1
|
Zhou T, Guo P, Jiang X, Zhao H, Zhang Q, Wang PX. Semiconducting liquid crystalline dispersions with precisely adjustable band gaps and polarized photoluminescence. MATERIALS HORIZONS 2025. [PMID: 40040576 DOI: 10.1039/d4mh01876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Simultaneously possessing energy conversion properties and reconfigurable anisotropic structures due to their fluidity, semiconducting liquid crystals are an emerging class of soft materials for generating and detecting polarized photons. However, band-gap engineering of liquid crystalline substances remains challenging. Herein, semiconducting liquid crystals exhibiting discotic nematic ordering, linearly polarized monochromatic photoluminescence or broadband white-light emission, and polarization-dependent light-responsiveness (generation of photons and photocurrents) were systematically developed by transforming two-dimensional organic-inorganic metal halide perovskites into mesogenic colloidal nanoparticles. The emission wavelengths of the perovskite liquid crystals could be adjusted with an accuracy of 5 nanometers over a wide range in the visible region by compositional variations, indicating the possibility of fabricating polarized light-emitting or optoelectronic devices with desired band gaps using these materials.
Collapse
Affiliation(s)
- Tingting Zhou
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- I-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
| | - Penghao Guo
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- I-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
| | - Xuelian Jiang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- I-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
| | - Hongbo Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- I-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
| | - Qing Zhang
- NANO-X Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 385 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Pei-Xi Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- I-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
2
|
Yang SY, Chen Y, Kwok RTK, Lam JWY, Tang BZ. Platinum complexes with aggregation-induced emission. Chem Soc Rev 2024; 53:5366-5393. [PMID: 38712843 DOI: 10.1039/d4cs00218k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Transition metal-containing materials with aggregation-induced emission (AIE) have brought new opportunities for the development of biological probes, optoelectronic materials, stimuli-responsive materials, sensors, and detectors. Coordination compounds containing the platinum metal have emerged as a promising option for constructing effective AIE platinum complexes. In this review, we classified AIE platinum complexes based on the number of ligands. We focused on the development and performance of AIE platinum complexes with different numbers of ligands and discussed the impact of platinum ion coordination and ligand structure variation on the optoelectronic properties. Furthermore, this review analyzes and summarizes the influence of molecular geometries, stacking models, and aggregation environments on the optoelectronic performance of these complexes. We provided a comprehensive overview of the AIE mechanisms exhibited by various AIE platinum complexes. Based on the unique properties of AIE platinum complexes with different numbers of ligands, we systematically summarized their applications in electronics, biological fields, etc. Finally, we illustrated the challenges and opportunities for future research on AIE platinum complexes, aiming at giving a comprehensive summary and outlook on the latest developments of functional AIE platinum complexes and also encouraging more researchers to contribute to this promising field.
Collapse
Affiliation(s)
- Sheng-Yi Yang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Yingying Chen
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Ryan T K Kwok
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Jacky W Y Lam
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
3
|
Wang Y, Li N, Chu L, Hao Z, Chen J, Huang J, Yan J, Bian H, Duan P, Liu J, Fang Y. Dual Enhancement of Phosphorescence and Circularly Polarized Luminescence through Entropically Driven Self-Assembly of a Platinum(II) Complex. Angew Chem Int Ed Engl 2024; 63:e202403898. [PMID: 38497553 DOI: 10.1002/anie.202403898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Addressing the dual enhancement of circular polarization (glum) and luminescence quantum yield (QY) in circularly polarized luminescence (CPL) systems poses a significant challenge. In this study, we present an innovative strategy utilizing the entropically driven self-assembly of amphiphilic phosphorescent platinum(II) complexes (L-Pt) with tetraethylene glycol chains, resulting in unique temperature dependencies. The entropically driven self-assembly of L-Pt leads to a synergistic improvement in phosphorescence emission efficiency (QY was amplified from 15 % at 25 °C to 53 % at 60 °C) and chirality, both in the ground state and the excited state (glum value has been magnified from 0.04×10-2 to 0.06) with increasing temperature. Notably, we observed reversible modulation of phosphorescence and chirality observed over at least 10 cycles through successive heating and cooling, highlighting the intelligent control of luminescence and chiroptical properties by regulating intermolecular interactions among neighboring L-Pt molecules. Importantly, the QY and glum of the L-Pt assembly in solid state were measured as 69 % and 0.16 respectively, representing relatively high values compared to most self-assembled CPL systems. This study marks the pioneering demonstration of dual thermo-enhancement of phosphorescence and CPL and provides valuable insights into the thermal effects on high-temperature and switchable CPL materials.
Collapse
Affiliation(s)
- Yanqing Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Na Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Liangwen Chu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Zelin Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Junyu Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Jiang Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Junlin Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| |
Collapse
|
4
|
Wang D, Chen J, Wang Y, Hao X, Peng H, Liao Y, Zhou X, Smalyukh II, Xie X. Photoswitching in a Liquid Crystalline Pt(II) Coordination Complex. Chemistry 2024; 30:e202304366. [PMID: 38296805 DOI: 10.1002/chem.202304366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
Photoswitching of photoluminescence has sparked tremendous research interests for super-resolution imaging, high-security-level anti-counterfeiting, and other high-tech applications. However, the excitation of photoluminescence is usually ready to trigger the photoswitching process, making the photoluminescence readout unreliable. Herein, we report a new photoswitch by the marriage of spiropyran with platinum(II) coordination complex. Viable photoluminescence can be achieved upon excitation by 480 nm visible light while the photoswitching can be easily triggered by 365 nm UV light. The feasible photoswitching may be benefited from the formed liquid crystalline (LC) phase of the designed photoswitch as a crystalline spiropyran is normally unable to implement photoswitching. Compared to the counterparts, this LC photoswitch can show distinct and reliable apparent colors and emission colors before and after photoswitching, which may promise the utility in high-security-level anti-counterfeiting and other advanced information technologies.
Collapse
Affiliation(s)
- Dan Wang
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jie Chen
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yixuan Wang
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xingtian Hao
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Haiyan Peng
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Wuhan, 430074, China
- National Anti-counterfeit Engineering Research Center, HUST, Wuhan, 430074, China
| | - Yonggui Liao
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Wuhan, 430074, China
- National Anti-counterfeit Engineering Research Center, HUST, Wuhan, 430074, China
| | - Xingping Zhou
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Wuhan, 430074, China
- National Anti-counterfeit Engineering Research Center, HUST, Wuhan, 430074, China
| | - Ivan I Smalyukh
- Department of Physics and Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, Colorado, 80309, United States
| | - Xiaolin Xie
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Wuhan, 430074, China
- National Anti-counterfeit Engineering Research Center, HUST, Wuhan, 430074, China
| |
Collapse
|
5
|
Yuan L, Yao H, Shen Y, Zhang Y. A cyclometalated Pt(II)-Pt(II) clamshell dimer with a triplet emission at 887 nm. Dalton Trans 2024; 53:5125-5132. [PMID: 38379520 DOI: 10.1039/d3dt04335e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Here, a cyclometalated Pt(II) clamshell dimer (complex 2) has been synthesized with the primary ligand of dibenzo(f,h)quinoxaline and an ancillary ligand of N,N'-diphenylformamidine. In addition, a mononuclear Pt(II) complex 1a and a binuclear Pt(II) complex 1b were also prepared. Complex 1a was coordinated by one cyclometalated ligand of dibenzo(f,h)quinoxaline, one chloride ion, and one N,N'-diphenylformamidine. Complex 1b was coordinated by one cyclometalated ligand of dibenzo(f,h)quinoxaline, two chloride ions, and two N,N'-diphenylformamidines. All of these three complexes were characterized by nuclear magnetic resonance (NMR) spectroscopy, high-resolution mass spectrometry (HRMS), elemental analyses, and single-crystal X-ray diffraction (XRD). The Pt-Pt distance in complex 2 was 2.8439(2) Å. It also exhibited a near-infrared (near-IR) emission at 887 nm in the pure solid state. On the other hand, complexes 1a and 1b exhibited triplet emission at 589 and 660 nm, respectively, in the pure solid state. Furthermore, in 2 wt% poly(Me methacrylate) (PMMA) films, complex 1a showed a triplet emission at 548 nm (with Φ = 84% and τ = 5.53 μs) and complex 1b showed an emission at 627 nm (with Φ = 79% and τ = 4.07 μs). Due to its great photophysical properties, complex 1b was deposited onto quartz plates for the detection of organic solvent vapors and it showed unique emission quenching for the vapor of tetrahydrofuran.
Collapse
Affiliation(s)
- Lequn Yuan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, China.
| | - Haibo Yao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, China.
- Engineering Research Center for Industrial Wastewater Treatment and Reuse of Shandong Province, School of Chemical Engineering and Safety, Binzhou University, Binzhou 256603, Shandong, China
| | - Yunjun Shen
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, China.
| | - Yuzhen Zhang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, China.
| |
Collapse
|
6
|
Wang Y, Liu Y, Hao X, Zhou X, Peng H, Shen Z, Smalyukh II, Xie X, Yang B. Supramolecular Liquid Crystal Carbon Dots for Solvent-Free Direct Ink Writing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303680. [PMID: 37381765 DOI: 10.1002/adma.202303680] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Recent years have witnessed the major advances of nanolights with extensive exploration of nano-luminescent materials like carbon dots (CDs). However, solvent-free processing of these materials remains a formidable challenge, impeding endeavors to develop advanced manufacturing techniques. Herein, in response to this challenge, liquid crystallization is demonstrated as a versatile and robust approach by deliberately anchoring flexible alkyl chains on the CDs surface. Alkyl chain grafting on the CDs surface is observed to substantially depress the common aggregation-caused quenching effect, and results in a shift of self-assembly structure from the crystalline phase to smectic liquid crystalline phase. The liquid-crystalline phase-transition temperature is ready to adjust by varying the alkyl chain length, endowing low-temperature (<50 °C) melt-processing capabilities. Consequently, the first case of direct ink writing (DIW) with liquid crystal (LC) carbon dots is demonstrated, giving rise to highly emissive objects with blue, green and red fluorescence, respectively. Another unexpected finding is that DIW with the LC inks dramatically outperforms DIW with isotropic inks, further highlighting the significance of the LC processing. The approach reported herein not only exhibits a fundamental advance by imparting LC functions to CDs, but also promises technological utility in DIW-based advanced manufacturing.
Collapse
Affiliation(s)
- Yixuan Wang
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xingtian Hao
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xingping Zhou
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- National Anti-Counterfeit Engineering Research Center, Wuhan, 430074, China
| | - Haiyan Peng
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- National Anti-Counterfeit Engineering Research Center, Wuhan, 430074, China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ivan I Smalyukh
- Department of Physics and Material Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Xiaolin Xie
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- National Anti-Counterfeit Engineering Research Center, Wuhan, 430074, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Optical Functional Theragnostic Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130012, China
| |
Collapse
|
7
|
Cretu C, Popa E, Di Maio G, Candreva A, Buta I, Visan A, La Deda M, Donnio B, Szerb EI. Bimetallic liquid crystal blends based on structurally related 3d-metal coordination complexes. Chem Commun (Camb) 2023; 59:10616-10619. [PMID: 37555307 DOI: 10.1039/d3cc02930a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Hetero-bimetallic liquid crystalline materials, exhibiting a single Colhex mesophase, were obtained by simple chemical blending between two structurally-related Cu(II) and Zn(II) metallomesogens based on 1,10-phenanthroline and two chelating gallate ligands. Mesomorphous and optical properties were modified upon their relative respective proportions. This study highlights the numerous possibilities for the fabrication of new multifunctional polymetallic materials, with the possibility of tuning the properties and controlling supramolecular interactions between metal centres and corresponding synergistic effects.
Collapse
Affiliation(s)
- Carmen Cretu
- Coriolan Dragulescu Institute of Chemistry, Romanian Academy, 24, Mihai Viteazu Bvd., 300223-Timisoara, Romania.
| | - Evelyn Popa
- Coriolan Dragulescu Institute of Chemistry, Romanian Academy, 24, Mihai Viteazu Bvd., 300223-Timisoara, Romania.
| | - Giuseppe Di Maio
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende 87036, CS, Italy
| | - Angela Candreva
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende 87036, CS, Italy
| | - Ildiko Buta
- Coriolan Dragulescu Institute of Chemistry, Romanian Academy, 24, Mihai Viteazu Bvd., 300223-Timisoara, Romania.
| | - Alexandru Visan
- Coriolan Dragulescu Institute of Chemistry, Romanian Academy, 24, Mihai Viteazu Bvd., 300223-Timisoara, Romania.
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende 87036, CS, Italy
| | - Bertrand Donnio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR7504, CNRS-Université de Strasbourg, Strasbourg 67034, France.
| | - Elisabeta I Szerb
- Coriolan Dragulescu Institute of Chemistry, Romanian Academy, 24, Mihai Viteazu Bvd., 300223-Timisoara, Romania.
| |
Collapse
|
8
|
Borah ST, Das B, Biswas P, Mallick AI, Gupta P. Aqua-friendly organometallic Ir-Pt complexes: pH-responsive AIPE-guided imaging of bacterial cells. Dalton Trans 2023; 52:2282-2292. [PMID: 36723088 DOI: 10.1039/d2dt03390a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this work, the aggregation-induced photoluminescence emission (AIPE) of three water-soluble heterobimetallic Ir-Pt complexes was reported with insight into their photophysical and electrochemical properties and imaging of bacterial cells. An alkyne appended Schiff's base L, bridges bis-cyclometalated iridium(III) and platinum(II) terpyridine centre. The Schiff's base (N-N fragment) serves as the ancillary ligand to the iridium(III) centre, while the alkynyl end is coordinated to platinum(II). The pH and ionic strength influence the aggregation kinetics of the alkynylplatinum(II) fragment, leading to metal-metal and π-π interactions with the emergence of a triplet metal-metal-to-ligand charge transfer (3MMLCT) emission. The excellent reversibility and photostability of aggregation-induced emission (AIE) of these aqua-friendly complexes were tested for their ability to sense and selectively image E. coli cells at various pH values.
Collapse
Affiliation(s)
- Sakira Tabassum Borah
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Prakash Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Amirul I Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
9
|
Mu B, Ma T, Zhang Z, Hao X, Wang L, Wang J, Yan H, Tian W. Thermo-Induced Bathochromic Emission in Columnar Discotic Liquid Crystals Realized by Intramolecular Planarization. Chemistry 2023; 29:e202300320. [PMID: 36794471 DOI: 10.1002/chem.202300320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Most organic thermochromic fluorescent materials exhibit thermo-induced hypsochromic emission due to the formation of excimers in ordered molecular solids; however, it is still a challenge to endow them with bathochromic emission despite its significance in making up the field of thermochromism. Here, a thermo-induced bathochromic emission in columnar discotic liquid crystals is reported realized by intramolecular planarization of the mesogenic fluorophores. A three-armed discotic molecule of dialkylamino-tricyanotristyrylbenzene was synthesized, which preferred to twist out of the core plane to accommodate ordered molecular stacking in hexagonal columnar mesophases, giving rise to bright green monomer emission. However, intramolecular planarization of the mesogenic fluorophores occurred in isotropic liquid increasing the conjugation length, and as a result led to thermo-induced bathochromic emission from green to yellow light. This work reports a new concept in the thermochromic field and provides a novel strategy to achieve fluorescence tuning from intramolecular actions.
Collapse
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Tianshu Ma
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zhelin Zhang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiangnan Hao
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Liang Wang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jingxia Wang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongxia Yan
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
10
|
Ilincă TA, Chiriac LF, Ilis M, Manaila-Maximean D, Ganea PC, Pasuk I, Cîrcu V. Effect of disubstitution pattern of the terminal alkyl chains on the mesophase of liquid crystals based on lanthanide(III) complexes: A study of the thermal, emission and dielectric behavior. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Zou G, Zhang S, Feng S, Li Q, Yang B, Zhao Y, Luo K, Wen TB. Cyclometalated Platinum(II) Metallomesogens Based on Half-Disc-Shaped β-Diketonate Ligands with Hexacatenar: Crystal Structures, Mesophase Properties, and Semiconductor Devices. Inorg Chem 2022; 61:11702-11714. [PMID: 35848492 DOI: 10.1021/acs.inorgchem.2c01327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of new half-disc-shaped platinum(II) complexes [Pt(ppy)(ALn-6OCnH2n+1)] (Pt-An), [Pt(ppyF)(ALn-6OCnH2n+1)] (Pt-Bn), and [Pt(ppyCF3)(ALn-6OCnH2n+1)] (Pt-Cn) (ALn-6OCnH2n+1 = 1,3-bis(3,4,5-trialkoxyphenyl)propane-1,3-dionato; n = 1, 6, 12) with concise structures have been designed and synthesized, in which 2-phenylpyridine (ppy) derivatives were used as cyclometalated ligands and hexacatenar β-diketonate derivatives ALn-6OCnH2n+1 as auxiliary ligands. The single-crystal data of the methoxy diketonate analogues Pt-A1, Pt-B1, and Pt-C1 indicate that they all display excellent square planarity. These platinum(II) complexes show a certain emission tunability (ranging from λ = 506-535 nm) by the introduction of fluorine or trifluoromethyl into ppy. Thermal studies reveal that the fluorine-substituted complexes are liquid crystals but the trifluoromethyl-substituted complexes are not. The platinum(II) complexes Pt-A12, Pt-B6, and Pt-B12 can form a hexagonal columnar mesophase via intermolecular π-π interactions. In addition, compared to the reported platinum(II) metallomesogens, Pt-A12 and Pt-B12 exhibit improved ambipolar carrier mobility behaviors in semiconductor devices at the liquid crystal states.
Collapse
Affiliation(s)
- Guo Zou
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shanrong Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shishi Feng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, P. R. China
| | - Qihuan Li
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Bo Yang
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu 610068, P. R. China
| | - Yi Zhao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, P. R. China
| | - Kaijun Luo
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu 610068, P. R. China
| | - Ting-Bin Wen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
12
|
Wang Y, Hao X, Peng H, Zhou X, Xie X. Photopatterning of Carbon Dots in Poly(vinyl alcohol) with Photoacid Generators. Macromol Rapid Commun 2022; 43:e2100868. [PMID: 35021265 DOI: 10.1002/marc.202100868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/01/2022] [Indexed: 11/08/2022]
Abstract
Carbon dots (CDs) have drawn considerable attention owing to their attractive photoluminescence, advantageous chemical tolerance, good biocompatibility, and so on. However, it remains challenging to tune their photoluminescence spatially and temporally due to their high photostability. Herein, a viable approach to in-situ dialing the photoluminescence of CDs by using light in the presence of a photoacid generator (PAG, e.g., diphenyliodonium hexafluorophosphate) is demonstrated. Fluorescence quenching occurs upon light irradiation due to the protonation of pyridine and amino nitrogen atoms of CDs according to X-ray photoelectron spectroscopy and cyclic voltammetry. As such, blue, green, and red color fluorescent patterns of CDs are ready to form in poly(vinyl alcohol) by light irradiation under photomask. These patterns not only show a controlled preservation time under room light, but also can be erased on demand by flood UV irradiation, which are promising for advanced anti-counterfeiting such as shelf-life based security and erasable encryption.
Collapse
Affiliation(s)
- Yixuan Wang
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xingtian Hao
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haiyan Peng
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,National Anti-Counterfeit Engineering Research Center, Wuhan, 430074, China
| | - Xingping Zhou
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,National Anti-Counterfeit Engineering Research Center, Wuhan, 430074, China
| | - Xiaolin Xie
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,National Anti-Counterfeit Engineering Research Center, Wuhan, 430074, China
| |
Collapse
|
13
|
Ishikawa T, Honda A, Miyamura K. Effects of Alkyl Chain Length on the Cold Crystallization of Schiff-Base Nickel(II) Complexes. CrystEngComm 2022. [DOI: 10.1039/d2ce00305h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
"Cold crystallization" is the exothermic phenomenon occurring during the heating process of a supercooled liquid. Molecules that exhibit cold crystallization can be used as heat storage materials. Schiff-base nickel(II) complexes...
Collapse
|
14
|
Wang C, Xie F, Zhong H, Wang F, Huang N. Hierarchical lyotropic liquid crystalline behaviors of supramolecular polymers influenced by alkyl chain branching. Polym Chem 2022. [DOI: 10.1039/d2py00786j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The peripheral chain branching in monomeric structures influences the hierarchical supramolecular assembly and lyotropic liquid crystalline properties.
Collapse
Affiliation(s)
- Cong Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fei Xie
- National Synchrotron Radiation Lab, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hua Zhong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ningdong Huang
- National Synchrotron Radiation Lab, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
15
|
Mu B, Zhang Z, Quan X, Hao X, Tian W. Perylene Bisimide-Based Luminescent Liquid Crystals with Tunable Solid-State Light Emission. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57786-57795. [PMID: 34821143 DOI: 10.1021/acsami.1c17280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Perylene bisimides are among the most studied building blocks for supramolecular assemblies in the fabrication of optoelectronic devices for their exceptional optical and electronic properties; however, developing perylene bisimide-based luminescent liquid crystals remains a challenge for the strong π-stacking tendency of the large planar aromatic core to quench the emission. We here reported a novel strategy to achieve luminescent liquid crystals based on perylene bisimides by introducing a conformation-adjustable core to control the molecular stacking arrangement of planar perylene bisimides in the solid state. The emission wavelength is in the deep-red region with a luminescence efficiency of up to 10%. Fluorescence properties of the liquid crystals can be further regulated by photoisomerization-induced structural evolution from columnar to lamellar mesophases. These luminescent liquid crystals are also able to not only exhibit strong emission at high temperatures but also show attractive thermochromic luminescence tuning behaviors. This work provides a new strategy for the design and development of novel solid-state luminescent materials with potential for various optoelectronic applications.
Collapse
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhelin Zhang
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuhong Quan
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiangnan Hao
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
16
|
Wang J, Jiang Q, Cao S, Sun C, Zhang Y, Qiu Y, Wang H, Yin G, Liao Y, Xie X. Z/E Effect on Phase Behavior of Main-Chain Liquid Crystalline Polymers Bearing AIEgens. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qian Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuang Cao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenchen Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuping Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guochuan Yin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yonggui Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaolin Xie
- National Anti-counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
17
|
Soto MA, Carta V, Cano MT, Andrews RJ, Patrick BO, MacLachlan MJ. Multiresponsive Cyclometalated Crown Ether Bearing a Platinum(II) Metal Center. Inorg Chem 2021; 61:2999-3006. [PMID: 34797043 DOI: 10.1021/acs.inorgchem.1c03178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiresponsive materials can adapt to numerous changes in their local environment, which makes them highly valuable for various applications. Although nanostructured and polymeric multiresponsive materials are plentiful, small-molecule analogues are scarce. This work presents a compact cyclometalated platinum(II) complex that bears a crown ether cavity (18C6-PtII); the intimate ring/emitter connectivity is key to unlocking multiresponsiveness. Complex 18C6-PtII responds to (i) cationic guests, producing changes in luminescence in both solution and the solid state, (ii) solvent molecules, which perturb the packing of the complex in the solid state and cause reversible color changes, and (iii) solvent polarity, which leads to controlled aggregation. These responses may enable 18C6-PtII to function as a sensor for ions and solvents, or as a functional unit for the fabrication of hybrid supramolecular polymers and metallogels.
Collapse
Affiliation(s)
- Miguel A Soto
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Veronica Carta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Maria T Cano
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ryan J Andrews
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4 Canada.,WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192 Japan
| |
Collapse
|
18
|
Bujosa S, Greciano EE, Martínez MA, Sánchez L, Soberats B. Unveiling the Role of Hydrogen Bonds in Luminescent N-Annulated Perylene Liquid Crystals. Chemistry 2021; 27:14282-14286. [PMID: 34323342 PMCID: PMC8596826 DOI: 10.1002/chem.202102446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 12/26/2022]
Abstract
We report the liquid-crystalline (LC) and luminescent properties of a series of N-annulated perylenes (1-4) in whose molecular structures amide and ester groups alternate. We found that the LC properties of these compounds not only depend on the number of hydrogen-bonding units, but also on the relative position of the amide linkers in the molecule. The absence of amide groups in compound 1 leads to no LC properties, whereas four amide groups induce the formation of a wide temperature range columnar hexagonal phase in compound 4. Remarkably, compound 3, with two amide groups in the inner part of the structure, stabilizes the columnar LC phases better than its structural isomer 2, with the amide groups in the outer part of the molecule. Similarly, we found that only compounds 1 and 2, which have no hydrogen bonding units in the inner part of the molecule, exhibit luminescence vapochromism upon exposure to organic solvent vapors.
Collapse
Affiliation(s)
- Sergi Bujosa
- Department of ChemistryUniversitat de les Illes BalearsCra. Valldemossa, Km. 7.507122Palma de MallorcaSpain
| | - Elisa E. Greciano
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de Madrid Ciudad Universitaria, s/n28040MadridSpain
| | - Manuel A. Martínez
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de Madrid Ciudad Universitaria, s/n28040MadridSpain
| | - Luis Sánchez
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de Madrid Ciudad Universitaria, s/n28040MadridSpain
| | - Bartolome Soberats
- Department of ChemistryUniversitat de les Illes BalearsCra. Valldemossa, Km. 7.507122Palma de MallorcaSpain
| |
Collapse
|
19
|
Li J, Wang JH, Cao XJ, Li XD, Ren XK, Yu ZQ. Peripherally Modified Tetraphenylethene: Emerging as a Room-Temperature Luminescent Disc-Like Nematic Liquid Crystal. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35207-35213. [PMID: 34279082 DOI: 10.1021/acsami.1c10243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A blue-light-emitting liquid crystalline (LC) material was designed and prepared. By employing a twisted luminescent core (i.e., tetraphenylethene), four peripheral LC units with long alkyl chains and the small polar benzyl-ether-typed linking groups, the resulting material displayed a hexagonal columnar phase near room temperature and a disc-like nematic phase between 32 and 70 °C. The columnar LC showed a high quantum yield of 0.49 at 20 °C, and the efficient luminescence property was retained even in the isotropic phase at high temperature. Additionally, the fluidity of the nematic phase rendered the LC a non-volatile solvent, and the proper addition of a red dye led to the achievement of polarized white-light emission, which revealed a promising application prospect in LC display fabrication.
Collapse
Affiliation(s)
- Jiahua Li
- College of Chemistry and Environmental Engineering, Institute of Low-Dimensional Materials Genome Initiative, Shenzhen University, Shenzhen 518071, P. R. China
| | - Jia-Hui Wang
- College of Chemistry and Environmental Engineering, Institute of Low-Dimensional Materials Genome Initiative, Shenzhen University, Shenzhen 518071, P. R. China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xiang-Jian Cao
- College of Chemistry and Environmental Engineering, Institute of Low-Dimensional Materials Genome Initiative, Shenzhen University, Shenzhen 518071, P. R. China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xiao-Dong Li
- College of Chemistry and Environmental Engineering, Institute of Low-Dimensional Materials Genome Initiative, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Institute of Low-Dimensional Materials Genome Initiative, Shenzhen University, Shenzhen 518071, P. R. China
| |
Collapse
|
20
|
Soto MA, Kandel R, MacLachlan MJ. Chromic Platinum Complexes Containing Multidentate Ligands. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Miguel A. Soto
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver BC, V6T 1Z1 Canada
| | - Raksha Kandel
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver BC, V6T 1Z1 Canada
| | - Mark J. MacLachlan
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver BC, V6T 1Z1 Canada
- Stewart Blusson Quantum Matter Institute University of British Columbia 2355 East Mall Vancouver BC, V6T 1Z4 Canada
- WPI Nano Life Science Institute Kanazawa University Kanazawa 920-1192 Japan
| |
Collapse
|