1
|
Liu C, Kelley SO, Wang Z. Self-Healing Materials for Bioelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401219. [PMID: 38844826 DOI: 10.1002/adma.202401219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/21/2024] [Indexed: 08/29/2024]
Abstract
Though the history of self-healing materials stretches far back to the mid-20th century, it is only in recent years where such unique classes of materials have begun to find use in bioelectronics-itself a burgeoning area of research. Inspired by the natural ability of biological tissue to self-repair, self-healing materials play a multifaceted role in the context of soft, wireless bioelectronic systems, in that they can not only serve as a protective outer shell or substrate for the internal electronic circuitry-analogous to the mechanical barrier that skin provides for the human body-but also, and most importantly, act as an active sensing safeguard against mechanical damage to preserve device functionality and enhance overall durability. This perspective presents the historical overview, general design principles, recent developments, and future outlook of self-healing materials for bioelectronic devices, which integrates topics in many research disciplines-from materials science and chemistry to electronics and bioengineering-together.
Collapse
Affiliation(s)
- Claire Liu
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60607, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Shana O Kelley
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60607, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, 60611, USA
| | - Zongjie Wang
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60607, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
2
|
Machado TO, Stubbs CJ, Chiaradia V, Alraddadi MA, Brandolese A, Worch JC, Dove AP. A renewably sourced, circular photopolymer resin for additive manufacturing. Nature 2024; 629:1069-1074. [PMID: 38750360 PMCID: PMC11136657 DOI: 10.1038/s41586-024-07399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/09/2024] [Indexed: 05/31/2024]
Abstract
The additive manufacturing of photopolymer resins by means of vat photopolymerization enables the rapid fabrication of bespoke 3D-printed parts. Advances in methodology have continually improved resolution and manufacturing speed, yet both the process design and resin technology have remained largely consistent since its inception in the 1980s1. Liquid resin formulations, which are composed of reactive monomers and/or oligomers containing (meth)acrylates and epoxides, rapidly photopolymerize to create crosslinked polymer networks on exposure to a light stimulus in the presence of a photoinitiator2. These resin components are mostly obtained from petroleum feedstocks, although recent progress has been made through the derivatization of renewable biomass3-6 and the introduction of hydrolytically degradable bonds7-9. However, the resulting materials are still akin to conventional crosslinked rubbers and thermosets, thus limiting the recyclability of printed parts. At present, no existing photopolymer resin can be depolymerized and directly re-used in a circular, closed-loop pathway. Here we describe a photopolymer resin platform derived entirely from renewable lipoates that can be 3D-printed into high-resolution parts, efficiently deconstructed and subsequently reprinted in a circular manner. Previous inefficiencies with methods using internal dynamic covalent bonds10-17 to recycle and reprint 3D-printed photopolymers are resolved by exchanging conventional (meth)acrylates for dynamic cyclic disulfide species in lipoates. The lipoate resin platform is highly modular, whereby the composition and network architecture can be tuned to access printed materials with varied thermal and mechanical properties that are comparable to several commercial acrylic resins.
Collapse
Affiliation(s)
- Thiago O Machado
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Connor J Stubbs
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Maher A Alraddadi
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Arianna Brandolese
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Joshua C Worch
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK.
- Department of Chemistry, Macromolecules Innovation Institute, Blacksburg, VA, USA.
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
3
|
Baur E, Tiberghien B, Amstad E. 3D Printing of Double Network Granular Elastomers with Locally Varying Mechanical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313189. [PMID: 38530246 DOI: 10.1002/adma.202313189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Indexed: 03/27/2024]
Abstract
Fast advances in the design of soft actuators and robots demand for new soft materials whose mechanical properties can be changed over short length scales. Elastomers can be formulated as highly stretchable or rather stiff materials and hence, are attractive for these applications. They are most frequently cast such that their composition cannot be changed over short length scales. A method that allows to locally change the composition of elastomers on hundreds of micrometer lengths scales is direct ink writing (DIW). Unfortunately, in the absence of rheomodifiers, most elastomer precursors cannot be printed through DIW. Here, 3D printable double network granular elastomers (DNGEs) whose ultimate tensile strain and stiffness can be varied over an unprecedented range are introduced. The 3D printability of these materials is leveraged to produce an elastomer finger containing rigid bones that are surrounded by a soft skin. Similarly, the rheological properties of the microparticle-based precursors are leveraged to cast elastomer slabs with locally varying stiffnesses that deform and twist in a predefined fashion. These DNGEs are foreseen to open up new avenues in the design of the next generation of smart wearables, strain sensors, prosthesis, soft actuators, and robots.
Collapse
Affiliation(s)
- Eva Baur
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
- National Center of Competence in Research Bio-Inspired Materials, Fribourg, 1700, Switzerland
| | - Benjamin Tiberghien
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
- National Center of Competence in Research Bio-Inspired Materials, Fribourg, 1700, Switzerland
| |
Collapse
|
4
|
Liu W, Sun Z, Ren H, Wen X, Wang W, Zhang T, Xiao L, Zhang G. Research Progress of Self-Healing Polymer for Ultraviolet-Curing Three-Dimensional Printing. Polymers (Basel) 2023; 15:4646. [PMID: 38139898 PMCID: PMC10748115 DOI: 10.3390/polym15244646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Ultraviolet (UV)-curing technology as a photopolymerization technology has received widespread attention due to its advantages of high efficiency, wide adaptability, and environmental friendliness. Ultraviolet-based 3D printing technology has been widely used in the printing of thermosetting materials, but the permanent covalent cross-linked networks of thermosetting materials which are used in this method make it hard to recover the damage caused by the printing process through reprocessing, which reduces the service life of the material. Therefore, introducing dynamic bonds into UV-curable polymer materials might be a brilliant choice which can enable the material to conduct self-healing, and thus meet the needs of practical applications. The present review first introduces photosensitive resins utilizing dynamic bonds, followed by a summary of various types of dynamic bonds approaches. We also analyze the advantages/disadvantages of diverse UV-curable self-healing polymers with different polymeric structures, and outline future development trends in this field.
Collapse
Affiliation(s)
- Wenhao Liu
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (W.L.); (Z.S.); (H.R.); (L.X.)
| | - Zhe Sun
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (W.L.); (Z.S.); (H.R.); (L.X.)
| | - Hao Ren
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (W.L.); (Z.S.); (H.R.); (L.X.)
| | - Xiaomu Wen
- Science and Technology on Transient Impact Laboratory, No. 208 Research Institute of China Ordnance Industries, Beijing 102202, China;
| | - Wei Wang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, 58 Qinghe Road, Xiangyang 441003, China; (W.W.); (T.Z.)
| | - Tianfu Zhang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, 58 Qinghe Road, Xiangyang 441003, China; (W.W.); (T.Z.)
| | - Lei Xiao
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (W.L.); (Z.S.); (H.R.); (L.X.)
| | - Guangpu Zhang
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (W.L.); (Z.S.); (H.R.); (L.X.)
| |
Collapse
|
5
|
Han X, Saiding Q, Cai X, Xiao Y, Wang P, Cai Z, Gong X, Gong W, Zhang X, Cui W. Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds. NANO-MICRO LETTERS 2023; 15:239. [PMID: 37907770 PMCID: PMC10618155 DOI: 10.1007/s40820-023-01187-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/25/2023] [Indexed: 11/02/2023]
Abstract
Blood vessels are essential for nutrient and oxygen delivery and waste removal. Scaffold-repairing materials with functional vascular networks are widely used in bone tissue engineering. Additive manufacturing is a manufacturing technology that creates three-dimensional solids by stacking substances layer by layer, mainly including but not limited to 3D printing, but also 4D printing, 5D printing and 6D printing. It can be effectively combined with vascularization to meet the needs of vascularized tissue scaffolds by precisely tuning the mechanical structure and biological properties of smart vascular scaffolds. Herein, the development of neovascularization to vascularization to bone tissue engineering is systematically discussed in terms of the importance of vascularization to the tissue. Additionally, the research progress and future prospects of vascularized 3D printed scaffold materials are highlighted and presented in four categories: functional vascularized 3D printed scaffolds, cell-based vascularized 3D printed scaffolds, vascularized 3D printed scaffolds loaded with specific carriers and bionic vascularized 3D printed scaffolds. Finally, a brief review of vascularized additive manufacturing-tissue scaffolds in related tissues such as the vascular tissue engineering, cardiovascular system, skeletal muscle, soft tissue and a discussion of the challenges and development efforts leading to significant advances in intelligent vascularized tissue regeneration is presented.
Collapse
Affiliation(s)
- Xiaoyu Han
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, 250013, Shandong, People's Republic of China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Xiaolu Cai
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China
| | - Yi Xiao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Peng Wang
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, 250013, Shandong, People's Republic of China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Xuan Gong
- University of Texas Southwestern Medical Center, Dallas, TX, 75390-9096, USA
| | - Weiming Gong
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, 250013, Shandong, People's Republic of China.
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
6
|
Jiang Y, Ng ELL, Han DX, Yan Y, Chan SY, Wang J, Chan BQY. Self-Healing Polymeric Materials and Composites for Additive Manufacturing. Polymers (Basel) 2023; 15:4206. [PMID: 37959886 PMCID: PMC10649664 DOI: 10.3390/polym15214206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Self-healing polymers have received widespread attention due to their ability to repair damage autonomously and increase material stability, reliability, and economy. However, the processability of self-healing materials has yet to be studied, limiting the application of rich self-healing mechanisms. Additive manufacturing effectively improves the shortcomings of conventional processing while increasing production speed, accuracy, and complexity, offering great promise for self-healing polymer applications. This article summarizes the current self-healing mechanisms of self-healing polymers and their corresponding additive manufacturing methods, and provides an outlook on future developments in the field.
Collapse
Affiliation(s)
- Yixue Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Evelyn Ling Ling Ng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Danielle Xinyun Han
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Yinjia Yan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Siew Yin Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - John Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| |
Collapse
|
7
|
Liu J, Miao P, Leng X, Che J, Wei Z, Li Y. Chemically Recyclable Biobased Non-Isocyanate Polyurethane Networks from CO 2 -Derived Six-membered Cyclic Carbonates. Macromol Rapid Commun 2023; 44:e2300263. [PMID: 37435986 DOI: 10.1002/marc.202300263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Non-isocyanate polyurethanes (NIPUs) are widely studied as sustainability potential, because they can be prepared without using toxic isocyanates in the synthesis process. The aminolysis of cyclic carbonate to form NIPUs is a promising route. In this work, a series of NIPUs is prepared from renewable bis(6-membered cyclic carbonates) (iEbcc) and amines. The resulting NIPUs possess excellent mechanical properties and thermal stability. The NIPUs can be remolded via transcarbamoylation reactions, and iEbcc-TAEA-10 (the molar ratio of tris(2-aminoethyl)amine in amines is 10%) still get a recovery ratio of 90% in tensile stress after three cycles of remolding. In addition, the obtained materials can be chemically degraded into bi(1,3-diol) precursors with high purity (>99%) and yield (>90%) through alcoholysis. Meanwhile, the degraded products can be used to regenerate NIPUs with similar structures and properties as the original samples. The synthetic strategy, isocyanate-free and employing isoeugenol and carbon dioxide (CO2 ) as building blocks, makes this approach an attractive pathway to NIPU networks taking a step toward a circular economy.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Pengcheng Miao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xuefei Leng
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jian Che
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Dalian Xinyulong Marine Biological Seed Technology Co., Ltd., Dalian, 116222, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
8
|
Hu Q, Cui J, Zhang H, Liu S, Ramalingam M. A 5 + 1-Axis 3D Printing Platform for Producing Customized Intestinal Fistula Stents. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:955-970. [PMID: 37886400 PMCID: PMC10599436 DOI: 10.1089/3dp.2021.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Tailored intestinal fistula stents with a hollow bent pipe structure prepared by using a three-axis bio-printing platform are often unsuitable due to low printing efficiency and quality caused by the unavoidable need for a supporting structure. Herein, a 5 + 1-axis 3D printing platform was built and developed for producing support-free intestinal fistula stents. A 3D model of the target stent shape and dimensions was treated by a dynamic slicing algorithm, which was then used to prepare a motion control code. Our printing method showed improved printing efficiency, superior stent surface properties and structure and ideal elasticity and mechanical strength to meet the mechanical requirements of the human body. Static simulations showed the importance of axial printing techniques, whereas the stent itself was shown to have excellent biocompatibility with wettability and cell proliferation tests. We present a customizable, efficient, and high-quality method with the potential for preparing bespoke stents for treating intestinal fistulas.
Collapse
Affiliation(s)
- Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Jian Cui
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Suihong Liu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
| | - Murugan Ramalingam
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
9
|
Cai Y, Wang Y, Long L, Zhou S, Yan L, Zhang J, Zou H. Fabrication of Highly Thermally Resistant and Self-Healing Polysiloxane Elastomers by Constructing Covalent and Reversible Networks. Macromol Rapid Commun 2023; 44:e2300191. [PMID: 37329201 DOI: 10.1002/marc.202300191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/14/2023] [Indexed: 06/18/2023]
Abstract
The fabrication of self-healing elastomers with high thermal stability for use in extreme thermal conditions such as aerospace remains a major challenge. A strategy for preparing self-healing elastomers with stable covalent bonds and dynamic metal-ligand coordination interactions as crosslinking sites in polydimethylsiloxane (PDMS) is proposed. The added Fe (III) not only serves as the dynamic crosslinking point at room temperature which is crucial for self-healing performance, but also plays a role as free radical scavenging agent at high temperatures. The results show that the PDMS elastomers possessed an initial thermal degradation temperature over 380 °C and a room temperature self-healing efficiency as high as 65.7%. Moreover, the char residue at 800 °C of PDMS elastomer reaches 7.19% in nitrogen atmosphere, and up to 14.02% in air atmosphere by doping a small amount (i.e., 0.3 wt%) of Fe (III), which is remarkable for the self-healing elastomers that contain weak and dynamic bonds with relatively poor thermal stability. This study provides an insight into designing self-healing PDMS-based materials that can be targeted for use as high-temperature thermal protection coatings.
Collapse
Affiliation(s)
- Yuanbo Cai
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Yuan Wang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Lu Long
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Shengtai Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Liwei Yan
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Junhua Zhang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Huawei Zou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
10
|
Yang X, Guo Y, Kong L, Lu J, Lin B, Xu C. Biobased epoxidized natural rubber/sodium carboxymethyl cellulose composites with enhanced strength and healing ability. Int J Biol Macromol 2023; 242:124681. [PMID: 37141968 DOI: 10.1016/j.ijbiomac.2023.124681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Conventional vulcanized rubbers cause a non-negligible waste of resources due to the formation of 3D irreversible covalently cross-linked networks. The introduction of reversible covalent bonds, such as reversible disulfide bonds, into the rubber network, is an available solution to the above problem. However, the mechanical properties of rubber with only reversible disulfide bonds cannot meet most practical applications. In this paper, a strengthened bio-based epoxidized natural rubber (ENR) composite reinforced by sodium carboxymethyl cellulose (SCMC) was prepared. SCMC forms a mass of hydrogen bonds between its hydroxyl groups and the hydrophilic groups of ENR chain, which gives the ENR/2,2'-Dithiodibenzoic acid (DTSA)/SCMC composites an enhanced mechanical performance. With 20 phr SCMC, the tensile strength of the composite increases from 3.0 to 10.4 MPa, which is almost 3.5 times that of the ENR/DTSA composite without SCMC. Simultaneously, DTSA covalently cross-linked ENR with the introduction of reversible disulfide bonds, which enables the cross-linked network to rearrange its topology at low temperatures and thus endows the ENR/DTSA/SCMC composites with healing properties. The ENR/DTSA/SCMC-10 composite has a considerable healing efficiency of about 96 % after healing at 80 °C for 12 h.
Collapse
Affiliation(s)
- Xueli Yang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Yuanming Guo
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Lingli Kong
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Junjie Lu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Baofeng Lin
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Chuanhui Xu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China.
| |
Collapse
|
11
|
Guo X, Liang J, Wang Z, Qin J, Zhang Q, Zhu S, Zhang K, Zhu H. Tough, Recyclable, and Degradable Elastomers for Potential Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210092. [PMID: 36929503 DOI: 10.1002/adma.202210092] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Indexed: 05/19/2023]
Abstract
Elastomers have many industrial, medical and commercial applications, however, their huge demand raises an important question of how to dispose of the out-of-service elastomers. Ideal elastomers that are concurrently tough, recyclable, and degradable are in urgent need, but their preparation remains a rigorous challenge. Herein, a polycaprolactone (PCL) based polyurethane elastomer is designed and prepared to meet this demand. Owing to the presence of dynamic coordination bond and the occurrence of strain-induced crystallization, the obtained elastomer exhibits a high toughness of ≈372 MJ m-3 and an unprecedented fracture energy of ≈646 kJ m-2 , which is much higher than natural rubber (≈50 MJ m-3 for toughness and ≈10 kJ m-2 for fracture energy). In addition, the elastomer can be recycled at least three times using solvent without losing its mechanical properties and can be degraded by lipase in ≈2 months. Finally, biological experiments demonstrate that the elastomer possesses good biocompatibility and can facilitate wound healing in mice when used as sutures. It is believed that the obtained elastomer meets the requirements for next-generation elastomers and is expected to be used in emerging fields such as biomedicine, flexible electronics, robotics and beyond.
Collapse
Affiliation(s)
- Xiwei Guo
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Jiaheng Liang
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhifen Wang
- College of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Jianliang Qin
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| |
Collapse
|
12
|
Grosjean M, Gangolphe L, Déjean S, Hunger S, Bethry A, Bossard F, Garric X, Nottelet B. Dual-Crosslinked Degradable Elastomeric Networks With Self-Healing Properties: Bringing Multi(catechol) Star-Block Copolymers into Play. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2077-2091. [PMID: 36565284 DOI: 10.1021/acsami.2c17515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the biomedical field, degradable chemically crosslinked elastomers are interesting materials for tissue engineering applications, since they present rubber-like mechanical properties matching those of soft tissues and are able to preserve their three-dimensional (3D) structure over degradation. Their use in biomedical applications requires surgical handling and implantation that can be a source of accidental damages responsible for the loss of properties. Therefore, their inability to be healed after damage or breaking can be a major drawback. In this work, biodegradable dual-crosslinked networks that exhibit fast and efficient self-healing properties at 37 °C are designed. Self-healable dual-crosslinked (chemically and physically) elastomeric networks are prepared by two methods. The first approach is based on the mix of hydrophobic poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) star-shaped copolymers functionalized with either catechol or methacrylate moieties. In the second approach, hydrophobic bifunctional PEG-PLA star-shaped copolymers with both catechol and methacrylate on their structure are used. In the two systems, the supramolecular network is responsible for the self-healing properties, thanks to the dynamic dissociation/reassociation of the numerous hydrogen bonds between the catechol groups, whereas the covalent network ensures mechanical properties similar to pure methacrylate networks. The self-healable materials display mechanical properties that are compatible with soft tissues and exhibit linear degradation because of the chemical cross-links. The performances of networks from mixed copolymers versus bifunctional copolymers are compared and demonstrate the superiority of the latter. The biocompatibility of the materials is also demonstrated, confirming the potential of these degradable and self-healable elastomeric networks to be used for the design of temporary medical devices.
Collapse
Affiliation(s)
- Mathilde Grosjean
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
| | - Louis Gangolphe
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
- LRP, Univ Grenoble Alpes, CNRS, Grenoble INP, 38000Grenoble, France
| | - Stéphane Déjean
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
| | - Sylvie Hunger
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
| | - Audrey Bethry
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
| | - Frédéric Bossard
- LRP, Univ Grenoble Alpes, CNRS, Grenoble INP, 38000Grenoble, France
| | - Xavier Garric
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, 30900Nîmes, France
| | - Benjamin Nottelet
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, 34090Montpellier, France
| |
Collapse
|
13
|
Wang Y, Yu X, Zhang H, Fan X, Zhang Y, Li Z, Miao YE, Zhang X, Liu T. Highly Stretchable, Soft, Low-Hysteresis, and Self-Healable Ionic Conductive Elastomers Enabled by Long, Functional Cross-Linkers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yufei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiaohui Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Haopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiaoshan Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yiting Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Yue-E Miao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Xu Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
14
|
Bio-composites from spent hen derived lipids grafted on CNC and reinforced with nanoclay. Carbohydr Polym 2022; 281:119082. [DOI: 10.1016/j.carbpol.2021.119082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
|
15
|
A Photoinduced Dual‐Wavelength Approach for 3D Printing and Self‐Healing of Thermosetting Materials. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Zhang J, Zhang C, Shang Q, Hu Y, Song F, Jia P, Zhu G, Huang J, Liu C, Hu L, Zhou Y. Mechanically robust, healable, shape memory, and reprocessable biobased polymers based on dynamic pyrazole-urea bonds. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Zhang B, Feng Q, Song H, Zhang X, Zhang C, Liu T. Hierarchical Response Network Boosts Solvent-Free Ionic Conductive Elastomers with Extreme Stretchability, Healability, and Recyclability for Ionic Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8404-8416. [PMID: 35112831 DOI: 10.1021/acsami.1c22602] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The construction of solvent-free ionic conductive elastomers with high mechanical stretchability and large dynamic reversibility of chain segments is highly desired yet challenging. Here, a hierarchical response network strategy is presented for preparing highly stretchable yet mechanical robust ionic conductive elastomer composites (ICECs), among which poly(ethylene oxide) (PEO) microcrystalline serves as a physical cross-linking site providing high mechanical strength and elasticity, while dense hydrogen bonds endow superior mechanical toughness and dynamic reversibility. Due to the formation of the hierarchical response network, the resultant ICECs exhibit intrinsically high stretchability (>1500%), large tensile strength (∼2.1 MPa), and high fracture toughness (∼28 MJ m-3). Intriguingly, due to the high reversibility of hydrogen-bonded networks, the ICECs after being crushed are capable of healing and recycling by simple hot-pressing for multiple cycles. Moreover, the ICECs are dissolvable under an alkaline condition and easily regenerated in an acid solution for manifold cycles. Importantly, the healed, recycled, and regenerated ICECs are capable of maintaining their initial mechanical elasticity and ionic conducting performance. Due to the integration of high stretchability, fatigue resistance, and ionic conductivity, the ICECs can readily work as a stretchable ionic conductor for skin-inspired ionic sensors for real-time and accurately sensing complex human motions. This study thus provides a promising strategy for the development of healable and renewable ionic sensing materials with high stretchability and mechanical robustness, demonstrating great potential in soft ionotronics.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China
| | - Qichun Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China
| | - Hui Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China
| | - Xu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
18
|
Roels E, Terryn S, Iida F, Bosman AW, Norvez S, Clemens F, Van Assche G, Vanderborght B, Brancart J. Processing of Self-Healing Polymers for Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104798. [PMID: 34610181 DOI: 10.1002/adma.202104798] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Soft robots are, due to their softness, inherently safe and adapt well to unstructured environments. However, they are prone to various damage types. Self-healing polymers address this vulnerability. Self-healing soft robots can recover completely from macroscopic damage, extending their lifetime. For developing healable soft robots, various formative and additive manufacturing methods have been exploited to shape self-healing polymers into complex structures. Additionally, several novel manufacturing techniques, noted as (re)assembly binding techniques that are specific to self-healing polymers, have been created. Herein, the wide variety of processing techniques of self-healing polymers for robotics available in the literature is reviewed, and limitations and opportunities discussed thoroughly. Based on defined requirements for soft robots, these techniques are critically compared and validated. A strong focus is drawn to the reversible covalent and (physico)chemical cross-links present in the self-healing polymers that do not only endow healability to the resulting soft robotic components, but are also beneficial in many manufacturing techniques. They solve current obstacles in soft robots, including the formation of robust multi-material parts, recyclability, and stress relaxation. This review bridges two promising research fields, and guides the reader toward selecting a suitable processing method based on a self-healing polymer and the intended soft robotics application.
Collapse
Affiliation(s)
- Ellen Roels
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Seppe Terryn
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Fumiya Iida
- Machine Intelligence Lab, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
| | - Anton W Bosman
- SupraPolix B. V., Horsten 1.29, Eindhoven, 5612 AX, The Netherlands
| | - Sophie Norvez
- Chimie Moléculaire, Macromoléculaire, Matériaux, École Supérieure de Physique et de Chimie (ESPCI), 10 Rue Vauquelin, Paris, 75005, France
| | - Frank Clemens
- Laboratory for High Performance Ceramics, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Guy Van Assche
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Bram Vanderborght
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| |
Collapse
|
19
|
Zhang Z, Corrigan N, Boyer C. A Photoinduced Dual-Wavelength Approach for 3D Printing and Self-Healing of Thermosetting Materials. Angew Chem Int Ed Engl 2021; 61:e202114111. [PMID: 34859952 DOI: 10.1002/anie.202114111] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 11/07/2022]
Abstract
Vat photopolymerization-based 3D printing techniques have been widely used to produce high-resolution 3D thermosetting materials. However, the lack of repairability of these thermosets leads to the production of waste. In this study, reversible addition fragmentation chain transfer (RAFT) agents are incorporated into resin formulations to allow visible light (405 nm) mediated 3D printing of materials with self-healing capabilities. The self-healing process is based on the reactivation of RAFT agent embedded in the thermosets under UV light (365 nm), which enables reformation of the polymeric network. The self-healing process can be performed at room temperature without prior deoxygenation. The impact of the type and concentration of RAFT agents in the polymer network on the healing efficiency is explored. Resins containing RAFT agents enable 3D printing of thermosets with self-healing properties, broadening the scope of future applications for polymeric thermosets in various fields.
Collapse
Affiliation(s)
- Zhiheng Zhang
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
20
|
Zhang J, Wang Y, Wei Q, Wang Y, Lei M, Li M, Li D, Zhang L, Wu Y. Self-Healing Mechanism and Conductivity of the Hydrogel Flexible Sensors: A Review. Gels 2021; 7:216. [PMID: 34842713 PMCID: PMC8628684 DOI: 10.3390/gels7040216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sensors are devices that can capture changes in environmental parameters and convert them into electrical signals to output, which are widely used in all aspects of life. Flexible sensors, sensors made of flexible materials, not only overcome the limitations of the environment on detection devices but also expand the application of sensors in human health and biomedicine. Conductivity and flexibility are the most important parameters for flexible sensors, and hydrogels are currently considered to be an ideal matrix material due to their excellent flexibility and biocompatibility. In particular, compared with flexible sensors based on elastomers with a high modulus, the hydrogel sensor has better stretchability and can be tightly attached to the surface of objects. However, for hydrogel sensors, a poor mechanical lifetime is always an issue. To address this challenge, a self-healing hydrogel has been proposed. Currently, a large number of studies on the self-healing property have been performed, and numerous exciting results have been obtained, but there are few detailed reviews focusing on the self-healing mechanism and conductivity of hydrogel flexible sensors. This paper presents an overview of self-healing hydrogel flexible sensors, focusing on their self-healing mechanism and conductivity. Moreover, the advantages and disadvantages of different types of sensors have been summarized and discussed. Finally, the key issues and challenges for self-healing flexible sensors are also identified and discussed along with recommendations for the future.
Collapse
Affiliation(s)
- Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingju Lei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dinghao Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Longyu Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yu Wu
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|