1
|
Shihabudeen PK, Gupta S, Lin YH, Chiu SW, Chuang YT, Tang YF, Tai NH, Tang KT. Low temperature inkjet-printed metal oxide sensors for sensitive and selective NO 2 detection. NANOSCALE 2025. [PMID: 40396889 DOI: 10.1039/d5nr00694e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Advancements in gas sensor technology are critical for enhancing environmental monitoring and pollution control systems. Among the various sensor types, inkjet-printed gas sensors have emerged as a promising solution due to their low fabrication cost, scalable production, and compatibility with modern electronics. This study presents the development and characterization of inkjet-printed chemiresistive gas microsensors based on tin oxide (SnO2) and indium oxide (In2O3) for the detection of nitrogen dioxide (NO2), a major air pollutant associated with vehicular emissions and industrial activities. The sensors were fabricated on compact CMOS-compatible microchips, with integrated microheaters and electrodes measuring less than 250 × 250 μm, enabling miniaturization and potential on-chip integration for portable sensing platforms. Metal oxide sols were deposited using a precise inkjet printing technique, and crystallization of the sensing layers was achieved via localized heating through the integrated microheaters. The SnO2 sensor demonstrated excellent sensitivity at room temperature, detecting NO2 concentrations as low as 10 ppb, while the In2O3 sensor showed optimal performance at 100 °C with comparable detection limits. Both sensors exhibited linear response behavior over a range of NO2 concentrations, along with strong selectivity against common interfering gases. Although humidity induced minor fluctuations, both sensors maintained robust NO2 selectivity. These results underscore the potential of inkjet-printed metal oxide microsensors for developing compact, low-power, and highly sensitive gas detection systems.
Collapse
Affiliation(s)
- P K Shihabudeen
- Department of Electrical Engineering, National Tsing Hua University, Taiwan.
| | - Shivam Gupta
- Department of Materials Science and Engineering, National Tsing Hua University, Taiwan
| | - Yu-Hsien Lin
- Department of Electrical Engineering, National Tsing Hua University, Taiwan.
| | | | - Yu Ting Chuang
- National Applied Research Laboratories, Taiwan Semiconductor Research Institute, Taiwan
| | - Yuan Fu Tang
- National Applied Research Laboratories, Taiwan Semiconductor Research Institute, Taiwan
| | - Nyan-Hwa Tai
- Department of Materials Science and Engineering, National Tsing Hua University, Taiwan
| | - Kea-Tiong Tang
- Department of Electrical Engineering, National Tsing Hua University, Taiwan.
| |
Collapse
|
2
|
Li B, Sui N, Li M, Gu W, Yang W, Xu W, Zhao J. High-sensitivity and energy-efficient chloride ion sensors based on flexible printed carbon nanotube thin-film transistors for wearable electronics. Talanta 2024; 276:126285. [PMID: 38781918 DOI: 10.1016/j.talanta.2024.126285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/20/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The advent of flexible single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) has transformed electronics, providing significant benefits like low operating voltage, reduced power consumption, cost-effectiveness, and improved signal amplification. This study focuses on leveraging these attributes to develop a novel flexible high-sensitivity and energy-efficient chloride ion sensors based on printed flexible SWCNT-TFTs utilizing polymers-sorted semiconducting SWCNTs (sc-SWCNTs) as the active layers and ion liquids-poly(4-vinylphenol as dielectric layers along with the evaporated deposition of aluminum electrodes and printed silver electrodes as the gate and source-drain electrodes, respectively. The sensors exhibit several operational advantages, including low voltage requirements (≤1 V), rapid response speed (5.32 s), significant signal amplification (Up to 702.6 %), low power consumption (0.31 μJ at 1 mmol chloride ion), good repeatability, high sensitivity for both low and high concentrations of chloride ion (up to 100 mmol/L) and excellent mechanical flexibility (No obvious changes after bending for 10,000 times with a 5 mm radius). The detection mechanism of chloride ions was analyzed using X-ray Photoelectron Spectroscopy (XPS). It was found that chloride ions react with silver nanoparticles (AgNPs) to form silver chloride (AgCl) on printed electrodes, impeding carrier transport and reducing the currents in SWCNT TFTs. Importantly, our sensors' compatibility with smart devices allows for real-time monitoring of chloride ion levels in human sweat, offering significant potential for daily health monitoring.
Collapse
Affiliation(s)
- Benxiang Li
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China; Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, PR China; School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, PR China
| | - Nianzi Sui
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, PR China; School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, PR China
| | - Min Li
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, PR China; School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, PR China
| | - Weibing Gu
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, PR China; School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, PR China
| | - Wenming Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China
| | - Wanzhen Xu
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China.
| | - Jianwen Zhao
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, PR China; School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, PR China.
| |
Collapse
|
3
|
Jang YW, Kim J, Shin J, Jo JW, Shin JW, Kim YH, Cho SW, Park SK. Autonomous Artificial Olfactory Sensor Systems with Homeostasis Recovery via a Seamless Neuromorphic Architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400614. [PMID: 38689548 DOI: 10.1002/adma.202400614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/15/2024] [Indexed: 05/02/2024]
Abstract
Neuromorphic olfactory systems have been actively studied in recent years owing to their considerable potential in electronic noses, robotics, and neuromorphic data processing systems. However, conventional gas sensors typically have the ability to detect hazardous gas levels but lack synaptic functions such as memory and recognition of gas accumulation, which are essential for realizing human-like neuromorphic sensory system. In this study, a seamless architecture for a neuromorphic olfactory system capable of detecting and memorizing the present level and accumulation status of nitrogen dioxide (NO2) during continuous gas exposure, regulating a self-alarm implementation triggered after 147 and 85 s at a continuous gas exposure of 20 and 40 ppm, respectively. Thin-film-transistor type gas sensors utilizing carbon nanotube semiconductors detect NO2 gas molecules through carrier trapping and exhibit long-term retention properties, which are compatible with neuromorphic excitatory applications. Additionally, the neuromorphic inhibitory performance is also characterized via gas desorption with programmable ultraviolet light exposure, demonstrating homeostasis recovery. These results provide a promising strategy for developing a facile artificial olfactory system that demonstrates complicated biological synaptic functions with a seamless and simplified system architecture.
Collapse
Affiliation(s)
- Young-Woo Jang
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul, 06974, South Korea
- School of Electrical and Electronic Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Jaehyun Kim
- Department of Semiconductor Science, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jaewon Shin
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul, 06974, South Korea
- School of Electrical and Electronic Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Jeong-Wan Jo
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Jong Wook Shin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea
| | - Yong-Hoon Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sung Woon Cho
- Department of Advanced Components and Materials Engineering, Sunchon National University, Sunchon, 57922, Republic of Korea
| | - Sung Kyu Park
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul, 06974, South Korea
- School of Electrical and Electronic Engineering, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
4
|
Chen KY, Kachhadiya J, Muhtasim S, Cai S, Huang J, Andrews J. Underground Ink: Printed Electronics Enabling Electrochemical Sensing in Soil. MICROMACHINES 2024; 15:625. [PMID: 38793198 PMCID: PMC11123188 DOI: 10.3390/mi15050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Improving agricultural production relies on the decisions and actions of farmers and land managers, highlighting the importance of efficient soil monitoring techniques for better resource management and reduced environmental impacts. Despite considerable advancements in soil sensors, their traditional bulky counterparts cause difficulty in widespread adoption and large-scale deployment. Printed electronics emerge as a promising technology, offering flexibility in device design, cost-effectiveness for mass production, and a compact footprint suitable for versatile deployment platforms. This review overviews how printed sensors are used in monitoring soil parameters through electrochemical sensing mechanisms, enabling direct measurement of nutrients, moisture content, pH value, and others. Notably, printed sensors address scalability and cost concerns in fabrication, making them suitable for deployment across large crop fields. Additionally, seamlessly integrating printed sensors with printed antenna units or traditional integrated circuits can facilitate comprehensive functionality for real-time data collection and communication. This real-time information empowers informed decision-making, optimizes resource management, and enhances crop yield. This review aims to provide a comprehensive overview of recent work related to printed electrochemical soil sensors, ultimately providing insight into future research directions that can enable widespread adoption of precision agriculture technologies.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.-Y.C.); (J.K.); (S.M.)
| | - Jeneel Kachhadiya
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.-Y.C.); (J.K.); (S.M.)
| | - Sharar Muhtasim
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.-Y.C.); (J.K.); (S.M.)
| | - Shuohao Cai
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.C.); (J.H.)
| | - Jingyi Huang
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.C.); (J.H.)
| | - Joseph Andrews
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.-Y.C.); (J.K.); (S.M.)
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Hwang C, Baek S, Song Y, Lee WJ, Park S. Wide-range and selective detection of SARS-CoV-2 DNA via surface modification of electrolyte-gated IGZO thin-film transistors. iScience 2024; 27:109061. [PMID: 38361625 PMCID: PMC10867417 DOI: 10.1016/j.isci.2024.109061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/27/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
The 2019 coronavirus pandemic resulted in a massive global healthcare crisis, highlighting the necessity to develop effective and reproducible platforms capable of rapidly and accurately detecting SARS-CoV-2. In this study, we developed an electrolyte-gated indium-gallium-zinc-oxide (IGZO) thin-film transistor with sequential surface modification to realize the low limit of detection (LoD <50 fM) and a wide detection range from 50 fM to 5 μM with good linearity (R2 = 0.9965), and recyclability. The surface chemical modification was achieved to anchor the single strand of SARS-CoV-2 DNA via selective hybridization. Moreover, the minute electrical signal change following the chemical modification was investigated by in-depth physicochemical analytical techniques. Finally, we demonstrate fully recyclable biosensors based on oxygen plasma treatment. Owing to its cost-effective fabrication, rapid detection at the single-molecule level, and low detection limit, the proposed biosensor can be used as a point-of-care platform to perform timely and effective SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Chuljin Hwang
- Department of Electrical and Computer Engineering, Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Seokhyeon Baek
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Yoonseok Song
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Won-June Lee
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sungjun Park
- Department of Electrical and Computer Engineering, Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| |
Collapse
|
6
|
Galvani M, Freddi S, Sangaletti L. Disclosing Fast Detection Opportunities with Nanostructured Chemiresistor Gas Sensors Based on Metal Oxides, Carbon, and Transition Metal Dichalcogenides. SENSORS (BASEL, SWITZERLAND) 2024; 24:584. [PMID: 38257677 PMCID: PMC11154330 DOI: 10.3390/s24020584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
With the emergence of novel sensing materials and the increasing opportunities to address safety and life quality priorities of our society, gas sensing is experiencing an outstanding growth. Among the characteristics required to assess performances, the overall speed of response and recovery is adding to the well-established stability, selectivity, and sensitivity features. In this review, we focus on fast detection with chemiresistor gas sensors, focusing on both response time and recovery time that characterize their dynamical response. We consider three classes of sensing materials operating in a chemiresistor architecture, exposed to the most investigated pollutants, such as NH3, NO2, H2S, H2, ethanol, and acetone. Among sensing materials, we first selected nanostructured metal oxides, which are by far the most used chemiresistors and can provide a solid ground for performance improvement. Then, we selected nanostructured carbon sensing layers (carbon nanotubes, graphene, and reduced graphene), which represent a promising class of materials that can operate at room temperature and offer many possibilities to increase their sensitivities via functionalization, decoration, or blending with other nanostructured materials. Finally, transition metal dichalcogenides are presented as an emerging class of chemiresistive layers that bring what has been learned from graphene into a quite large portfolio of chemo-sensing platforms. For each class, studies since 2019 reporting on chemiresistors that display less than 10 s either in the response or in the recovery time are listed. We show that for many sensing layers, the sum of both response and recovery times is already below 10 s, making them promising devices for fast measurements to detect, e.g., sudden bursts of dangerous emissions in the environment, or to track the integrity of packaging during food processing on conveyor belts at pace with industrial production timescales.
Collapse
Affiliation(s)
- Michele Galvani
- Surface Science and Spectroscopy Lab at I-Lamp, Department of Mathematics and Physics, Via della Garzetta 48, 25133 Brescia, Italy; (M.G.); (S.F.)
| | - Sonia Freddi
- Surface Science and Spectroscopy Lab at I-Lamp, Department of Mathematics and Physics, Via della Garzetta 48, 25133 Brescia, Italy; (M.G.); (S.F.)
- Institute of Photonics and Nanotechnologies-Consiglio Nazionale delle Ricerche (IFN-CNR), Laboratory for Nanostructure Epitaxy and Spintronics on Silicon (LNESS), Via Anzani 42, 22100 Como, Italy
| | - Luigi Sangaletti
- Surface Science and Spectroscopy Lab at I-Lamp, Department of Mathematics and Physics, Via della Garzetta 48, 25133 Brescia, Italy; (M.G.); (S.F.)
| |
Collapse
|
7
|
Li T, Tang L, Li K, Liu B, Xiao MM, Liu N, Ni W, Li Y, Zhang Z, Zhang GJ. Functionalized carbon nanotube field-effect transistor biosensor for highly sensitive detection of exosomal protein. Anal Chim Acta 2023; 1273:341511. [PMID: 37423660 DOI: 10.1016/j.aca.2023.341511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
Since the exosomal protein level is related to many diseases, sensitive detection of exosomal protein is highly desirable. Here, we describe a polymer-sorted high-purity semiconducting carbon nanotubes (CNTs) films-based field-effect transistor (FET) biosensor for ultrasensitive and label-free detection of MUC1, a transmembrane protein highly expressed in breast cancer exosomes. Polymer-sorted semiconducting CNTs hold advantages including high purity (>99%), high CNT concentration, and short processing time (<1 h), but they are difficult to be stably functionalized with biomolecules because of lacking hanging bonds on their surface. To solve this issue, poly-lysine (PLL) was employed to modify the CNT films after they were deposited on the sensing channel surface of the fabricated FET chip. To specifically recognize the exosomal protein, sulfhydryl aptamer probes were immobilized on the gold nanoparticles (AuNPs) surface that was assembled on PLL substrate. The aptamer-modified CNT FET was capable of sensitively and selectively detecting exosomal MUC1 as high as 0.34 fg/mL. Moreover, the CNT FET biosensor was able to recognize breast cancer patients from healthy individuals by comparing the expression level of exosomal MUC1. The developed CNT FET biosensor is expected to be a novel assay for early diagnosis of cancer.
Collapse
Affiliation(s)
- Tingxian Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Lina Tang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Kun Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Binzhu Liu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Meng-Meng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, 100871, China
| | - Nian Liu
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Wei Ni
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Yutao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China.
| | - Zhiyong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, 100871, China.
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China.
| |
Collapse
|
8
|
Paghi A, Mariani S, Barillaro G. 1D and 2D Field Effect Transistors in Gas Sensing: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206100. [PMID: 36703509 DOI: 10.1002/smll.202206100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/04/2022] [Indexed: 06/18/2023]
Abstract
Rapid progress in the synthesis and fundamental understanding of 1D and 2D materials have solicited the incorporation of these nanomaterials into sensor architectures, especially field effect transistors (FETs), for the monitoring of gas and vapor in environmental, food quality, and healthcare applications. Yet, several challenges have remained unaddressed toward the fabrication of 1D and 2D FET gas sensors for real-field applications, which are related to properties, synthesis, and integration of 1D and 2D materials into the transistor architecture. This review paper encompasses the whole assortment of 1D-i.e., metal oxide semiconductors (MOXs), silicon nanowires (SiNWs), carbon nanotubes (CNTs)-and 2D-i.e., graphene, transition metal dichalcogenides (TMD), phosphorene-materials used in FET gas sensors, critically dissecting how the material synthesis, surface functionalization, and transistor fabrication impact on electrical versus sensing properties of these devices. Eventually, pros and cons of 1D and 2D FETs for gas and vapor sensing applications are discussed, pointing out weakness and highlighting future directions.
Collapse
Affiliation(s)
- Alessandro Paghi
- Dipartimento di Ingegneria dell'Informazione, via G. Caruso 16, Pisa, 56122, Italy
| | - Stefano Mariani
- Dipartimento di Ingegneria dell'Informazione, via G. Caruso 16, Pisa, 56122, Italy
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'Informazione, via G. Caruso 16, Pisa, 56122, Italy
| |
Collapse
|
9
|
Li J, Li M, Chen Z, Shao S, Gu W, Gu Y, Fang Y, Zhao J. Large area roll-to-roll printed semiconducting carbon nanotube thin films for flexible carbon-based electronics. NANOSCALE 2023; 15:5317-5326. [PMID: 36811360 DOI: 10.1039/d2nr07209b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A universal roll-to-roll (R2R) printing approach was developed to construct large area (8 cm × 14 cm) semiconducting single-walled carbon nanotube (sc-SWCNT) thin films on flexible substrates (such as polyethylene terephthalate (PET), paper, and Al foils) at a printing speed of 8 m min-1 using highly concentrated sc-SWCNT inks and crosslinked poly-4-vinylphenol (c-PVP) as the adhesion layer. Bottom-gated and top-gated flexible printed p-type TFTs based on R2R printed sc-SWCNT thin films exhibited good electrical properties with a carrier mobility of ∼11.9 cm2 V-1 s-1, Ion/Ioff ratios of ∼106, small hysteresis, and a subthreshold swing (SS) of 70-80 mV dec-1 at low gate operating voltages (±1 V), and excellent mechanical flexibility. Furthermore, the flexible printed complementary metal oxide semiconductor (CMOS) inverters demonstrated rail-to-rail voltage output characteristics under an operating voltage as low as VDD = -0.2 V, a voltage gain of 10.8 at VDD = -0.8 V, and power consumption as low as 0.056 nW at VDD = -0.2 V. To the best of our knowledge, the electrical properties of the printed SWCNT TFTs (such as Ion/Ioff ratio, mobility, operating voltage, and mechanical flexibility) and printed CMOS inverters based on the R2R printed sc-SWCNT active layer in this work are excellent compared to those of R2R printed SWCNT TFTs reported in the literature. Consequently, the universal R2R printing method reported in this work could promote the development of fully printed low-cost, large-area, high-output, and flexible carbon-based electronics.
Collapse
Affiliation(s)
- Jiaqi Li
- Institute of Nano Science and Technology, University of Science and Technology of China, No. 166 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China.
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Min Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China.
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Zhaofeng Chen
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Shuangshuang Shao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China.
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Weibing Gu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China.
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Ying Gu
- Institute of Nano Science and Technology, University of Science and Technology of China, No. 166 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China.
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Yuxiao Fang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China.
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Jianwen Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China.
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| |
Collapse
|
10
|
Wang X, Lu W, Wei P, Qin Z, Qiao N, Qin X, Zhang M, Zhu Y, Bu L, Lu G. Artificial Tactile Recognition Enabled by Flexible Low-Voltage Organic Transistors and Low-Power Synaptic Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48948-48959. [PMID: 36269162 DOI: 10.1021/acsami.2c14625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The advancement of self-powered intelligent strain systems for human-computer interaction is crucial toward wearable and energy-saving applications. Simultaneously, lowering operating voltage and thus reducing power consumption are of particular interests. A brain-like smart synaptic hardware system is considered as a promising candidate for low-power, parallel computing and learning processes. However, the combination of low-voltage organic transistors and energy efficient smart synapse hardware systems driven by a tactile signal has been hindered by the limited materials and technology. Here, by employing an elastomeric copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with a high HFP content of 25 mol %, flexible, low-voltage transistors (|VG| ≤ 3 V) and a low energy consumption synapse ≤ 9.2 × 10-17 J are devised simultaneously, along with the lowest quality factor (R = Pw × VG, 2.76 × 10-16 J V). Furthermore, based on the low voltage and low power consumption characteristics, flexible artificial tactile recognition system and Morse code recognition are established without any computing supporting. Mechanical flexibility, cycling stability, image contrast enhancement functions, and simulated pattern recognition accuracy of the multilayer perceptron neural network are also simulated. This work recommends a route of exploiting low voltage, low power consumption synaptic systems and smart human-machine interfaces with low energy loss based on flexible organic synaptic transistors.
Collapse
Affiliation(s)
- Xin Wang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an710054, China
| | - Wanlong Lu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an710054, China
| | - Peng Wei
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an710054, China
| | - Zongze Qin
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an710054, China
| | - Nan Qiao
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an710054, China
| | - Xinsu Qin
- School of Chemistry, Xi'an Jiaotong University, Xi'an710049, China
| | - Meng Zhang
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an710054, China
| | - Yuanwei Zhu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an710054, China
| | - Laju Bu
- School of Chemistry, Xi'an Jiaotong University, Xi'an710049, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an710054, China
| |
Collapse
|
11
|
Tian XH, Zhou TY, Meng Y, Zhao YM, Shi C, Hou PX, Zhang LL, Liu C, Cheng HM. A Flexible NO 2 Gas Sensor Based on Single-Wall Carbon Nanotube Films Doped with a High Level of Nitrogen. Molecules 2022; 27:6523. [PMID: 36235060 PMCID: PMC9573668 DOI: 10.3390/molecules27196523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Carbon nanotubes (CNTs) are considered a promising candidate for the detection of toxic gases because of their high specific surface area and excellent electrical and mechanical properties. However, the detecting performance of CNT-based detectors needs to be improved because covalently bonded CNTs are usually chemically inert. We prepared a nitrogen-doped single-wall CNT (SWCNT) film by means of gas-phase fluorination followed by thermal annealing in NH3. The doped nitrogen content could be changed in the range of 2.9-9.9 at%. The N-doped SWCNT films were directly used to construct flexible and transparent gas sensors, which can work at a low voltage of 0.01 V. It was found that their NO2 detection performance was closely related to their nitrogen content. With an optimum nitrogen content of 9.8 at%, a flexible sensor had a detection limit of 500 ppb at room temperature with good cycling ability and stability during bending.
Collapse
Affiliation(s)
- Xiao-Han Tian
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Tian-Ya Zhou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yu Meng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Ming Zhao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chao Shi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Peng-Xiang Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Li-Li Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
12
|
Liu H, Liu F, Sun Z, Cai X, Sun H, Kai Y, Chen L, Jiang C. Single layer aligned semiconducting single-walled carbon nanotube array with high linear density. NANOTECHNOLOGY 2022; 33:375301. [PMID: 35653931 DOI: 10.1088/1361-6528/ac7574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Highly ordered semiconducting single-walled carbon nanotubes(sc-SWCNTs) array with high purity, high linear density and controllable manner is strongly desired for carbon-based integrated circuits, yet it remains a big challenge. Herein, close-packed single layered and controllably aligned sc-SWCNTs arrays were obtained through dielectrophoresis using a high purity sc-SWCNT dispersion. Under optimized condition of length and average number of interconnecting junctions across the channel full of aligned sc-SWCNTs, field effect transistors (FETs) with high performance were achieved with both a high on/off current ratio and large carrier mobility. Based on the optimized channel length, by systematically optimizing the dielectrophoresis parameters of the frequency and duration of applied AC voltage (Vpp), the highly ordered sc-SWCNTs arrays with an ultra-high linear density of 54 ± 2 tubesμm-1showed relatively high device performance of FET. The fabrication process optimized in this report can be further extended and applied in large-area, low-cost carbon-based integrated circuits.
Collapse
Affiliation(s)
- Hao Liu
- The Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Fengjing Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Zhaolou Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- School of Materials Science and Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
| | - Xiaoyong Cai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Huijuan Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Yuan Kai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Li Chen
- The Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chao Jiang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| |
Collapse
|
13
|
Deng J, Li X, Li M, Wang X, Shao S, Li J, Fang Y, Zhao J. Fabrication and electrical properties of printed three-dimensional integrated carbon nanotube PMOS inverters on flexible substrates. NANOSCALE 2022; 14:4679-4689. [PMID: 35262537 DOI: 10.1039/d1nr08056c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The low resolution of current printing technology (usually 10-100 μm) limits the number of printed thin film transistors (TFTs) per processable area, resulting in the low integration of printed circuits. In this work, we developed a three-dimensional (3D) integration technology to increase the integration of printed TFTs and firstly achieved printed 3D single-walled carbon nanotube (SWCNT) PMOS inverter arrays on the flexible substrates. The flexible 3D PMOS inverter consists of a bottom-gate SWCNT TFT (i.e., a driving TFT) and a top-gate SWCNT TFT (i.e., a load TFT). Printed SWCNT TFTs exhibited good electrical properties with high carrier mobility (up to 9.53 cm2 V-1 s-1), high Ion/Ioff ratio (105-106), low hysteresis, and small subthreshold swing (SS) (70-80 mV dec-1). As-prepared 3D PMOS inverters exhibited rail-to-rail voltage output characteristics, high voltage gain (10) at a low operating voltage (VDD < 1 V), and good mechanical flexibility. Furthermore, the printed 3D PMOS inverters could be utilized to detect ammonia gases, exhibiting satisfactory stability and recovery rate. It is crucial for realizing high-density, multi-functional printed carbon-based electronic devices and circuits for wearable electronics and the Internet of Things (IoT).
Collapse
Affiliation(s)
- Jie Deng
- Institute of Nano Science and Technology, University of Science and Technology of China, 166 Ren Ai Road, SEID SIP, Suzhou, Jiangsu, 215123, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China.
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Xiaoqian Li
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Min Li
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Xin Wang
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Shuangshuang Shao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China.
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Jiaqi Li
- Institute of Nano Science and Technology, University of Science and Technology of China, 166 Ren Ai Road, SEID SIP, Suzhou, Jiangsu, 215123, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China.
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Yuxiao Fang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China.
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| | - Jianwen Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China.
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China
| |
Collapse
|
14
|
Affiliation(s)
- Beant Kaur Billing
- University Centre for Research and Development Chandigarh University Gharuan Mohali 140413 India
| |
Collapse
|
15
|
Forel S, Sacco L, Castan A, Florea I, Cojocaru CS. Simple and rapid gas sensing using a single-walled carbon nanotube field-effect transistor-based logic inverter. NANOSCALE ADVANCES 2021; 3:1582-1587. [PMID: 36132564 PMCID: PMC9419661 DOI: 10.1039/d0na00811g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/30/2021] [Indexed: 05/22/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) are promising candidates for gas sensing applications, providing an efficient solution to the device miniaturization challenge and allowing low power consumption. SWCNT gas sensors are mainly based on field-effect transistors (SWCNT-FETs) where the modification of the current flowing through the nanotube is used for gas detection. A major limitation of these SWCNT-FETs lies in the difficulty to measure their transfer curves, since the flowing current typically varies between 10-12 and 10-3 A. Thus, voluminous and energy consuming systems are necessary, severely limiting the miniaturization and low energy consumption. Here, we propose an inverter device that combines two SWCNT-FETs which brings a concrete solution to these limitations and simplifies data processing. In this innovative sensing configuration, the gas detection is based on the variation of an electric potential in the volt range instead of a current intensity variation in the microampere range. In this study, the proof of concept is performed using NO2 gas but can be easily extended to a wide range of gases.
Collapse
Affiliation(s)
- Salomé Forel
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris 91128 Palaiseau Cedex France
| | - Leandro Sacco
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris 91128 Palaiseau Cedex France
| | - Alice Castan
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris 91128 Palaiseau Cedex France
| | - Ileana Florea
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris 91128 Palaiseau Cedex France
| | - Costel Sorin Cojocaru
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris 91128 Palaiseau Cedex France
| |
Collapse
|
16
|
Kumar TV, Rajendran J, Nagarajan RD, Jeevanandam G, Reshetilov AN, Sundramoorthy AK. Selective Chemistry-Based Separation of Semiconducting Single-Walled Carbon Nanotubes and Alignment of the Nanotube Array Network under Electric Field for Field-Effect Transistor Applications. ACS OMEGA 2021; 6:5146-5157. [PMID: 33681556 PMCID: PMC7931199 DOI: 10.1021/acsomega.0c04607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Semiconducting single-walled carbon nanotubes (s-SWCNTs) are considered as a replacement for silicon in field-effect transistors (FETs), solar cells, logic circuits, and so forth, because of their outstanding electronic, optical, and mechanical properties. Herein, we have studied the reaction of pristine SWCNTs dispersed in a pluronic F-68 (PF-68) polymer solution with para-amino diphenylamine diazonium sulfate (PADDS) to separate nanotubes based on their metallicity. The preferential selectivity of the reactions was monitored by changes in the semiconducting (S22 and S33) and metallic (M11) bands by ultraviolet-visible-near infrared spectroscopy. Metallic selectivity depended on the concentrations of PADDS, reaction time, and the solution pH. Furthermore, separation of pure s-SWCNTs was confirmed by Raman spectroscopy and Fourier-transform infrared spectroscopy. After the removal of metallic SWCNTs, direct current electric field was applied to the pure s-SWCNT solution, which effectively directed the nanotubes to align in one direction as nanotube arrays with a longer length and high density. After that, electrically aligned s-SWCNT solution was cast on a silicon substrate, and the length of the nanotube arrays was measured as ∼2 to ∼14 μm with an areal density of ∼2 to ∼20 tubes/μm of s-SWCNTs. Next, electrically aligned s-SWCNT arrays were deposited on the channel of the FET device by drop-casting. Field-emission scanning electron microscopy and electrical measurements have been carried out to test the performance of the aligned s-SWCNTs/FETs. The fabricated FETs with a channel length of 10 μm showed stable electrical properties with a field-effect mobility of 30.4 cm2/Vs and a log10 (I on/I off) current ratio of 3.96. We envisage that this new chemical-based separation method and electric field-assisted alignment could be useful to obtain a high-purity and aligned s-SWCNT array network for the fabrication of high-performance FETs to use in digital and analog electronics.
Collapse
Affiliation(s)
| | - Jerome Rajendran
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ramila D. Nagarajan
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Gayathri Jeevanandam
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Anatoly N. Reshetilov
- G.K.
Skryabin Institute of Biochemistry and Physiology of Microorganisms
of the Russian Academy of Sciences (IBPM RAS), Subdivision of “Federal
Research Center Pushchino Biological Research Center of the Russian
Academy of Sciences”(FRC PBRC RAS), 142290, Pushchino, Moscow oblast, Russia
| | - Ashok K. Sundramoorthy
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
17
|
Cardenas JA, Lu S, Williams NX, Doherty JL, Franklin AD. In-Place Printing of Flexible Electrolyte-Gated Carbon Nanotube Transistors with Enhanced Stability. IEEE ELECTRON DEVICE LETTERS : A PUBLICATION OF THE IEEE ELECTRON DEVICES SOCIETY 2021; 42:367-370. [PMID: 33746353 PMCID: PMC7978402 DOI: 10.1109/led.2021.3055787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ion gel-based dielectrics have long been considered for enabling low-voltage operation in printed thin-film transistors (TFTs), but their compatibility with in-place printing (a streamlined, direct-write printing approach where devices never leave the printer mid- or post-process) remains unexplored. Here, we demonstrate a simple and rapid 4-step in-place printing procedure for producing low-voltage electrolyte-gated carbon nanotube (CNT) thin-film transistors at low temperature (80 °C). This process consists of the use of polymer-wrapped CNT inks for printed channels, silver nanowire inks for printed electrodes, and imidazolium-based ion gel inks for printed gate dielectrics. We find that the efficacy of rinsing CNT films and printing an ion gel in-place is optimized using an elevated platen temperature (as opposed to external rinsing or post-process annealing), where resultant devices exhibited on/off-current ratios exceeding 103, mobilities exceeding 10 cm2V-1s-1, and gate hysteresis of only 0.1 V. Additionally, devices were tested under mechanical strain and long-term bias, showing exceptional flexibility and electrochemical stability over the course of 14-hour bias tests. The findings presented here widen the potential scope of print-in-place (PIP) devices and reveal new avenues of investigation for the improvement of bias stress stability in electrolyte-gated transistors.
Collapse
Affiliation(s)
- Jorge A Cardenas
- Department of Electrical & Computer Engineering, Duke University, Durham, NC 27708 USA
| | - Shiheng Lu
- Department of Electrical & Computer Engineering, Duke University, Durham, NC 27708 USA
| | - Nicholas X Williams
- Department of Electrical & Computer Engineering, Duke University, Durham, NC 27708 USA
| | - James L Doherty
- Department of Electrical & Computer Engineering, Duke University, Durham, NC 27708 USA
| | - Aaron D Franklin
- Department of Electrical & Computer Engineering, Duke University, Durham, NC 27708 USA
| |
Collapse
|