed dimensional van der Waals heterostructure based on layered two-dimensional molybdenum disulfide (MoS2) interfaced to gallium nitride (GaN) has attracted tremendous attention due to its unique properties and application in novel electronic, optoelectronic, and quantum devices. However, developing facile synthesis methods and insights into the exciton dynamics for this system still remains a major challenge. Here, a simple and cost-effective method is demonstrated for large-scale synthesis of monolayer MoS2 on differently doped GaN substrates. A mixed aqueous solution of Na2MoO4 and NaOH is spin-coated on GaN and sulfurated in one step by chemical vapor deposition (CVD). High quality monolayer MoS2 nanosheets with side length over 400 μm and surface coverage ratio of more than 90 % are achieved on GaN. Furthermore, the PL intensity, excitonic transition ratios and ultrafast exciton dynamics of MoS2 are observed to be largely modulated by the doping type of GaN, owing to substrate-induced doping, which is proved by Raman, PL and transient absorption spectroscopy. Notably, p-GaN can attract electrons from monolayer MoS2 and weaken its intrinsic n-doping, thereby facilitating higher PL intensity as well as longer exciton lifetime, while n-GaN provides strong n-doping and generates opposite effect. This work hereby presents a pathway for large-scale synthesis of MoS2/GaN heterostructures and further understanding of their charge transfer properties and exciton dynamics, which should inspire their applications for optoelectronic devices.
Collapse
Affiliation(s)
- Pengcheng Jian
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Xueqing Cai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Yongming Zhao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Dongyan Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Zheng Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Weijie Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Dan Xu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Wenxi Liang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Xing Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Jiangnan Dai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Feng Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Changqing Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| |
Collapse
|
8
|
Fakhri MA, Jabbar HD, AbdulRazzaq MJ, Salim ET, Azzahrani AS, Ibrahim RK, Ismail RA. Preparation of GaN/Porous silicon heterojunction photodetector by laser deposition technique. Sci Rep 2023; 13:14746. [PMID: 37679411 PMCID: PMC10485076 DOI: 10.1038/s41598-023-41396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
In this work, gallium nitride (GaN) thin film was deposited on porous silicon (PSi) substrate via a pulsed laser deposition route with a 355 nm laser wavelength, 900 mJ of laser energy, and various substrate temperatures raging from 200 to 400 °C. The structural and optical properties of GaN films as a function of substrate temperature are investigate. XRD studies reveal that the GaN films deposited on porous silicon are nanocrystalline with a hexagonal wurtzite structure along (002) plane. The photoluminescence emission peaks of the GaN/PSi prepared at 300 °C substrate temperature are located at 368 nm and 728 nm corresponding to energy gap of 3.36 eV and 1.7 eV, respectively. The GaN/PSi heterojunction photodetector prepared at 300 °C exhibits the maximum performance, with a responsivity of 29.03 AW-1, detectivity of 8.6 × 1012 Jones, and an external quantum efficiency of 97.2% at 370 nm. Similarly, at 575 nm, the responsivity is 19.86 AW-1, detectivity is 8.9 × 1012 Jones, and the external quantum efficiency is 50.89%. Furthermore, the photodetector prepared at a temperature of 300 °C demonstrates a switching characteristic where the rise time and fall time are measured to be 363 and 711 μs, respectively.
Collapse
Affiliation(s)
- Makram A Fakhri
- Applied Science Department, University of Technology-Iraq, Baghdad, Iraq.
| | - Haneen D Jabbar
- Applied Science Department, University of Technology-Iraq, Baghdad, Iraq
| | | | - Evan T Salim
- Laser and Optoelectronic Engineering Department, University of Technology-Iraq, Baghdad, Iraq.
| | - Ahmad S Azzahrani
- Electrical Engineering Department, Northern Border University, Arar, Kingdom of Saudi Arabia.
| | | | - Raid A Ismail
- Laser and Optoelectronic Engineering Department, University of Technology-Iraq, Baghdad, Iraq
| |
Collapse
|
9
|
Liao Y, Kim YJ, Lai J, Seo JH, Kim M. Antireflective GaN Nanoridge Texturing by Metal-Assisted Chemical Etching via a Thermally Dewetted Pt Catalyst Network for Highly Responsive Ultraviolet Photodiodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13343-13352. [PMID: 36880165 DOI: 10.1021/acsami.2c22929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antireflective (AR) surface texturing is a feasible way to boost the light absorption of photosensitive materials and devices. As a plasma-free etching method, metal-assisted chemical etching (MacEtch) has been employed for fabricating GaN AR surface texturing. However, the poor etching efficiency of typical MacEtch hinders the demonstration of highly responsive photodetectors on an undoped GaN wafer. In addition, GaN MacEtch requires metal mask patterning by lithography, which leads to a huge processing complexity when the dimension of GaN AR nanostructure scales down to the submicron range. In this work, we have developed a facile texturing method of forming a GaN nanoridge surface on an undoped GaN thin film by a lithography-free submicron mask-patterning process via thermal dewetting of platinum. The nanoridge surface texturing effectively reduces the surface reflection in the ultraviolet (UV) regime, which can be translated to a 6-fold enhancement in responsivity (i.e., 115 A/W) of the photodiode at 365 nm. The results demonstrated in this work show that MacEtch can offer a viable route for enhanced UV light-matter interaction and surface engineering in GaN UV optoelectronic devices.
Collapse
Affiliation(s)
- Yikai Liao
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - You Jin Kim
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Junyu Lai
- Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jung-Hun Seo
- Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Munho Kim
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
10
|
Zulkifli N'AA, Zahir NH, Abdullah Ripain AH, Said SM, Zakaria R. Sulfurization engineering of single-zone CVD vertical and horizontal MoS 2 on p-GaN heterostructures for self-powered UV photodetectors. NANOSCALE ADVANCES 2023; 5:879-892. [PMID: 36756501 PMCID: PMC9890942 DOI: 10.1039/d2na00756h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/26/2022] [Indexed: 06/18/2023]
Abstract
Molybdenum disulfide (MoS2) has been attracting considerable attention due to its excellent electrical and optical properties. We successfully grew high-quality, large-area and uniform few-layer (FL)-MoS2 on p-doped gallium nitride (p-GaN) using a simplified sulfurization technique by the single-zone CVD of a Mo seed layer via E-beam evaporation. Tuning the sulfurization parameters, namely temperature and duration, has been discovered to be an effective strategy for improving MoS2 orientation (horizontally aligned and vertically aligned) and quality, which affects photodetector (PD) performance. The increase in the sulfurization temperature to 850 °C results in improved structural quality and crystallite size. However, a prolonged sulfurization duration of 60 minutes caused the degradation of the film quality. The close lattice match between p-GaN and MoS2 contributes to the excellent quality growth of deposited MoS2. Following this, an n-MoS2/p-GaN heterostructure PD was successfully built by a MoS2 position-selectivity method. We report a highly sensitive and self-powered GaN/MoS2 p-n heterojunction PD with a relatively high responsivity of 14.3 A W-1, a high specific detectivity of 1.12 × 1013 Jones, and a fast response speed of 8.3/13.4 μs (20 kHz) under a UV light of 355 nm at zero-bias voltage. Our PD exhibits superior performance to that of the previously reported MoS2/GaN p-n PD. Our findings suggest a more efficient and straightforward approach to building high-performance self-powered UV PDs.
Collapse
Affiliation(s)
| | - Nor Hilmi Zahir
- Low Dimensional Material Research Center (LDMRC), Physics Dept. Faculty of Science, University Malaya 50603 Kuala Lumpur Malaysia
| | | | - Suhana Mohd Said
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Rozalina Zakaria
- Photonic Research Centre, University Malaya 50603 Kuala Lumpur Malaysia
| |
Collapse
|
11
|
Jiang J, Cheng R, Yin L, Wen Y, Wang H, Zhai B, Liu C, Shan C, He J. Van der waals epitaxial growth of two-dimensional PbSe and its high-performance heterostructure devices. Sci Bull (Beijing) 2022; 67:1659-1668. [DOI: 10.1016/j.scib.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
|
12
|
Zhu H, Shen Y, Fang Q, Yang X, Chen L, Xu S. GaN/MgI 2 van der Waals heterostructure: a two-factor tunable photocatalyst for hydrogen evolution. Phys Chem Chem Phys 2022; 24:15075-15082. [PMID: 35696996 DOI: 10.1039/d2cp01456d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the increasing environmental pollution and energy crisis, it is significant to develop environmentally friendly and adjustable photocatalysts for water splitting. Here we explored the optoelectronic properties of several H-GaN/MgI2 vdW heterostructures by regulating different polarization surfaces and numbers of GaN layers. Our results demonstrate that all structures, except 2L-Ga-GaN/MgI2, exhibit excellent physical stability. Moreover, the band structures and band edge positions demonstrate that only the heterostructure of 3L-Ga-GaN/MgI2 with both suitable band alignment (type-II) and an acceptable band gap (∼1.92 eV) is most satisfactory for water splitting. Additionally, the absorption coefficient of the 3L-Ga-GaN/MgI2 heterostructure can reach over ∼105 cm-1, which has further confirmed its excellent advantage in photocatalysis. Finally, in the case of 6% external strain for the 3L-Ga-GaN/MgI2 heterostructure, a rollover in band alignment (from type-II to type-I) is exhibited. These promising features of the GaN/MgI2 vdW heterostructure give a new paradigm for developing novel efficient and adjustable photocatalytic water-splitting materials.
Collapse
Affiliation(s)
- Hua Zhu
- Institute of Optoelectronics Technology, China Jiliang University, Hangzhou, 310018, China.
| | - Yang Shen
- Institute of Optoelectronics Technology, China Jiliang University, Hangzhou, 310018, China.
| | - Qianglong Fang
- Institute of Optoelectronics Technology, China Jiliang University, Hangzhou, 310018, China.
| | - Xiaodong Yang
- Key Laboratory of Ecophysics and Department of Physics, Shihezi University, Xinjiang 832003, China.
| | - Liang Chen
- Institute of Optoelectronics Technology, China Jiliang University, Hangzhou, 310018, China.
| | - Shiqing Xu
- Institute of Optoelectronics Technology, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
13
|
Dai C, Liu Y, Wei D. Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chem Rev 2022; 122:10319-10392. [PMID: 35412802 DOI: 10.1021/acs.chemrev.1c00924] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evolutionary success in information technology has been sustained by the rapid growth of sensor technology. Recently, advances in sensor technology have promoted the ambitious requirement to build intelligent systems that can be controlled by external stimuli along with independent operation, adaptivity, and low energy expenditure. Among various sensing techniques, field-effect transistors (FETs) with channels made of two-dimensional (2D) materials attract increasing attention for advantages such as label-free detection, fast response, easy operation, and capability of integration. With atomic thickness, 2D materials restrict the carrier flow within the material surface and expose it directly to the external environment, leading to efficient signal acquisition and conversion. This review summarizes the latest advances of 2D-materials-based FET (2D FET) sensors in a comprehensive manner that contains the material, operating principles, fabrication technologies, proof-of-concept applications, and prototypes. First, a brief description of the background and fundamentals is provided. The subsequent contents summarize physical, chemical, and biological 2D FET sensors and their applications. Then, we highlight the challenges of their commercialization and discuss corresponding solution techniques. The following section presents a systematic survey of recent progress in developing commercial prototypes. Lastly, we summarize the long-standing efforts and prospective future development of 2D FET-based sensing systems toward commercialization.
Collapse
Affiliation(s)
- Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Yang W, Xin K, Yang J, Xu Q, Shan C, Wei Z. 2D Ultrawide Bandgap Semiconductors: Odyssey and Challenges. SMALL METHODS 2022; 6:e2101348. [PMID: 35277948 DOI: 10.1002/smtd.202101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
2D ultrawide bandgap (UWBG) semiconductors have aroused increasing interest in the field of high-power transparent electronic devices, deep-ultraviolet photodetectors, flexible electronic skins, and energy-efficient displays, owing to their intriguing physical properties. Compared with dominant narrow bandgap semiconductor material families, 2D UWBG semiconductors are less investigated but stand out because of their propensity for high optical transparency, tunable electrical conductivity, high mobility, and ultrahigh gate dielectrics. At the current stage of research, the most intensively investigated 2D UWBG semiconductors are metal oxides, metal chalcogenides, metal halides, and metal nitrides. This paper provides an up-to-date review of recent research progress on new 2D UWBG semiconductor materials and novel physical properties. The widespread applications, i.e., transistors, photodetector, touch screen, and inverter are summarized, which employ 2D UWBG semiconductors as either a passive or active layer. Finally, the existing challenges and opportunities of the enticing class of 2D UWBG semiconductors are highlighted.
Collapse
Affiliation(s)
- Wen Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Kaiyao Xin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Qun Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key laboratory of Materials Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
15
|
Liu Y, Fang Y, Yang D, Pi X, Wang P. Recent progress of heterostructures based on two dimensional materials and wide bandgap semiconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:183001. [PMID: 35134786 DOI: 10.1088/1361-648x/ac5310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Recent progress in the synthesis and assembly of two-dimensional (2D) materials has laid the foundation for various applications of atomically thin layer films. These 2D materials possess rich and diverse properties such as layer-dependent band gaps, interesting spin degrees of freedom, and variable crystal structures. They exhibit broad application prospects in micro-nano devices. In the meantime, the wide bandgap semiconductors (WBS) with an elevated breakdown voltage, high mobility, and high thermal conductivity have shown important applications in high-frequency microwave devices, high-temperature and high-power electronic devices. Beyond the study on single 2D materials or WBS materials, the multi-functional 2D/WBS heterostructures can promote the carrier transport at the interface, potentially providing novel physical phenomena and applications, and improving the performance of electronic and optoelectronic devices. In this review, we overview the advantages of the heterostructures of 2D materials and WBS materials, and introduce the construction methods of 2D/WBS heterostructures. Then, we present the diversity and recent progress in the applications of 2D/WBS heterostructures, including photodetectors, photocatalysis, sensors, and energy related devices. Finally, we put forward the current challenges of 2D/WBS heterostructures and propose the promising research directions in the future.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Silicon Materials and School of Materials, Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310007, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, People's Republic of China
| | - Yanjun Fang
- State Key Laboratory of Silicon Materials and School of Materials, Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310007, People's Republic of China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials, Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310007, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, People's Republic of China
| | - Xiaodong Pi
- State Key Laboratory of Silicon Materials and School of Materials, Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310007, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, People's Republic of China
| | - Peijian Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, People's Republic of China
| |
Collapse
|
16
|
Aukarasereenont P, Goff A, Nguyen CK, McConville CF, Elbourne A, Zavabeti A, Daeneke T. Liquid metals: an ideal platform for the synthesis of two-dimensional materials. Chem Soc Rev 2022; 51:1253-1276. [PMID: 35107468 DOI: 10.1039/d1cs01166a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The surfaces of liquid metals can serve as a platform to synthesise two-dimensional materials. By exploiting the self-limiting Cabrera-Mott oxidation reaction that takes place at the surface of liquid metals exposed to ambient air, an ultrathin oxide layer can be synthesised and isolated. Several synthesis approaches based on this phenomenon have been developed in recent years, resulting in a diverse family of functional 2D materials that covers a significant fraction of the periodic table. These straightforward and inherently scalable techniques may enable the fabrication of novel devices and thus harbour significant application potential. This review provides a brief introduction to liquid metals and their alloys, followed by detailed guidance on each developed synthesis technique, post-growth processing methods, integration processes, as well as potential applications of the developed materials.
Collapse
Affiliation(s)
| | - Abigail Goff
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| | - Chung Kim Nguyen
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| | - Chris F McConville
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
17
|
Zhang S, Gao F, Feng W, Yang H, Hu Y, Zhang J, Xiao H, Li Z, Hu P. High-responsivity photodetector based on scrolling monolayer MoS 2hybridized with carbon quantum dots. NANOTECHNOLOGY 2021; 33:105301. [PMID: 34818634 DOI: 10.1088/1361-6528/ac3ce1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
The monolayer MoS2based photodetectors have been widely investigated, which show limited photoelectric performances due to its low light absorption and uncontrollable adsorbates. In this paper, we present a MoS2-based hybrid nanoscrolls device, in which one-dimensional nanoscrollsof MoS2is hybridized with carbon quantum dots (CQDs). This device architecture effectively enhanced the photodetection performance. The photoresponsivity and detectivity values of MoS2/CQDs-NS photodetectors are respectively 1793 A W-1and 5.97 × 1012Jones, which are 830-fold and 268-fold higher than those of pristine MoS2under 300 nm illumination atVds = 5 V. This research indicates a significant progress in fabricating high-performance MoS2photodetectors.
Collapse
Affiliation(s)
- Shichao Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Feng Gao
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Wei Feng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Huihui Yang
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Yunxia Hu
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Jia Zhang
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Haiying Xiao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Zhonghua Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - PingAn Hu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
18
|
Geum DM, Kim S, Khym J, Lim J, Kim S, Ahn SY, Kim TS, Kang K, Kim S. Arrayed MoS 2 -In 0.53 Ga 0.47 As van der Waals Heterostructure for High-Speed and Broadband Detection from Visible to Shortwave-Infrared Light. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007357. [PMID: 33733586 DOI: 10.1002/smll.202007357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/04/2021] [Indexed: 06/12/2023]
Abstract
A high-speed and broadband 5 × 5 photodetector array based on MoS2 /In0.53 Ga0.47 As heterojunction is successfully demonstrated to take full advantage of the type-II band-aligned multilayer MoS2 /In0.53 Ga0.47 As. The fabricated devices exhibit good uniformity in the Raman spectrum and clear rectifying characteristics. The fabricated MoS2 /In0.53 Ga0.47 As photodetectors show good optical performances at a broad wavelength range showing high responsivities corresponding to the detectivity of ≈1010 Jones at -3 V for the incident broadband light from 400 to 1550 nm. A very fast photoresponse is also obtained with a small rise/fall time in the order of microseconds both for visible (638 nm) and shortwave infrared (1310 nm). Finally, the image scanning properties of MoS2 /In0.53 Ga0.47 As devices are demonstrated for visible and infrared light, indicating that the suggested device is one of the promising options for future broadband imager, which can be integrated on the focal plane arrays (FPAs).
Collapse
Affiliation(s)
- Dae-Myeong Geum
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Suhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - JiHoon Khym
- Quantum Functional Semiconductor Research Center, Dongguk University, Joong-gu, Seoul, 04620, Republic of Korea
| | - Jinha Lim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - SeongKwang Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Seung-Yeop Ahn
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Tae Soo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Kibum Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - SangHyeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| |
Collapse
|
19
|
Ahmad W, Gong Y, Abbas G, Khan K, Khan M, Ali G, Shuja A, Tareen AK, Khan Q, Li D. Evolution of low-dimensional material-based field-effect transistors. NANOSCALE 2021; 13:5162-5186. [PMID: 33666628 DOI: 10.1039/d0nr07548e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Field-effect transistors (FETs) have tremendous applications in the electronics industry due to their outstanding features such as small size, easy fabrication, compatibility with integrated electronics, high sensitivity, rapid detection and easy measuring procedures. However, to meet the increasing demand of the electronics industry, efficient FETs with controlled short channel effects, enhanced surface stability, reduced size, and superior performances based on low-dimensional materials are desirable. In this review, we present the developmental roadmap of FETs from conventional to miniaturized devices and highlight their prospective applications in the field of optoelectronic devices. Initially, a detailed study of the general importance of bulk and low-dimensional materials is presented. Then, recent advances in low-dimensional material heterostructures, classification of FETs, and the applications of low-dimensional materials in field-effect transistors and photodetectors are presented in detail. In addition, we also describe current issues in low-dimensional material-based FETs and propose potential approaches to address these issues, which are crucial for developing electronic and optoelectronic devices. This review will provide guidelines for low-dimensional material-based FETs with high performance and advanced applications in the future.
Collapse
Affiliation(s)
- Waqas Ahmad
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Youning Gong
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Ghulam Abbas
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Karim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Maaz Khan
- Nanomaterials Research Group, Physics Division, PINSTECH, Nilore 45650, Islamabad, Pakistan
| | - Ghafar Ali
- Nanomaterials Research Group, Physics Division, PINSTECH, Nilore 45650, Islamabad, Pakistan
| | - Ahmed Shuja
- Centre for Advanced Electronics & Photovoltaic Engineering, International Islamic University, Islamabad, Pakistan
| | - Ayesha Khan Tareen
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Qasim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Delong Li
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|