1
|
Jin Z, Yang C. Optimizing photocatalytic hydrogen evolution performance by rationally constructing S-scheme heterojunction to modulate the D-band center. J Colloid Interface Sci 2025; 677:205-220. [PMID: 39142161 DOI: 10.1016/j.jcis.2024.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
The research in the field of photocatalysis has progressed, with the development of heterojunctions being recognized as an effective method to improve carrier separation efficiency in light-induced processes. In this particular study, CuCo2S4 particles were attached to a new cubic CdS surface to create an S-scheme heterojunction, thus successfully addressing this issue. Specifically, owing to the higher conduction band and Fermi level of CuCo2S4 compared to CdS, they serve as the foundation and driving force for the formation of an S-scheme heterojunction. Through in-situ X-ray photoelectron spectroscopy and electron paramagnetic resonance analysis, the direction of charge transfer in the composite photocatalyst under light exposure was determined, confirming the charge transfer mechanism of the S-scheme heterojunction. By effectively constructing the S-scheme heterojunction, the d-band center of the composite photocatalyst was adjusted, reducing the energy needed for electron filling in the anti-bonding energy band, promoting the transfer of photogenerated carriers, and ultimately enhancing the photocatalytic hydrogen production. performance. After optimization, the hydrogen evolution activity of the composite photocatalyst CdS-C/CuCo2S4-3 reached 5818.9 μmol g-1h-1, which is 2.6 times higher than that of cubic CdS (2272.3 μmol g-1h-1) and 327.4 times higher than that of CuCo2S4 (17.8 μmol g-1h-1), showcasing exceptional photocatalytic activity. Electron paramagnetic resonance and in situ X-ray photoelectron spectroscopy have established a theoretical basis for designing and constructing S-scheme heterojunctions, offering a viable method for adjusting the D-band center to enhance the performance of photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| | - Cheng Yang
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| |
Collapse
|
2
|
Liu S, Liu S, Chen H, Xing Y, Wang W, Wang L, Liang Y, Fu J, Zhang C. Catalytic activation of percarbonate with synthesized carrollite for efficient decomposition of bisphenol S: Performance, degradation mechanism and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132719. [PMID: 37866148 DOI: 10.1016/j.jhazmat.2023.132719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/10/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
This study demonstrates the novel application of carrollite (CuCo2S4) for the activation of sodium percarbonate (SPC) towards bisphenol S (BPS) degradation. The effect of several crucial factors like BPS concentration, CuCo2S4 dosage, SPC concentration, reaction temperature, water matrices, inorganic anions, and pH value were investigated. Experimental results demonstrated that BPS could be efficiently degraded by CuCo2S4-activated SPC system (88.52% at pH = 6.9). The mechanism of BPS degradation by CuCo2S4-activated SPC system was uncovered by quenching and electron spin resonance experiments, discovering that a multiple reactive oxygen species process was involved in BPS degradation by hydroxyl radical (•OH), superoxide radical (•O2-), singlet oxygen superoxide (1O2) and carbonate radical (•CO3-). Furthermore, the S(-II) species facilitated rapid redox cycles between Cu(I)/Cu(II) and Co(II)/Co(III). •CO3- was found to not only directly react with BPS molecules, but also act as a bridge to promote •O2- and 1O2 generation, thereby accelerating BPS degradation. Finally, the combination of UHPLC/Q-TOF-MS test with density functional theory (DFT) method was employed to detect major degradation intermediates and thereby elucidate possible reaction pathways of BPS degradation. This study provides a novel strategy by integrating transition metal sulfides with percarbonate for the elimination of organic pollutants in water.
Collapse
Affiliation(s)
- Shicheng Liu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Sitong Liu
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Huabin Chen
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Yujin Xing
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Wenzhong Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China; School of Science, Minzu University of China, Beijing 100081, PR China.
| | - Lijuan Wang
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Yujie Liang
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Junli Fu
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Chen Zhang
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| |
Collapse
|
3
|
Zhang C, Qu P, Zhou M, Qian L, Bai T, Jin J, Xin B. Ionic Liquids as Promisingly Multi-Functional Participants for Electrocatalyst of Water Splitting: A Review. Molecules 2023; 28:molecules28073051. [PMID: 37049827 PMCID: PMC10095915 DOI: 10.3390/molecules28073051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Ionic liquids (ILs), as one of the most concerned functional materials in recent decades, have opened up active perspectives for electrocatalysis. In catalyst preparation, ILs act as characteristic active components besides media and templates. Compared with catalysts obtained using ordinary reagents, IL-derived catalysts have a special structure and catalytic performance due to the influence of IL’s special physicochemical properties and structures. This review mainly describes the use of ILs as modifiers and reaction reagents to prepare electrocatalysts for water splitting. The designability of ILs provides opportunities for the ingenious composition of cations or anions. ILs containing heteroatoms (N, O, S, P, etc.) and transition metal anion (FeCl4−, NiCl3−, etc.) can be used to directly prepare metal phosphides, sulfides, carbides and nitrides, and so forth. The special physicochemical properties and supramolecular structures of ILs can provide growth conditions for catalysts that are different from the normal media environment, inducing special structure and high performance. ILs as heteroatom sources are safe, green and easy to operate compared with traditional heteroatom sources. The strategy for using ILs as reagents is expected to realize 100% atomic transformation of reactants, in line with the concept of green chemistry. This review reflects the discovered work with the best findings from the literature. It will offer readers a deeper understanding on the development of IL-derived electrocatalysts and inspire them to ingeniously design high-performance electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Chenyun Zhang
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Puyu Qu
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Mei Zhou
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Lidong Qian
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Te Bai
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Jianjiao Jin
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Bingwei Xin
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
- Correspondence: ; Tel.: +86-136-8534-5517
| |
Collapse
|
4
|
Yang Q, Xia C, Chen S, Cao X, Hao J. Enhanced activation of H 2O 2 by bimetallic Cu 2SnS 3: A new insight for Cu (II)/Cu (I) redox cycle promotion. J Colloid Interface Sci 2023; 640:750-760. [PMID: 36898181 DOI: 10.1016/j.jcis.2023.02.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
HYPOTHESIS Despite that the development of Cu2SnS3 (CTS) catalyst has attracted increasing interests, few study has reported to investigate its heterogeneous catalytic degradation of organic pollutants in a Fenton-like process. Furthermore, the influence of Sn components towards Cu (II)/Cu (I) redox cycling in CTS catalytic systems remains a fascinating research. EXPERIMENTS In this work, a series of CTS catalysts with controlled crystalline phases were prepared via a microwave-assisted pathway and applied in the H2O2 activation for phenol degradation. The efficiency of phenol degradation in CTS-1/H2O2 system (CTS-1: the molar ratio of Sn (copper acetate) and Cu (tin dichloride) is determined to be Sn:Cu = 1:1) was systematically investigated by controlling various reaction parameters including H2O2 dosage, initial pH and reaction temperature. We discovered that Cu2SnS3 exhibited superior catalytic activity to the contrast monometallic Cu or Sn sulfides and Cu (I) acted as the dominant active sites. The higher Cu (I) proportions conduce to the higher catalytic activities of CTS catalysts. Quenching experiments and electron paramagnetic resonance (EPR) further proved that the activation of H2O2 by CTS catalyst produces reactive oxygen species (ROS) and subsequently leads to degradation of the contaminants. A reasonable mechanism of enhanced H2O2 activation in Fenton-like reaction of CTS/H2O2 system was proposed for phenol degradation by investigating the roles of copper, tin and sulfur species. FINDINGS The developed CTS acted as a promising catalyst in Fenton-like oxidation progress for phenol degradation. Importantly, the copper and tin species contribute to a synergetic effect for the promotion of Cu (II)/Cu (I) redox cycle, which thus enhanced the activation of H2O2. Our work may offer new insight on the facilitation of Cu (II)/Cu (I) redox cycle in Cu-based Fenton-like catalytic systems.
Collapse
Affiliation(s)
- Qiao Yang
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, China
| | - Chuanhai Xia
- School of Resources and Environmental Engineering & Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China.
| | - Shuai Chen
- School of Resources and Environmental Engineering & Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China
| | - Xuezhi Cao
- School of Resources and Environmental Engineering & Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, China.
| |
Collapse
|
5
|
Synthesis and Modification of Nanoparticles with Ionic Liquids: a Review. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Balischewski C, Bhattacharyya B, Sperlich E, Günter C, Beqiraj A, Klamroth T, Behrens K, Mies S, Kelling A, Lubahn S, Holtzheimer L, Nitschke A, Taubert A. Tetrahalidometallate(II) Ionic Liquids with More than One Metal: The Effect of Bromide versus Chloride. Chemistry 2022; 28:e202201068. [PMID: 35789121 PMCID: PMC9826293 DOI: 10.1002/chem.202201068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 01/11/2023]
Abstract
Fifteen N-butylpyridinium salts - five monometallic [C4 Py]2 [MBr4 ] and ten bimetallic [C4 Py]2 [M0.5 a M0.5 b Br4 ] (M=Co, Cu, Mn, Ni, Zn) - were synthesized, and their structures and thermal and electrochemical properties were studied. All the compounds are ionic liquids (ILs) with melting points between 64 and 101 °C. Powder and single-crystal X-ray diffraction show that all ILs are isostructural. The electrochemical stability windows of the ILs are between 2 and 3 V. The conductivities at room temperature are between 10-5 and 10-6 S cm-1 . At elevated temperatures, the conductivities reach up to 10-4 S cm-1 at 70 °C. The structures and properties of the current bromide-based ILs were also compared with those of previous examples using chloride ligands, which illustrated differences and similarities between the two groups of ILs.
Collapse
Affiliation(s)
| | | | - Eric Sperlich
- Institute of ChemistryUniversity of Potsdam14476PotsdamGermany
| | - Christina Günter
- Institute of GeosciencesUniversity of Potsdam14476PotsdamGermany
| | - Alkit Beqiraj
- Institute of ChemistryUniversity of Potsdam14476PotsdamGermany
| | | | - Karsten Behrens
- Institute of ChemistryUniversity of Potsdam14476PotsdamGermany
| | - Stefan Mies
- Institute of ChemistryUniversity of Potsdam14476PotsdamGermany
| | | | - Susanne Lubahn
- Institute of ChemistryUniversity of Potsdam14476PotsdamGermany
| | - Lea Holtzheimer
- Institute of ChemistryUniversity of Potsdam14476PotsdamGermany
| | - Anne Nitschke
- Institute of ChemistryUniversity of Potsdam14476PotsdamGermany
| | - Andreas Taubert
- Institute of ChemistryUniversity of Potsdam14476PotsdamGermany
| |
Collapse
|
7
|
Manivelan N, Karuppanan S, Prabakar K. Djurleite Copper Sulfide-Coupled Cobalt Sulfide Interface for a Stable and Efficient Electrocatalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30812-30823. [PMID: 35762731 DOI: 10.1021/acsami.2c06010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transition metal sulfides (TMS) exhibit proliferated edge sites, facile electrode kinetics, and improved intrinsic electrical conductivity, which demand low potential requirements for total water splitting application. Here, we have propounded copper sulfide-coupled cobalt sulfide nanosheets grown on 3D nickel as an electrocatalyst for hydrogen (HER) and oxygen evolution (OER) reactions. The formation of djurleite copper sulfide with a Cu vacancy enables faster H+ ion transport and shows improved HER activity with a remarkably lower overpotential of 164 mV at 10 mA/cm2, whereas cobalt-incorporated copper sulfide undergoes cation exchange during synthesis and shows elevated OER activity with a lower overpotential of 240 mV at 10 mA/cm2 for the OER. Moreover, Cu2-xS/Co is said to have a hybrid CoS-CoS2 interface and provide Co2+ active sites on the surface and enable the fast adsorption of intermediate species (OH*, O*, and OOH*), which lowers the potential requirement. The copper vacancy and cation exchange with a hybrid CoS-CoS2 structure are helpful in supplying more surface reactive species and faster ion transport for the HER and OER, respectively. The full-cell electrolyzer requires a very low potential of 1.58 V to attain a current density of 10 mA/cm2, and it shows excellent stability for 50 h at 100 mA/cm2 as confirmed by the chronopotentiometry test.
Collapse
Affiliation(s)
- Nandapriya Manivelan
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Senthil Karuppanan
- Department of Physics, School of Advanced Sciences, VIT-AP University, Amaravati 522 237, Andhra Pradesh, India
| | - Kandasamy Prabakar
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|
8
|
Yang Y, Liu J, Xiong B. Vacancy-mediated transition metals as efficient electrocatalysts for water splitting. NANOSCALE 2022; 14:7181-7188. [PMID: 35504047 DOI: 10.1039/d2nr01259f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water splitting using renewable electricity provides a promising way for large-scale hydrogen production due to its zero-carbon emission properties. However, the development of highly efficient, low-cost and durable electrocatalysts remains an ongoing challenge in industrial applications. Herein, a strategy integrating vacancy engineering and metal doping was proposed to design and screen M@CuS catalysts with excellent catalytic activity via density functional theory (DFT) calculations. TM single atoms anchored by the vacancy of the CuS surface show high stability, and serve as the active centers for water splitting. Ti@CuS and Co@CuS exhibit exceptional performance towards the hydrogen evolution reaction (HER). Ti@CuS and Co@CuS can achieve hydrogen adsorption free energies (ΔGH*) of 0.01 eV and -0.03 eV, respectively. The HER process of Ti@CuS is controlled by the Heyrovsky mechanism. Co@CuS also shows superior catalytic activity towards the oxygen evolution reaction (OER), and presents a relatively lower OER overpotential of 0.41 V. Co@CuS serves as a promising candidate of bifunctional HER/OER electrocatalysts. This work not only provides highly efficient electrocatalysts for water splitting, but also inspires a novel concept to guide the extending design of catalysts in other catalysis fields.
Collapse
Affiliation(s)
- Yingju Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jing Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Bo Xiong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
9
|
Wang Q, Xu H, Qian X, Huang B, Wang K, Jin L, He G, Chen H. Successive Anion/Cation Exchange Enables the Fabrication of Hollow CuCo 2S 4 Nanorods for Advanced Oxygen Evolution Reaction Electrocatalysis. Inorg Chem 2022; 61:3176-3185. [PMID: 35143186 DOI: 10.1021/acs.inorgchem.1c03641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hollow CuCo2S4 nanorods (H-CCS-Ns) have been successfully developed via a facile successive anion/cation-exchange method. The outstanding electrocatalytic performance of H-CCS-Ns is mainly attributed to its distinctive hollow structure, which accelerates the electron transfer rate and provides abundant active sites. Moreover, a mechanism study indicates that H-CCS-Ns has highly active octahedral Co3+, and the existence of Co3+ cations optimizes the adsorption of oxygen-involved intermediates, making H-CCS-Ns a promising OER electrocatalyst. Optimized H-CCS-Ns only need an ultralow overpotential of 220 mV to drive a current density of 10 mA·cm-2 and exhibit distinguished cycling stability with a negligible fluctuation for 30 h. More impressively, when H-CCS-Ns are assembled with Pt/C for overall water splitting, a voltage as low as 1.545 V is required at a current density of 10 mA·cm-2, and the catalyst shows outstanding stability for as long as 38 h. This study offers a feasible strategy to design hollow spinel catalysts for efficient OER catalysis.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Xingyue Qian
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Bingji Huang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Lei Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| |
Collapse
|
10
|
Wang Y, Yang C, Zhang K, Guo L, Li R, Zaheer A, Fu F, Xu B, Wang D. In-Situ Construction of 2D/2D CuCo2S4/Bi2WO6 contact heterojunction as a visible-light-driven fenton-like catalyst with highly efficient charge transfer for highly efficient degradation of tetracycline hydrochloride. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Xu H, Song D, Li J, Zhao Y, Yang R, Zhao J. Chlorine-assisted synthesis of CuCo 2S 4@(Cu,Co) 2Cl(OH) 3 heterostructures with an efficient nanointerface for electrocatalytic oxygen evolution. J Colloid Interface Sci 2021; 601:437-445. [PMID: 34090024 DOI: 10.1016/j.jcis.2021.05.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/25/2022]
Abstract
The demand for sustainable energy sources urges the development of efficient and earth-abundant electrocatalysts. Herein, chlorine assisted ion-exchange and in-situ sulfurization processes were combined to construct CuCo2S4@(Cu,Co)2Cl(OH)3 heterostructures from Cu(OH)2 nanoarrays. Chlorine element in the cobalt source stimulated the formation of (Cu,Co)2Cl(OH)3 precursor, and further facilitated partial transformation of the precursor to CuCo2S4 on the surface to achieve composite structure. The mixed valences of Co element (Co3+ in CuCo2S4 and Co2+ in (Cu,Co)2Cl(OH)3) and OS interpenetrated nanointerface in the composite catalysts provided low electron transfer resistance for good alkaline oxygen evolution reaction (OER) activities. In 1 mol L-1 KOH electrolyte, the overpotentials of the optimal composite catalyst reached 253 and 290 mV respectively at the current density of 20 and 50 mA cm-2, which is comparable to the activity of commercial Ir/C (281 mV@20 mA cm-2). These findings could provide opportunities for designing effective and inexpensive composite electrocatalysts through nanointerface engineering strategy.
Collapse
Affiliation(s)
- Haitao Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Dianhua Song
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jiao Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Ruijie Yang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jingzhe Zhao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
12
|
Balischewski C, Choi H, Behrens K, Beqiraj A, Körzdörfer T, Geßner A, Wedel A, Taubert A. Metal Sulfide Nanoparticle Synthesis with Ionic Liquids - State of the Art and Future Perspectives. ChemistryOpen 2021; 10:272-295. [PMID: 33751846 PMCID: PMC7944564 DOI: 10.1002/open.202000357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/12/2021] [Indexed: 11/10/2022] Open
Abstract
Metal sulfides are among the most promising materials for a wide variety of technologically relevant applications ranging from energy to environment and beyond. Incidentally, ionic liquids (ILs) have been among the top research subjects for the same applications and also for inorganic materials synthesis. As a result, the exploitation of the peculiar properties of ILs for metal sulfide synthesis could provide attractive new avenues for the generation of new, highly specific metal sulfides for numerous applications. This article therefore describes current developments in metal sulfide nanoparticle synthesis as exemplified by a number of highlight examples. Moreover, the article demonstrates how ILs have been used in metal sulfide synthesis and discusses the benefits of using ILs over more traditional approaches. Finally, the article demonstrates some technological challenges and how ILs could be used to further advance the production and specific property engineering of metal sulfide nanomaterials, again based on a number of selected examples.
Collapse
Affiliation(s)
- Christian Balischewski
- Institute of ChemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476PotsdamGermany
| | - Hyung‐Seok Choi
- Fraunhofer Institute for Applied Polymer Research (IAP)Functional Materials and Devices/Functional Polymer SystemsGeiselbergstrasse 6914476Potsdam-GolmGermany
| | - Karsten Behrens
- Institute of ChemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476PotsdamGermany
| | - Alkit Beqiraj
- Institute of ChemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476PotsdamGermany
| | - Thomas Körzdörfer
- Institute of ChemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476PotsdamGermany
| | - André Geßner
- Fraunhofer Institute for Applied Polymer Research (IAP)Functional Materials and Devices/Functional Polymer SystemsGeiselbergstrasse 6914476Potsdam-GolmGermany
| | - Armin Wedel
- Fraunhofer Institute for Applied Polymer Research (IAP)Functional Materials and Devices/Functional Polymer SystemsGeiselbergstrasse 6914476Potsdam-GolmGermany
| | - Andreas Taubert
- Institute of ChemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476PotsdamGermany
| |
Collapse
|