1
|
Koehler T, Schmeink J, Schleberger M, Marlow F. A Hidden Chemical Assembly Mechanism: Reconstruction-by-Reconstruction Cycle Growth in HKUST-1 MOF Layer Synthesis. Chemphyschem 2025; 26:e202400968. [PMID: 39915255 PMCID: PMC12058237 DOI: 10.1002/cphc.202400968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/07/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025]
Abstract
Thin metal-organic framework films grown in a layer-by-layer manner have been the subject of growing interest. Herein we investigate one of the most popular frameworks, the type HKUST-1. Firstly, we show a special synthesis procedure resulting in quick but optically perfect growth. This enables the synthesis of films of excellent optical quality within a short timeframe. Secondly and most importantly, we address the known, but not fully understood observation that the expected growth rate of one monolayer per cycle is strongly exceeded, e. g. by a factor of 4. This is an often-ignored inconsistency in the literature. We offer a growth model using a reconstruction process in every cycle leading to a deterministic reconstruction-by-reconstruction (RbR) cycle growth with a 4-times higher growth rate. It represents an up-to-now hidden chemical assembly mechanism.
Collapse
Affiliation(s)
- T. Koehler
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - J. Schmeink
- Fakultät für PhysikUniversität Duisburg-EssenLotharstrasse 147057DuisburgGermany
| | - M. Schleberger
- Fakultät für PhysikUniversität Duisburg-EssenLotharstrasse 147057DuisburgGermany
- Center for Nanointegration Duisburg-EssenCarl-Benz-Str. 19947057DuisburgGermany
| | - F. Marlow
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
- Center for Nanointegration Duisburg-EssenCarl-Benz-Str. 19947057DuisburgGermany
| |
Collapse
|
2
|
Verma PK, Koellner CA, Hall H, Phister MR, Stone KH, Nichols AW, Dhakal A, Ashcraft E, Machan CW, Giri G. Solution Shearing of Zirconium (Zr)-Based Metal-Organic Frameworks NU-901 and MOF-525 Thin Films for Electrocatalytic Reduction Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53913-53923. [PMID: 37955400 DOI: 10.1021/acsami.3c12011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Solution shearing, a meniscus-guided coating process, can create large-area metal-organic framework (MOF) thin films rapidly, which can lead to the formation of uniform membranes for separations or thin films for sensing and catalysis applications. Although previous work has shown that solution shearing can render MOF thin films, examples have been limited to a few prototypical systems, such as HKUST-1, Cu-HHTP, and UiO-66. Here, we expand on the applicability of solution shearing by making thin films of NU-901, a zirconium-based MOF. We study how the NU-901 thin film properties (i.e., crystallinity, surface coverage, and thickness) can be controlled as a function of substrate temperature and linker concentration. High fractional surface coverage of small-area (∼1 cm2) NU-901 thin films (0.88 ± 0.06) is achieved on a glass substrate for all conditions after one blade pass, while a low to moderate fractional surface coverage (0.73 ± 0.18) is obtained for large-area (∼5 cm2) NU-901 thin films. The crystallinity of NU-901 crystals increases with temperature and decreases with linker concentration. On the other hand, the adjusted thickness of NU-901 thin films increases with both increasing temperature and linker concentration. We also extend the solution shearing technique to synthesize MOF-525 thin films on a transparent conductive oxide that are useful for electrocatalysis. We show that Fe-metalated MOF-525 films can reduce CO2 to CO, which has implications for CO2 capture and utilization. The demonstration of thin film formation of NU-901 and MOF-525 using solution shearing on a wide range of substrates will be highly useful for implementing these MOFs in sensing and catalytic applications.
Collapse
Affiliation(s)
- Prince K Verma
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Connor A Koellner
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hailey Hall
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Meagan R Phister
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kevin H Stone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Asa W Nichols
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ankit Dhakal
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Earl Ashcraft
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles W Machan
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Gaurav Giri
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
3
|
Shrivastav V, Mansi, Gupta B, Dubey P, Deep A, Nogala W, Shrivastav V, Sundriyal S. Recent advances on surface mounted metal-organic frameworks for energy storage and conversion applications: Trends, challenges, and opportunities. Adv Colloid Interface Sci 2023; 318:102967. [PMID: 37523999 DOI: 10.1016/j.cis.2023.102967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Establishing green and reliable energy resources is very important to counteract the carbon footprints and negative impact of non-renewable energy resources. Metal-organic frameworks (MOFs) are a class of porous material finding numerous applications due to their exceptional qualities, such as high surface area, low density, superior structural flexibility, and stability. Recently, increased attention has been paid to surface mounted MOFs (SURMOFs), which is nothing but thin film of MOF, as a new category in nanotechnology having unique properties compared to bulk MOFs. With the advancement of material growth and synthesis technologies, the fine tunability of film thickness, consistency, size, and geometry with a wide range of MOF complexes is possible. In this review, we recapitulate various synthesis approaches of SURMOFs including epitaxial synthesis approach, direct solvothermal method, Langmuir-Blodgett LBL deposition, Inkjet printing technique and others and then correlated the synthesis-structure-property relationship in terms of energy storage and conversion applications. Further the critical assessment and current problems of SURMOFs have been briefly discussed to explore the future opportunities in SURMOFs for energy storage and conversion applications.
Collapse
Affiliation(s)
| | - Mansi
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO), Chandigarh 160030, India
| | - Bhavana Gupta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Prashant Dubey
- Advanced Carbon Products and Metrology Department, CSIR-National Physical Laboratory (CSIR-NPL), New Delhi 110012, India
| | - Akash Deep
- Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Vishal Shrivastav
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Shashank Sundriyal
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic,.
| |
Collapse
|
4
|
Sindhu P, Ananthram KS, Jain A, Tarafder K, Ballav N. Insulator-to-metal-like transition in thin films of a biological metal-organic framework. Nat Commun 2023; 14:2857. [PMID: 37208325 DOI: 10.1038/s41467-023-38434-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
Temperature-induced insulator-to-metal transitions (IMTs) where the electrical resistivity can be altered by over tens of orders of magnitude are most often accompanied by structural phase transition in the system. Here, we demonstrate an insulator-to-metal-like transition (IMLT) at 333 K in thin films of a biological metal-organic framework (bio-MOF) which was generated upon an extended coordination of the cystine (dimer of amino acid cysteine) ligand with cupric ion (spin-1/2 system) - without appreciable change in the structure. Bio-MOFs are crystalline porous solids and a subclass of conventional MOFs where physiological functionalities of bio-molecular ligands along with the structural diversity can primarily be utilized for various biomedical applications. MOFs are usually electrical insulators (so as our expectation with bio-MOFs) and can be bestowed with reasonable electrical conductivity by the design. This discovery of electronically driven IMLT opens new opportunities for bio-MOFs, to emerge as strongly correlated reticular materials with thin film device functionalities.
Collapse
Affiliation(s)
- Pooja Sindhu
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - K S Ananthram
- Department of Physics, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025, India
| | - Anil Jain
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Kartick Tarafder
- Department of Physics, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025, India
| | - Nirmalya Ballav
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411 008, India.
| |
Collapse
|
5
|
Yamamoto S. Polymer‐based
neuromorphic devices: resistive switches and organic electrochemical transistors. POLYM INT 2023. [DOI: 10.1002/pi.6520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
6
|
Shi Y, Chen L, Hou S, Zhang S, Wang X, Dong P, Gao F, Li H. Strengthened adsorption films of double antibiotic medicines skeletons-based dendrimers on copper surface: Molecular dynamics simulation and intensified anti effects of algae, bacteria and corrosion. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Ebadi Amooghin A, Sanaeepur H, Luque R, Garcia H, Chen B. Fluorinated metal-organic frameworks for gas separation. Chem Soc Rev 2022; 51:7427-7508. [PMID: 35920324 DOI: 10.1039/d2cs00442a] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorinated metal-organic frameworks (F-MOFs) as fast-growing porous materials have revolutionized the field of gas separation due to their tunable pore apertures, appealing chemical features, and excellent stability. A deep understanding of their structure-performance relationships is critical for the synthesis and development of new F-MOFs. This critical review has focused on several strategies for the precise design and synthesis of new F-MOFs with structures tuned for specific gas separation purposes. First, the basic principles and concepts of F-MOFs as well as their structure, synthesis and modification and their structure to property relationships are studied. Then, applications of F-MOFs in adsorption and membrane gas separation are discussed. A detailed account of the design and capabilities of F-MOFs for the adsorption of various gases and the governing principles is provided. In addition, the exceptional characteristics of highly stable F-MOFs with engineered pore size and tuned structures are put into perspective to fabricate selective membranes for gas separation. Systematic analysis of the position of F-MOFs in gas separation revealed that F-MOFs are benchmark materials in most of the challenging gas separations. The outlook and future directions of the science and engineering of F-MOFs and their challenges are highlighted to tackle the issues of overcoming the trade-off between capacity/permeability and selectivity for a serious move towards industrialization.
Collapse
Affiliation(s)
- Abtin Ebadi Amooghin
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain. .,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russian Federation
| | - Hermenegildo Garcia
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA.
| |
Collapse
|
8
|
Usman M, Yang A, Inamdar AI, Kamal S, Hsu J, Kang D, Tseng T, Hung C, Lu K. Thin Film Growth of 3D Sr-based Metal-Organic Framework on Conductive Glass via Electrochemical Deposition. ChemistryOpen 2022; 11:e202100295. [PMID: 35112803 PMCID: PMC8812052 DOI: 10.1002/open.202100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Indexed: 11/09/2022] Open
Abstract
Integration of metal-organic frameworks (MOFs) as components of advanced electronic devices is at a very early phase of development and the fundamental issues related to their crystal growth on conductive substrate need to be addressed. Herein, we report on the structural characterization of a newly synthesized Sr-based MOF {[Sr(2,5-Pzdc)(H2 O)2 ] ⋅ 3 H2 O}n (1) and the uniform crystal growth of compound 1 on a conducting glass (fluorine doped tin oxide (FTO)) substrate using electrochemical deposition techniques. The Sr-based MOF 1 was synthesized by the reaction of Sr(NO3 )2 with 2,5-pyrazinedicarboxylic acid dihydrate (2,5-Pzdc) under solvothermal conditions. A single-crystal X-ray diffraction analysis revealed that 1 has a 3D structure and crystallizes in the triclinic P1 ‾ space group. In addition, the uniform crystal growth of this MOF on a conducting glass (FTO) substrate was successfully achieved using electrochemical deposition techniques. Only a handful of MOFs have been reposed to grown on conductive surfaces, which makes this study an important focal point for future research on the applications of MOF-based devices in microelectronics.
Collapse
Affiliation(s)
| | - An‐Chih Yang
- Department of Chemical EngineeringNational Taiwan UniversityTaipei106Taiwan
| | | | - Saqib Kamal
- Institute of ChemistryAcademia SinicaTaipei115Taiwan
| | - Ji‐Chiang Hsu
- Institute of ChemistryAcademia SinicaTaipei115Taiwan
- Department of Chemical Engineering and BiotechnologyNational Taipei University of TechnologyTaipei106Taiwan
| | - Dun‐Yen Kang
- Department of Chemical EngineeringNational Taiwan UniversityTaipei106Taiwan
| | - Tien‐Wen Tseng
- Department of Chemical Engineering and BiotechnologyNational Taipei University of TechnologyTaipei106Taiwan
| | | | - Kuang‐Lieh Lu
- Institute of ChemistryAcademia SinicaTaipei115Taiwan
- Department of ChemistryFu Jen Catholic UniversityNew Taipei City242Taiwan
| |
Collapse
|
9
|
Li C, Li N, Chang L, Gu Z, Zhang J. Research Progresses of Metal-organic Framework HKUST-1-Based Membranes in Gas Separations ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Oh J, Yoon SM. Resistive Memory Devices Based on Reticular Materials for Electrical Information Storage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56777-56792. [PMID: 34842430 DOI: 10.1021/acsami.1c16332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, reticular materials, such as metal-organic frameworks and covalent organic frameworks, have been proposed as an active insulating layer in resistive switching memory systems through their chemically tunable porous structure. A resistive random access memory (RRAM) cell, a digital memristor, is one of the most outstanding emergent memory devices that achieves high-density electrical information storage with variable electrical resistance states between two terminals. The overall design of the RRAM devices comprises an insulating layer sandwiched between two metal electrodes (metal/insulator/metal). RRAM devices with fast switching speeds and enhanced storage density have the potential to be manufactured with excellent scalability owing to their relatively simple device architecture. In this review, recent progress on the development of reticular material-based RRAM devices and the study of their operational mechanisms are reviewed, and new challenges and future perspectives related to reticular material-based RRAM are discussed.
Collapse
Affiliation(s)
- Jongwon Oh
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
- Wonkwang Materials Institute of Science and Technology, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seok Min Yoon
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
- Wonkwang Materials Institute of Science and Technology, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
11
|
Jung S, Verma P, Robinson S, Beyer E, Hall H, Huelsenbeck L, Stone KH, Giri G. Meniscus Guided Coating and Evaporative Crystallization of UiO-66 Metal Organic Framework Thin Films. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sangeun Jung
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904-4746, United States
| | - Prince Verma
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904-4746, United States
| | - Sean Robinson
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904-4746, United States
| | - Emily Beyer
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904-4746, United States
| | - Hailey Hall
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904-4746, United States
| | - Luke Huelsenbeck
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904-4746, United States
| | - Kevin H. Stone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Gaurav Giri
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904-4746, United States
| |
Collapse
|
12
|
Hu B, Guo Y, Li H, Liu X, Fu Y, Ding F. Recent advances in chitosan-based layer-by-layer biomaterials and their biomedical applications. Carbohydr Polym 2021; 271:118427. [PMID: 34364567 DOI: 10.1016/j.carbpol.2021.118427] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
In recent years, chitosan-based biomaterials have been continually and extensively researched by using layer-by-layer (LBL) assembly, due to their potentials in biomedicine. Various chitosan-based LBL materials have been newly developed and applied in different areas along with the development of technologies. This work reviews the recent advances of chitosan-based biomaterials produced by LBL assembly. Driving forces of LBL, for example electrostatic interactions, hydrogen bond as well as Schiff base linkage have been discussed. Various forms of chitosan-based LBL materials such as films/coatings, capsules and fibers have been reviewed. The applications of these biomaterials in the field of antimicrobial applications, drug delivery, wound dressings and tissue engineering have been comprehensively reviewed.
Collapse
Affiliation(s)
- Biao Hu
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Yuchun Guo
- College of Food Science, Sichuan Agricultural University, No. 46, Xin Kang Road, Yaan, Sichuan Province 625014, China
| | - Houbin Li
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Xinghai Liu
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Yuanyu Fu
- College of Food Science, Sichuan Agricultural University, No. 46, Xin Kang Road, Yaan, Sichuan Province 625014, China
| | - Fuyuan Ding
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
13
|
Coordination-driven self-assembly of nanoZnO hybrids with tripodal zinc terpyridyl-viologen complex multilayers and their photochromic properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Olorunyomi JF, Geh ST, Caruso RA, Doherty CM. Metal-organic frameworks for chemical sensing devices. MATERIALS HORIZONS 2021; 8:2387-2419. [PMID: 34870296 DOI: 10.1039/d1mh00609f] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) are exceptionally large surface area materials with organized porous cages that have been investigated for nearly three decades. Due to the flexibility in their design and predisposition toward functionalization, they have shown promise in many areas of application, including chemical sensing. Consequently, they are identified as advanced materials with potential for deployment in analytical devices for chemical and biochemical sensing applications, where high sensitivity is desirable, for example, in environmental monitoring and to advance personal diagnostics. To keep abreast of new research, which signposts the future directions in the development of MOF-based chemical sensors, this review examines studies since 2015 that focus on the applications of MOF films and devices in chemical sensing. Various examples that use MOF films in solid-state sensing applications were drawn from recent studies based on electronic, electrochemical, electromechanical and optical sensing methods. These examples underscore the readiness of MOFs to be integrated in optical and electronic analytical devices. Also, preliminary demonstrations of future sensors are indicated in the performances of MOF-based wearables and smartphone sensors. This review will inspire collaborative efforts between scientists and engineers working within the field of MOFs, leading to greater innovations and accelerating the development of MOF-based analytical devices for chemical and biochemical sensing applications.
Collapse
Affiliation(s)
- Joseph F Olorunyomi
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
| | - Shu Teng Geh
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | | |
Collapse
|
15
|
Wu W, Decker GE, Weaver AE, Arnoff AI, Bloch ED, Rosenthal J. Facile and Rapid Room-Temperature Electrosynthesis and Controlled Surface Growth of Fe-MIL-101 and Fe-MIL-101-NH 2. ACS CENTRAL SCIENCE 2021; 7:1427-1433. [PMID: 34471686 PMCID: PMC8393204 DOI: 10.1021/acscentsci.1c00686] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 06/01/2023]
Abstract
The electrochemical synthesis of metal-organic frameworks (MOFs) has been widely explored but has involved indirect routes, including anodic dissolution of solid metal electrodes or the use of interfacial redox chemistry to generate base equivalents and drive MOF assembly. These methods are limited in scope, as the former relies on the use of an anode consisting of the metal ion to be incorporated into the MOF, and the latter relies on the compatibility of the metal/ligand solution with the probase that is subsequently oxidized or reduced. We report the facile, direct electrochemical syntheses of four iron-based MOFs via controlled potential oxidation of dissolved metal cations. Oxidation of Fe(II) at +0.75 V (vs Ag/Ag+) in a solution containing 2,6-lutidine and terephthalic acid affords highly crystalline Fe-MIL-101. Controlled potential electrolysis with carboxy-functionalized ITO affords Fe-MIL-101 grown directly on the surface of modified electrodes. The methods we report herein represent the first general routes that employ interfacial electrochemistry to alter the oxidation state of metal ions dissolved in solution to directly trigger MOF formation. The reported method is functional group tolerant and will be broadly applicable to the bulk synthesis or surface growth of a range of MOFs based on metal ions with accessible oxidation states.
Collapse
Affiliation(s)
- Wenbo Wu
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Gerald E. Decker
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Anna E. Weaver
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Amanda I. Arnoff
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Eric D. Bloch
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Joel Rosenthal
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
16
|
Liu Z, Ye J, Rauf A, Zhang S, Wang G, Shi S, Ning G. A flexible fibrous membrane based on copper(II) metal-organic framework/poly(lactic acid) composites with superior antibacterial performance. Biomater Sci 2021; 9:3851-3859. [PMID: 33890581 DOI: 10.1039/d1bm00164g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A flexible antibacterial fibrous membrane employing high antibacterial efficiency has great potential in healthcare applications. Herein, a three-dimensional copper(ii) metal-organic framework [Cu2(CA)(H2O)2, Cu-MOF-1] and poly(lactic acid) (PLA) composite fibrous membrane was prepared through a facile electrospinning method. The sphere-like Cu-MOF-1 was rapidly synthesized by a microwave-assisted hydrothermal reaction of Cu(ii) salts with citric acid (H4CA) in the presence of polyvinyl pyrrolidone (PVP). The surface morphology, thermal stability, mechanical properties and hydrophilicity test of the as-prepared Cu-MOF-1/PLA fibrous membrane were studied systematically. Compared with commercial copper nanoparticles (Cu-NPs), citric acid and copper citrate, Cu-MOF-1 showed higher antibacterial properties with the bacteriostatic rates of 97.9% and 99.3% against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively, when the used dose was 250 μg mL-1. The Cu-MOF-1/PLA fibrous membrane also exhibited outstanding bactericidal activities against E. coli and S. aureus with the antibacterial rates up to 99.3% and 99.8%, respectively. Mechanism investigation indicated that the slowly released Cu2+ ions could destroy the microenvironment of bacteria cells and destroy the integrity and permeability of the cell membrane, leading to enzyme inactivation. Therefore, the as-prepared flexible fibrous membrane will advance progress toward developing a broad spectrum antibacterial textile for healthcare protection related applications.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China.
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China. and Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Abdul Rauf
- Department of Chemistry, School of Science, University of Management and Technology, CII, Johar Town, Lahore, 54770, Pakistan
| | - Siqi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China.
| | - Guangyao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China.
| | - Suqi Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China.
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China. and Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
17
|
Kim H, Kim N, Ryu J. Porous framework-based hybrid materials for solar-to-chemical energy conversion: from powder photocatalysts to photoelectrodes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00543j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous framework materials such as metal organic frameworks (MOFs) and covalent organic frameworks (COFs) can be considered promising materials for solar-to-chemical energy conversion.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Nayeong Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|