1
|
Sarac B, Yücer S, Ciftci F. MOF-Based Bioelectronic Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412846. [PMID: 40051241 PMCID: PMC12001314 DOI: 10.1002/smll.202412846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/16/2025] [Indexed: 04/17/2025]
Abstract
Metal-organic frameworks (MOFs) represent a highly promising material class for bioelectronic supercapacitors, characterized by their adjustable structures, extensive surface areas, and superior electrochemical properties. This research explores the synthesis and incorporation of MOF-based materials into bioelectronic devices aimed at energy storage and biosensing applications. The focus is on improving the electrochemical performance of MOFs while preserving their structural integrity through functionalization with biocompatible polymers and conductive materials. The resulting MOF-based bioelectronic supercapacitors exhibit significant improvements in specific capacitance, energy density, and cycling stability. Additionally, the inclusion of bioreceptors allows for the simultaneous detection of biochemical signals alongside energy storage, thus enabling innovative applications in wearable electronics and health monitoring systems. These results suggest that MOF-based supercapacitors have the capacity to fulfill energy storage needs while also advancing bioelectronics by merging energy and sensing capabilities.
Collapse
Affiliation(s)
- Begüm Sarac
- Faculty of EngineeringDepartment of Biomedical EngineeringFatih Sultan Mehmet Vakıf UniversityIstanbul34015Turkey
| | - Seydanur Yücer
- Faculty of EngineeringDepartment of Biomedical EngineeringFatih Sultan Mehmet Vakıf UniversityIstanbul34015Turkey
| | - Fatih Ciftci
- Faculty of EngineeringDepartment of Biomedical EngineeringFatih Sultan Mehmet Vakıf UniversityIstanbul34015Turkey
- Department of Technology Transfer OfficeFatih Sultan Mehmet Vakıf UniversityIstanbul34015Turkey
| |
Collapse
|
2
|
Diao B, Jiang F, Ye H, Wang R, Li H, Zhang H, Joo SW, Cong C, Kim SH, Li X. Interfacial modulation strategy using poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate) (PEDOT:PSS) and ultrathin two-dimensional metal-organic framework nanosheets for wearable supercapacitors: Solution engineering. J Colloid Interface Sci 2025; 677:862-871. [PMID: 39173518 DOI: 10.1016/j.jcis.2024.08.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Two-dimensional metal-organic frameworks (2D MOFs) hold great promise as electrochemically active materials. However, their application in MOF nanocomposite electrodes in solution engineering is limited by structural self-stacking and imperfect conductive pathways. In this study, we used meso-tetra(4-carboxyphenyl) porphine (TCPP) with off-domain π-bonds to reconstitute Zn-TCPP (ZMOF) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) through an interfacial modulation strategy involving electrostatic coupling and hydrogen bonding, creating a conductive composite with a nanosheet structure. The negatively charged PSS and ZMOF formed a three-dimensional interconnected conductive network with excellent interfaces. The positively charged PEDOT, fine tuned with the lamellar structure, established strong π-π stacking interactions between the porphyrin and thiophene rings. ZMOF also induced changes in the PEDOT chain structure, weakening PSS entanglement and enhancing charge-transport properties. The specific capacitance of the prepared supercapacitor was as high as 967.8 F g-1. Flexible supercapacitors produced on a large scale using dispensing printing technology exhibited an energy density of 1.85 μWh cm-2 and a power density of 7.08 μW cm-2. This interfacial modulation strategy also exhibited excellent wearable properties, with 96 % capacitance retention at a 180° bending angle and stable cycling performance. This study presented a significant advancement in the functionalization of 2D materials, highlighting their potential for device-grade capacitive architectures.
Collapse
Affiliation(s)
- Binxuan Diao
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Fuhao Jiang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Heqing Ye
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
| | - Rui Wang
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Hongjiang Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Haoran Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Chenhao Cong
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China; School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Se Hyun Kim
- School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Xinlin Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Vessally E, Rzayev RM, Niyazova AA, Aggarwal T, Rahimova KE. Overview of recent developments in carbon-based nanocomposites for supercapacitor applications. RSC Adv 2024; 14:40141-40159. [PMID: 39717808 PMCID: PMC11664245 DOI: 10.1039/d4ra08446b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
Energy storage devices are recognized as environmentally friendly technologies. Supercapacitors, known for their high cycle stability, have been proposed as potential alternatives to fossil fuels. Recent studies have focused on selecting suitable electrode materials to achieve energy storage systems with high stability, high specific capacity, and biocompatibility. In particular, carbon-based electrode materials, such as graphene oxide, activated carbon, carbon nanotubes, and carbon-based quantum dots, have attracted considerable attention due to their intrinsic properties, such as high conductivity and stability. However, carbon materials alone exhibit limitations, such as low energy density and low specific capacitance. To address this limitation, the synergistic effect of carbon materials has been combined with other electroactive materials to develop electrode materials with enhanced supercapacitor properties. The present study also investigates the supercapacitor performance of carbon-based nanocomposites. It examines the effect of each carbon material (AC, CNT, GO, rGO) on improving the performance of other electroactive materials, including metal oxides, metal sulfides, MXenes, MOFs, and conductive polymers. This study provides valuable insights for further studies on carbon-based electrode materials for supercapacitor applications.
Collapse
Affiliation(s)
- Esmail Vessally
- Department of Chemistry, Payame Noor University Tehran Iran
- Composite Materials Scientific Research Center of Azerbaijan State University of Economics (UNEC) 194 M. Mukhtarov str. Baku Azerbaijan
| | - Rovnag M Rzayev
- Composite Materials Scientific Research Center of Azerbaijan State University of Economics (UNEC) 194 M. Mukhtarov str. Baku Azerbaijan
| | - Aytan A Niyazova
- Composite Materials Scientific Research Center of Azerbaijan State University of Economics (UNEC) 194 M. Mukhtarov str. Baku Azerbaijan
| | - Tushar Aggarwal
- Centre for Research Impact & Outcome, Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
| | - Konul E Rahimova
- Composite Materials Scientific Research Center of Azerbaijan State University of Economics (UNEC) 194 M. Mukhtarov str. Baku Azerbaijan
| |
Collapse
|
4
|
Wang L, Fu R, Qi X, Xu J, Li C, Chen C, Wang K. Deashing Strategy on Biomass Carbon for Achieving High-Performance Full-Supercapacitor Electrodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52663-52673. [PMID: 39305227 DOI: 10.1021/acsami.4c11778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The porous carbon materials, namely, MC700/800, PC700/800, and SC700/800, have been prepared using several biomasses (mushroom dreg, Chinese parasol leaves, and Siraitia grosvenorii leaves) as individual precursors at 700 and 800 °C activation temperatures. Among these carbon-negative electrodes, SC700 exhibits an impressive specific capacitance, nearly 2-fold that of commercial activated carbon (169.5 F g-1). When assembled with a Ni(OH)2 positive electrode in asymmetric supercapacitors, the SC700//Ni(OH)2 device can achieve a specific capacitance of 80 F g-1 and an energy density of 32.16 Wh kg-1 at 1700 W kg-1. In contrast, the MC700 electrode can display inferior performance potentially attributed to the high ash content in the biomass. To further optimize the activated process of the MC700 product, three deashing carbon negative electrodes (denoted as MC(H2O), MC(HF), and MC(Mix)) were prepared by deashing treatment using H2O, HF, and mixed acid, and then a modified composite positive electrode (MC700@MnO2(MCM)) has been prepared by doping with MnO2. Electrochemical testing demonstrates that the deashing strategy achieves a significant capacitance enhancement compared to the primary carbon material while maintaining excellent cyclic stability. The asymmetric supercapacitors, assembled from these decorated electrode materials, exhibited a maximum energy density of 21.08 Wh kg-1 and a power density of 1150 W kg-1 under a high-voltage window of 2.2 V. Additionally, this type of full device can power 28 LEDs for approximately 5 min.
Collapse
Affiliation(s)
- Lianchao Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruiying Fu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xinyu Qi
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jiangyan Xu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Chao Li
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin 644000, P. R. China
| | - Changyun Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, P. R. China
| | - Kuaibing Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
5
|
Wang K, Chen C, Li Y, Hong Y, Wu H, Zhang C, Zhang Q. Insight into Electrochemical Performance of Nitrogen-Doped Carbon/NiCo-Alloy Active Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300054. [PMID: 36879474 DOI: 10.1002/smll.202300054] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/14/2023] [Indexed: 06/08/2023]
Abstract
Nanocomposites containing Ni or Co or NiCo alloy and nitrogen-doped carbon with diverse ratios have been prepared and utilized as active elements in supercapacitors. The atomic contents of nitrogen, nickel, and cobalt have been adjusted by the supplement amount of Ni and Co salts. In virtue of the excellent surface groups and rich redox active sites, the NC/NiCo active materials exhibit superior electrochemical charge-storage performances. Among these as-prepared active electrode materials, the NC/NiCo1/1 electrode performs better than other bimetallic/carbon electrodes and pristine metal/carbon electrodes. Several characterization methods, kinetic analyses, and nitrogen-supplement strategies determine the specific reason for this phenomenon. As a result, the better performance can be ascribed to a combination of factors including the high surface area and nitrogen content, proper Co/Ni ratio, and relatively low average pore size. The NC/NiCo electrode delivers a maximum capacity of 300.5 C g-1 and superior capacity retention of 92.30% after 3000 unceasing charge-discharge cycles. After assembling it into the battery-supercapacitor hybrid device, a high energy density of 26.6 Wh kg-1 (at 412 W kg-1 ) is achieved, comparable to the recent reports. Furthermore, this device can also power four light-emitting-diode (LED) demos, suggesting the potential practicability of these N-doped carbon compositing with bimetallic materials.
Collapse
Affiliation(s)
- Kuaibing Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Changyun Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu, 211171, P. R. China
| | - Yihao Li
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Ye Hong
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Hua Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
| |
Collapse
|
6
|
Bi Q, Hu X, Tao K. MOF-derived NiCo-LDH Nanocages on CuO Nanorod Arrays for Robust and High Energy Density Asymmetric Supercapacitors. Chemistry 2023; 29:e202203264. [PMID: 36450659 DOI: 10.1002/chem.202203264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
Layered double hydroxide (LDH) is widely explored in supercapacitors on account of its high capacity, adjustable composition and easy synthesis process. Unfortunately, solitary LDH still has great limitations as an electrode material due to its shortcomings, such as poor conductivity and easy agglomeration. Herein, nanoflakes assembled NiCo-LDH hollow nanocages derived from a metal-organic framework (MOF) precursor are strung by CuO nanorods formed from etching and oxidation of copper foam (CF), forming hierarchical CuO@NiCo-LDH heterostructures. The as-synthesized CuO@NiCo-LDH/CF shows a large capacitance (5607 mF cm-2 at 1 mA cm-2 ), superior rate performance (88.3 % retention at 10 mA cm-2 ) and impressive cycling durability (93.1 % capacitance is retained after 5000 cycles), which is significantly superior to control CuO/CF, CuO@ZIF-67/CF, NiCo-LDH/CF and Cu(OH)2 @NiCo-LDH/CF electrodes. Besides, an asymmetrical supercapacitor consists of CuO@NiCo-LDH/CF and activated carbon displays a maximum energy density of 47.3 Wh kg-1 , and its capacitance only declines by 6.8 % after 10000 cycles, demonstrating remarkable cycling durability. The advantages of highly conductive and robust CuO nanorods, MOF-derived hollow structure and the core-shell heterostructure contribute to the outstanding electrochemical performance. This synthesis strategy can be extended to design various core-shell heterostructures adopted in versatile electrochemical energy storage applications.
Collapse
Affiliation(s)
- Qiong Bi
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Xuanying Hu
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Kai Tao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
7
|
Deka R, Rajak R, Kumar V, Mobin SM. Effect of Electrolytic Cations on a 3D Cd-MOF for Supercapacitive Electrodes. Inorg Chem 2023; 62:3084-3094. [PMID: 36758151 DOI: 10.1021/acs.inorgchem.2c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
A cadmium-based metal-organic framework (Cd-MOF) is synthesized in a facile manner at ambient temperature by an easy slow diffusion process. The three-dimensional (3D) structure of Cd-MOF is authenticated by single-crystal X-ray diffraction studies and exhibits a cuboid-shaped morphology with an average edge length of ∼1.13 μm. The prepared Cd-MOF was found to be electroactive in nature, which resulted in a specific capacitance of 647 F g-1 at 4 A g-1 by maintaining a retention of ∼78% over 10,000 successive cycles in the absence of any binder. Further, to distinguish the efficiency of Cd-MOF electrodes, different electrolytes (NaOH, KOH, and LiOH) were explored, wherein NaOH revealed a higher capacitive response due to its combined effect of ionic and hydrated ionic radii. To investigate the practical applicability, an asymmetric supercapacitor (ASC) device is fabricated by employing Cd-MOF as the positive electrode and activated carbon (AC) as the negative electrode, enabling it to light a commercial light-emitting diode (LED) bulb (∼1.8 V). The as-fabricated ASC device delivers comparable energy density and power density.
Collapse
|
8
|
Reconstruction of Co/Ni metal-organic-framework based electrode materials with excellent conductivity and integral stability via extended hydrothermal treatment toward improved performance of supercapacitors. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Lokhande P, Kulkarni S, Chakrabarti S, Pathan H, Sindhu M, Kumar D, Singh J, Kumar A, Kumar Mishra Y, Toncu DC, Syväjärvi M, Sharma A, Tiwari A. The progress and roadmap of metal–organic frameworks for high-performance supercapacitors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Kaur M, Yusuf M, Malik AK. Schiff Base Pillar-layered Metal-organic Frameworks: From Synthesis to Applications. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2142216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Punjabi University, Patiala, India
| | - Mohamad Yusuf
- Department of Chemistry, Punjabi University, Patiala, India
| | | |
Collapse
|
11
|
Zhu X, Liu S. Tremella-like 2D Nickel-Copper Disulfide with Ultrahigh Capacity and Cyclic Retention for Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43265-43276. [PMID: 36098979 DOI: 10.1021/acsami.2c10981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) disulfides possess unique physical and chemical properties and are widely used in electronic and photoelectric devices. Tuning the composition and optimizing the structure of the disulfides are feasible approaches to designing target sulfides for hybrid supercapacitors. This work synthesizes the tremella-like nanosheet-connected (CuxNi1-x)S2 via solvothermal and sulfur-vapor vulcanization. The 2D (CuxNi1-x)S2 electrode performs a high reversible capacity (526.0 mA h g-1 at 1 A g-1), decent capacity retention (75.6%) at 10 A g-1, and prolonged cyclic retention (94.4% over 15,000 cycles), which is higher than that of (CuxNi1-x)O and monometallic sulfides of NiS2 and CuS. The elevated electrochemical properties of (CuxNi1-x)S2 are attributed to the optimized composition with increased redox reaction, enlarged lattice distance, abundant active sites, and attractive electronic and ionic conductivity. Also, (CuxNi1-x)S2 and active carbon (AC) are assembled to form a hybrid supercapacitor (HSC). The (CuxNi1-x)S2//AC HSC demonstrates a maximum specific capacitance of 231.0 F g-1 at 1 A g-1 and a high energy density of 82.4 W h kg-1 at a power density of 1.82 kW kg-1. Outstanding cyclic retentions of 94.9 and 84.5% after 8000 and 10,000 cycles are also obtained. In conclusion, this result suggests a facile routine for preparing a novel 2D layer material of (CuxNi1-x)S2 with outstanding specific capacity and cycling performance for hybrid supercapacitors.
Collapse
Affiliation(s)
- Xi Zhu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400700, China
| | - Shuangyi Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400700, China
| |
Collapse
|
12
|
Hassen S, Arfaoui Y, Robeyns K, Steenhaut T, Filinchuk Y, Klein A, Chebbi H. Architecture of a dinuclear Co(II) complex based on 3-amino-1,2,4-triazole-5-carboxylic acid: molecular structure, thermal behavior, optical properties, and DFT calculations. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2090246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sabri Hassen
- Faculty of Sciences of Tunis, Laboratory of Characterizations, Applications and Modeling of Materials, University of Tunis El Manar, Tunis, Tunisia
| | - Youssef Arfaoui
- Faculty of Sciences of Tunis, Laboratory of Characterizations, Applications and Modeling of Materials, University of Tunis El Manar, Tunis, Tunisia
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Timothy Steenhaut
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Yaroslav Filinchuk
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Axel Klein
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Hammouda Chebbi
- Preparatory Institute for Engineering Studies of Tunis, University of Tunis, Montfleury, Tunis 1089, Tunisia
- Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
13
|
Zhang Q, Hong Y, Wang Y, Guo Y, Wang K, Wu H, Zhang C. Recent advances in pillar‐layered metal‐organic frameworks with interpenetrated and non‐interpenetrated topologies as supercapacitor electrodes. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qichun Zhang
- City University of Hong Kong Department of Physics and Materials Science 83 Tat Chee Ave, Kowloon Tong 999077 Hong Kong HONG KONG
| | - Ye Hong
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Yuting Wang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Yuxuan Guo
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Kuaibing Wang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Hua Wu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P. R CHINA
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China CHINA
| |
Collapse
|
14
|
Wang JW, Ma YX, Kang XY, Yang HJ, Liu BL, Li SS, Zhang XD, Ran F. A novel moss-like 3D Ni-MOF for high performance supercapacitor electrode material. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Kan WQ, Zhou LM, Zhou YD, Meng M, Zhang Y, He YC. Three Co(II)-containing coordination polymers displaying solvent determined entanglement structures and different ammonia and amines selective sensing properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Rezaei B, Hansen TW, Keller SS. Stereolithography-Derived Three-Dimensional Pyrolytic Carbon/Mn 3O 4 Nanostructures for Free-Standing Hybrid Supercapacitor Electrodes. ACS APPLIED NANO MATERIALS 2022; 5:1808-1819. [PMID: 35243211 PMCID: PMC8886568 DOI: 10.1021/acsanm.1c03251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
The development of permeable three-dimensional (3D) macroporous carbon architectures loaded with active pseudocapacitive nanomaterials offers hybrid supercapacitor (SC) materials with higher energy density, shortened diffusion length for ions, and higher charge-discharge rate capability and thereby is highly relevant for electrical energy storage (EES). Herein, structurally complex and tailorable 3D pyrolytic carbon/Mn3O4 hybrid SC electrode materials are synthesized through the self-assembly of MnO2 nanoflakes and nanoflowers onto the surface of stereolithography 3D-printed architectures via a facile wet chemical deposition route, followed by a single thermal treatment. Thermal annealing of the MnO2 nanostructures concurrent with carbonization of the polymer precursor leads to the formation of a 3D hybrid SC electrode material with unique structural integrity and uniformity. The microstructural and chemical characterization of the hybrid electrode reveals the predominant formation of crystalline hausmannite-Mn3O4 after the pyrolysis/annealing process, which is a favorable pseudocapacitive material for EES. With the combination of the 3D free-standing carbon architecture and self-assembled binder-free Mn3O4 nanostructures, electrochemical capacitive charge storage with very good rate capability, gravimetric and areal capacitances (186 F g-1 and 968 mF cm-2, respectively), and a long lifespan (>92% after 5000 cycles) is demonstrated. It is worth noting that the gravimetric capacitance value is obtained by considering the full mass of the electrode including the carbon current collector. When only the mass of the pseudocapacitive nanomaterial is considered, a capacitance value of 457 F g-1 is achieved, which is comparable to state-of-the-art Mn3O4-based SC electrode materials.
Collapse
|
17
|
Proton conduction in two highly stable cadmium(II) metal-organic frameworks built by substituted imidazole dicarboxylates. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Zhang J, Sun N, Yin B, Su Y, Ji S, Huan Y, Wei T. Regulating Ni 3+ contents by a cobalt doping strategy in ternary Ni xCo 3−xAl 1-LDH nanoflowers for high-performance charge storage. Dalton Trans 2022; 51:16957-16963. [DOI: 10.1039/d2dt02893j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ni1Co2Al1-LDH electrode prepared by hydrothermal method delivers a high specific capacitance (728 C g−1 at 1 A g−1) and excellent capacitance retention (93.18% of initial capacitance at 30 A g−1 after 10 000 cycles).
Collapse
Affiliation(s)
- Jiaqi Zhang
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Ningqiang Sun
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Baoyi Yin
- School of Microelectronics, Dalian University of Technology, Dalian, 116024, China
| | - Yuanhui Su
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shuaijing Ji
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yu Huan
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Tao Wei
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
19
|
Qu X, Pan G, Zheng L, Chen S, Zhou Y, Zhang S. 3D Cobalt(II)-based MOF: Synthesis, structure, thermal decomposition behavior and magnetic property. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Li G, Zhang W, Liu R, Liu W, Li J. Dual-ligand strategies to assemble S, N-containing metal organic framework nanoflowers for hybrid supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ni-MOF [Ni(Tdc)(Bpy)]n was successfully prepared, and the Ni-MOF//AC hybrid supercapacitor exhibited superior energy density and cycling stability.
Collapse
Affiliation(s)
- Guojing Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Wenjun Zhang
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Ruxin Liu
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Wenjing Liu
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Jihui Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
| |
Collapse
|
21
|
Guo Y, Chen C, Wang Y, Hong Y, Wang K, Niu D, Zhang C, Zhang Q. Cu/CuxO@C nanocomposites as efficient electrodes for high-performance supercapacitor devices. Dalton Trans 2022; 51:14551-14556. [DOI: 10.1039/d2dt02268k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel method, reduction followed by oxidation procedure, has been developed to fabricate the efficient electrodes derivated from metal-organic frameworks (MOFs), which were synthesized using terephthalic acid (TP) or 1,3,5-benzenetricarboxylic...
Collapse
|
22
|
Zeeshan M, Shahid M. State of the art developments and prospects of metal-organic frameworks for energy applications. Dalton Trans 2021; 51:1675-1723. [PMID: 34919099 DOI: 10.1039/d1dt03113a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The progress on technologies for the cleaner and ecological transformation and storage of energy to combat effluence or pollution and the impending energy dilemma has recently attracted interest from energy research groups, particularly in the field of coordination chemistry, among inorganic chemists. Carriers for storing energy or facilitating mass and e- transport are considered significant for energy conversion. Accordingly, considering their properties such as large surface area, low cost, customizable pore diameter, tunable topologies, low densities, and variable frameworks, MOFs (metal-organic frameworks) and their derivatives are well-suited for this purpose. MOFs are an innovative category of porous and crystalline materials, which have gained significant interest in recent years. Thus, herein, we highlight the state of the art progress on MOFs for energy-based applications, as perfect compounds and elements in compound assemblies for converting solar energy, lithium-ion arrays, fuel devices, hydrogen production, photocatalytic CO2 reduction, proton conduction, etc. In addition, the substantial progress achieved in the production of various composites and derivatives containing MOFs with particular focus on supercapacitors and gas adsorption and storage is summarized, concentrating on the correlation between their coordination structural frameworks and applications in the field of energy. The current improved strategies, challenges, and future prospects are also presented in view of the coordination chemistry governing the structural modification of MOFs for energy applications.
Collapse
Affiliation(s)
- Mohd Zeeshan
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - M Shahid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
23
|
Reversible switching of Cu-tetracarboxylic-based coordination polymers through in situ single-crystal-to-single-crystal structural transformation and their impact on carbon-based composite derivatives, fluorescence, and adsorption properties. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Vannathan AA, Thakre D, Ali SR, De M, Banerjee A, Mal SS. Investigations into the supercapacitor activity of bisphosphonate-polyoxovanadate compounds. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Yu J, Liu Z, Zhang X, Ding Y, Fu Z, Wang F. Nitrogen-Doped Carbon Encapsulated Partial Zinc Stannate Nanocomposite for High-Performance Energy Storage Materials. Front Chem 2021; 9:769186. [PMID: 34869214 PMCID: PMC8636980 DOI: 10.3389/fchem.2021.769186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
As a bimetal oxide, partial zinc stannate (ZnSnO3) is one of the most promising next-generation lithium anode materials, which has the advantages of low operating voltage, large theoretical capacity (1,317 mA h g-1), and low cost. However, the shortcomings of large volume expansion and poor electrical conductivity hinder its practical application. The core-shell ZnSnO3@ nitrogen-doped carbon (ZSO@NC) nanocomposite was successfully obtained by coating ZnSnO3 with polypyrrole (PPy) through in situ polymerization under ice-bath conditions. Benefiting from this unique compact structure, the shell formed by PPy cannot only effectively alleviate the volume expansion effect of ZnSnO3 but also enhance the electrical conductivity, thus, greatly improving the lithium storage performance. ZSO@NC can deliver a reversible capacity of 967 mA h g-1 at 0.1 A g-1 after 300 cycles and 365 mA h g-1 at 2 A g-1 after 1,000 cycles. This work may provide a new avenue for the synthesis of bimetal oxide with a core-shell structure for high-performance energy storage materials.
Collapse
Affiliation(s)
- Jiage Yu
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China
| | | | | | | | | | - Feng Wang
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China
| |
Collapse
|
26
|
Wu T, Liao M, Wang Y, He S, Xie Y. Controllable syntheses of metal-organic frameworks based on Strandberg-type [P2Mo5O23] cluster. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Zhang E, Jiang L, Lv R, Li S, Kong R, Xia L, Ju P, Qu F. The design, synthesis and fluorescent sensing applications of a thermo-sensitive Zn-MOF. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Highly efficient and bifunctional Cd(II)-Organic Framework platform towards Pb(II), Cr(VI) detection and Cr(VI) photoreduction. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Zhao X, Pei L, Fan H, Zhang Y, Liu B, Gao X, Wei Y. Synergic coordination and precipitation effects induced by free carboxyl for separation of iron(III) and nickel(II) in zirconium-metal-organic framework. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Li F, Ma R, Xia Z, Wei Q, Yang Q, Chen S, Gao S. A LADH-like Zn-MOF as an efficient bifunctional catalyst for cyanosilylation of aldehydes and photocatalytic oxidative carbon–carbon coupling reaction. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
|
32
|
Lai ZZ, Yang X, Qin L, An JL, Wang Z, Sun X, Zhang MD. Synthesis, dye adsorption, and fluorescence sensing of antibiotics of a zinc-based coordination polymer. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Du L, Miao Y, Zheng B, Ma M, Zhang J. Honeycomb-like 2D metal-organic polyhedral framework exhibiting selectively adsorption of CO2. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Cao XX, Liu SL, Lu JS, Zhang ZW, Wang G, Chen Q, Lin N. Chitosan coated biocompatible zeolitic imidazolate framework ZIF-90 for targeted delivery of anticancer drug methotrexate. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Wang L, Sun W, Duttwyler S, Zhang Y. Efficient adsorption separation of methane from CO2 and C2–C3 hydrocarbons in a microporous closo-dodecaborate [B12H12]2- pillared metal–organic framework. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Zheng QM, Liu JL, Qin L, Hu Q, Zheng Y, Yang X, Zhang MD. Hydrogen evolution reaction of one 2D cobalt coordination polymer with coordinated sulfate ion. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Li JQ, Li RN, Li MX, Shao M, He X. Enhancing water stability in Co(II) coordination polymers from their structural transformation by temperature-controlling and their dye degradation property. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Yuan R, Chen H, Zhu QQ, He H. Rational fabrication of a porous Cd-organic framework for chemical fixation of CO2 and selective sorption of p-xylene over other isomers. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
|
40
|
Chen DM, Zheng YP, Fang SM. Microporous mixed-ligand metal–organic framework with fluorine-decorated pores for efficient C2H2/C2H4 separation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.121990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Hao XX, Zhang H, Zuo EJ. Two mixed ligand coordination polymers: Photocatalytic dye degradation and protective effect against peri-implantitis by reducing P. gingivalis survival gene expression levels. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.121959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|