1
|
Zhu D, Duan S, Liu J, Diao S, Hong J, Xiang S, Wei X, Xiao P, Xia J, Lei W, Wang B, Shi Q, Wu J. A double-crack structure for bionic wearable strain sensors with ultra-high sensitivity and a wide sensing range. NANOSCALE 2024; 16:5409-5420. [PMID: 38380994 DOI: 10.1039/d3nr05476d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Flexible strain sensors are crucial in fully monitoring human motion, and they should have a wide sensing range and ultra-high sensitivity. Herein, inspired by lyriform organs, a flexible strain sensor based on the double-crack structure is designed. An MXene layer and an Au layer with cracks are constructed on both sides of the insulated polydimethylsiloxane (PDMS) film, forming an equivalent parallel circuit that guarantees the integrity of the conductive path under a large strain. The rapid disconnection of the crack junctions causes a significant change in the resistance value. Due to the effect of cracks on the conductive path, the sensitivity of the sensor is largely improved. Benefiting from the double-crack structure, the as-obtained sensor shows ultra-high sensitivity (maximum gauge factor of up to 14 373.6), a wide working range (up to 21%), a fast response time (183 ms) and excellent dynamical stability (almost no performance loss after 1000 stretching cycles and different frequency cycles). In practical applications, the sensor is applied to different parts of the human body to sense the deformation of the skin, demonstrating its great potential application value in human physiological detection and the human-machine interaction. This study can provide new ideas for preparing high-performance flexible strain sensors.
Collapse
Affiliation(s)
- Di Zhu
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, 210096, China.
| | - Shengshun Duan
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, 210096, China.
| | - Jiachen Liu
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, 210096, China.
| | - Shanyan Diao
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, 210096, China.
| | - Jianlong Hong
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, 210096, China.
| | - Shengxin Xiang
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, 210096, China.
| | - Xiao Wei
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, 210096, China.
| | - Peng Xiao
- State Grid Jiangsu Electric Power Co., Ltd, Research Institute, Nanjing, 211103, Jiangsu, P. R. China.
| | - Jun Xia
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, 210096, China.
| | - Wei Lei
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, 210096, China.
| | - Baoping Wang
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, 210096, China.
| | - Qiongfeng Shi
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, 210096, China.
| | - Jun Wu
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, 210096, China.
| |
Collapse
|
2
|
Peng H, Chen IA. Preparation of Bioconjugates of Chimeric M13 Phage and Gold Nanorods. Methods Mol Biol 2024; 2793:131-141. [PMID: 38526728 PMCID: PMC11371271 DOI: 10.1007/978-1-0716-3798-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Phage-nanomaterial conjugates are functional bio-nanofibers with various applications. While phage display can select for phages with desired genetically encoded functions and properties, nanomaterials can endow the phages with additional features at nanoscale dimensions. Therefore, combining phages with nanotechnology can construct bioconjugates with unique characteristics. One strategy for filamentous phages is to adsorb nanoparticles onto the side wall, composed of pVIII subunits, through electrostatic interactions. However, a noncovalent approach may cause offloading if the environment changes, potentially causing side effects especially for in vivo applications. Therefore, building stable phage-bioconjugates is an important need. We previously reported the construction of chimeric M13 phage conjugated with gold nanorods, named "phanorods," without weakening the binding affinity to the bacterial host cells. Herein, we give a detailed protocol for preparing the chimeric M13 phage and covalently conjugating gold nanorods to the phage.
Collapse
Affiliation(s)
- Huan Peng
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
An J, Tran VT, Xu H, Ma W, Chen X, Le TD, Du H, Sun G, Kim Y. High-Throughput Manufacturing of Multimodal Epidermal Mechanosensors with Superior Detectability Enabled by a Continuous Microcracking Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305777. [PMID: 38032171 PMCID: PMC10811494 DOI: 10.1002/advs.202305777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Non-invasive human-machine interactions (HMIs) are expected to be promoted by epidermal tactile receptive devices that can accurately perceive human activities. In reality, however, the HMI efficiency is limited by the unsatisfactory perception capability of mechanosensors and the complicated techniques for device fabrication and integration. Herein, a paradigm is presented for high-throughput fabrication of multimodal epidermal mechanosensors based on a sequential "femtosecond laser patterning-elastomer infiltration-physical transfer" process. The resilient mechanosensor features a unique hybrid sensing layer of rigid cellular graphitic flakes (CGF)-soft elastomer. The continuous microcracking of CGF under strain enables a sharp reduction in conductive pathways, while the soft elastomer within the framework sustains mechanical robustness of the structure. As a result, the mechanosensor achieves an ultrahigh sensitivity in a broad strain range (GF of 371.4 in the first linear range of 0-50%, and maximum GF of 8922.6 in the range of 61-70%), a low detection limit (0.01%), and a fast response/recovery behavior (2.6/2.1 ms). The device also exhibits excellent sensing performances to multimodal mechanical stimuli, enabling high-fidelity monitoring of full-range human motions. As proof-of-concept demonstrations, multi-pixel mechanosensor arrays are constructed and implemented in a robot hand controlling system and a security system, providing a platform toward efficient HMIs.
Collapse
Affiliation(s)
- Jianing An
- Institute of Photonics TechnologyJinan UniversityGuangzhou510632P. R. China
| | - Van Thai Tran
- Singapore Centre for 3D PrintingNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Hai Xu
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211100P. R. China
| | - Wenshuai Ma
- Institute of Photonics TechnologyJinan UniversityGuangzhou510632P. R. China
| | - Xingkuan Chen
- Department of ChemistryJinan UniversityGuangzhou510632P. R. China
| | - Truong‐Son Dinh Le
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Hejun Du
- Singapore Centre for 3D PrintingNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Gengzhi Sun
- Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Young‐Jin Kim
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
4
|
Sun T, Feng B, Huo J, Xiao Y, Wang W, Peng J, Li Z, Du C, Wang W, Zou G, Liu L. Artificial Intelligence Meets Flexible Sensors: Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses. NANO-MICRO LETTERS 2023; 16:14. [PMID: 37955844 PMCID: PMC10643743 DOI: 10.1007/s40820-023-01235-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/24/2023] [Indexed: 11/14/2023]
Abstract
The recent wave of the artificial intelligence (AI) revolution has aroused unprecedented interest in the intelligentialize of human society. As an essential component that bridges the physical world and digital signals, flexible sensors are evolving from a single sensing element to a smarter system, which is capable of highly efficient acquisition, analysis, and even perception of vast, multifaceted data. While challenging from a manual perspective, the development of intelligent flexible sensing has been remarkably facilitated owing to the rapid advances of brain-inspired AI innovations from both the algorithm (machine learning) and the framework (artificial synapses) level. This review presents the recent progress of the emerging AI-driven, intelligent flexible sensing systems. The basic concept of machine learning and artificial synapses are introduced. The new enabling features induced by the fusion of AI and flexible sensing are comprehensively reviewed, which significantly advances the applications such as flexible sensory systems, soft/humanoid robotics, and human activity monitoring. As two of the most profound innovations in the twenty-first century, the deep incorporation of flexible sensing and AI technology holds tremendous potential for creating a smarter world for human beings.
Collapse
Affiliation(s)
- Tianming Sun
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
- College of Materials Science and Engineering, Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Bin Feng
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jinpeng Huo
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yu Xiao
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wengan Wang
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jin Peng
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zehua Li
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chengjie Du
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wenxian Wang
- College of Materials Science and Engineering, Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| | - Guisheng Zou
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Lei Liu
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
5
|
Wang T, Qiu Z, Li H, Lu H, Gu Y, Zhu S, Liu GS, Yang BR. High Sensitivity, Wide Linear-Range Strain Sensor Based on MXene/AgNW Composite Film with Hierarchical Microcrack. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304033. [PMID: 37649175 DOI: 10.1002/smll.202304033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Stretchable strain sensors suffer the trade-off between sensitivity and linear sensing range. Developing sensors with both high sensitivity and wide linear range remains a formidable challenge. Different from conventional methods that rely on the structure design of sensing nanomaterial or substrate, here a heterogeneous-surface strategy for silver nanowires (AgNWs) and MXene is proposed to construct a hierarchical microcrack (HMC) strain sensor. The heterogeneous surface with distinct differences in cracks and adhesion strengths divides the sensor into two regions. One region contributes to high sensitivity through penetrating microcracks of the AgNW/MXene composite film during stretching. The other region maintains conductive percolation pathways to provide a wide linear sensing range through network microcracks. As a result, the HMC sensor exhibits ultrahigh sensitivity (gauge factor ≈ 244), broad linear range (ɛ = 60%, R2 ≈ 99.25%), and fast response time (<30 ms). These merits are confirmed in the detection of large and subtle human motions and digital joint movement for Morse coding. The manipulation of cracks on the heterogeneous surface provides a new paradigm for designing high-performance stretchable strain sensors.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhiguang Qiu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Haichuan Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Science & Engineering, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Hao Lu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yifan Gu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Simu Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Science & Engineering, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Sun T, Feng B, Huo J, Xiao Y, Peng J, Li Z, Wang W, Liu L, Zou G, Wang W. Switching ultra-stretchability and sensitivity in metal films for electronic skins: a pufferfish-inspired, interlayer regulation strategy. MATERIALS HORIZONS 2023. [PMID: 37067478 DOI: 10.1039/d3mh00252g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The booming development of electronic skins necessitates stretchable electrodes and flexible sensors that exhibit distinctly opposite requirements of electromechanical properties, both of which are difficult to be fulfilled on a single material. Here, a pufferfish-inspired, interlayer regulation strategy is proposed that realizes the above opposite properties in simple metal films, exhibiting either ultra-stretchability (295% strain) or sensitivity (maximum GF: ∼5500) on demand. It is revealed that the stretchability of the intrinsically strain-sensitive metal films can be improved by ∼20-fold via regulating the surface morphology of the inserted interlayer, accompanied by an intriguing transition in film cracking behavior from cut-through cracks to network patterns. By featuring these two antithetical but valuable properties, common metal films can be applied as diverse sensors and stretchable electrodes in electronic skins, showing application prospects in healthcare monitoring, human-machine interaction, and engineering services. Our proposed strategy substantially advances the application of metal film conductors in flexible electronics and broadens the horizons for developing more sophisticated electronic skins by interlayer engineering.
Collapse
Affiliation(s)
- Tianming Sun
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Bin Feng
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Jinpeng Huo
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Yu Xiao
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Jin Peng
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Zehua Li
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Wengan Wang
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Lei Liu
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Guisheng Zou
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Wenxian Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| |
Collapse
|
7
|
Zhou Y, Lian H, Li Z, Yin L, Ji Q, Li K, Qi F, Huang Y. Crack engineering boosts the performance of flexible sensors. VIEW 2022. [DOI: 10.1002/viw.20220025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yunlei Zhou
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
- State Key Laboratory of Digital Manufacturing Equipment and Technology Flexible Electronics Research Center Huazhong University of Science and Technology Wuhan China
| | - Haoxiang Lian
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
- State Key Laboratory of Digital Manufacturing Equipment and Technology Flexible Electronics Research Center Huazhong University of Science and Technology Wuhan China
| | - Zhenlei Li
- School of Mechanical and Electric Engineering Soochow University Suzhou China
| | - Liting Yin
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
- State Key Laboratory of Digital Manufacturing Equipment and Technology Flexible Electronics Research Center Huazhong University of Science and Technology Wuhan China
| | - Qian Ji
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
| | - Kan Li
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
- State Key Laboratory of Digital Manufacturing Equipment and Technology Flexible Electronics Research Center Huazhong University of Science and Technology Wuhan China
| | - Fei Qi
- School of Mechanical and Electric Engineering Soochow University Suzhou China
| | - YongAn Huang
- School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan China
- State Key Laboratory of Digital Manufacturing Equipment and Technology Flexible Electronics Research Center Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
8
|
Hu J, Ren P, Zhu G, Yang J, Li Y, Zong Z, Sun Z. Serpentine-inspired Strain Sensor with Predictable Cracks for Remote Bio-Mechanical Signal Monitoring. Macromol Rapid Commun 2022; 43:e2200372. [PMID: 35759398 DOI: 10.1002/marc.202200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/11/2022] [Indexed: 11/08/2022]
Abstract
The flexible strain sensors have attracted intense interests due to their application as intelligent wearable electronic devices. However, it is still a huge challenge to achieve the flexible sensor with simultaneous high sensitivity, excellent durability and wide sensing region. In this work, a crack-based strain sensor with paired-serpentine conductive network is fabricated onto flexible film by screen printing. The innovative conductive network exhibits a controlled crack morphology during stretching, which endows the prepared sensor with outstanding sensing characteristics, including the high sensitivity (gauge factor up to 2391.5), wide detection (rang up to 132%), low strain detection limit, fast response time (about 40 ms), as well as excellent durability (more than 2000 stretching/releasing cycles). Benefiting from these excellent performances, full-range human body motions including subtle physiological signals and large motions are accurately detected by the prepared sensor. Besides, wearable electronic equipment integrated with wireless transmitter and the prepared strain sensor shows great potential for remote motion monitoring and intelligent mobile diagnosis for humans. This work provides an effective strategy for the fabrication of the novel strain sensors with highly comprehensive performance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jie Hu
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| | - Penggang Ren
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China.,College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu Sichuan, 610065, People's Republic of China
| | - Guanjun Zhu
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| | - Junjun Yang
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| | - Yanhao Li
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| | - Ze Zong
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| | - Zhenfeng Sun
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| |
Collapse
|
9
|
Nguyen TM, Kim WG, Ahn HJ, Kim M, Kim YD, Devaraj V, Kim YJ, Lee Y, Lee JM, Choi EJ, Oh JW. Programmable self-assembly of M13 bacteriophage for micro-color pattern with a tunable colorization. RSC Adv 2021; 11:32305-32311. [PMID: 35495545 PMCID: PMC9042013 DOI: 10.1039/d1ra04302a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
Over the last decade, the M13 bacteriophage has been used widely in various applications, such as sensors, bio-templating, and solar cells. The M13 colorimetric sensor was developed to detect toxic gases to protect the environment, human health, and national security. Recent developments in phage-based colorimetric sensor technologies have focused on improving the sensing characteristics, such as the sensitivity and selectivity on a large scale. On the other hand, few studies have examined precisely controllable micro-patterning techniques in phage-based self-assembly. This paper developed a color patterning technique through self-assembly of the M13 bacteriophages. The phage was self-assembled into a nanostructure through precise temperature control at the meniscus interface. Furthermore, barcode color patterns could be fabricated using self-assembled M13 bacteriophage on micrometer scale areas by manipulating the grooves on the SiO2 surface. The color patterns exhibited color tunability based on the phage nano-bundles reactivity. Overall, the proposed color patterning technique is expected to be useful for preparing new color sensors and security patterns. Experiment designs have been developed for tunable colorization film by temperature control during self-assembly processing based on the M13 bacteriophage. The micro-color pattern was fabricated and demonstrated for humidity detection.![]()
Collapse
Affiliation(s)
- Thanh Mien Nguyen
- Department of Nano Fusion Technology, BK21 Plus Nano Convergence Division, Pusan National University Busan 46214 Republic of Korea
| | - Won-Geun Kim
- Department of Nano Fusion Technology, BK21 Plus Nano Convergence Division, Pusan National University Busan 46214 Republic of Korea
| | - Hyun-Ju Ahn
- Department of Physics, Chungnam National University Daejeon 34134 Republic of Korea
| | - Minjun Kim
- Department of Physics, Chungnam National University Daejeon 34134 Republic of Korea
| | - Young Do Kim
- Samsung Display Co., Ltd. Yongin 17113 Republic of Korea
| | - Vasanthan Devaraj
- Bio-IT Fusion Technology Research Institute, Pusan National University Busan 46241 Republic of Korea
| | - Ye-Ji Kim
- Department of Nano Fusion Technology, BK21 Plus Nano Convergence Division, Pusan National University Busan 46214 Republic of Korea
| | - Yujin Lee
- Department of Nano Fusion Technology, BK21 Plus Nano Convergence Division, Pusan National University Busan 46214 Republic of Korea
| | - Jong-Min Lee
- School of Nano Convergence Technology, Hallym University Chuncheon Gangwon-do 24252 Republic of Korea
| | - Eun Jung Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University Busan 46241 Republic of Korea
| | - Jin-Woo Oh
- Department of Nano Fusion Technology, BK21 Plus Nano Convergence Division, Pusan National University Busan 46214 Republic of Korea .,Bio-IT Fusion Technology Research Institute, Pusan National University Busan 46241 Republic of Korea
| |
Collapse
|