1
|
Jia C, Chai J, Zhang S, Sun Y, He L, Sang Z, Chen D, Zheng X. The Advancements of Marine Natural Products in the Treatment of Alzheimer's Disease: A Study Based on Cell and Animal Experiments. Mar Drugs 2025; 23:91. [PMID: 40137277 PMCID: PMC11943648 DOI: 10.3390/md23030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
As life expectancy rises and the aging population grows, Alzheimer's disease (AD) has become a significant global health concern. AD is a complex neurodegenerative disorder with an unclear etiology. Current hypotheses primarily focus on β-amyloid (Aβ) aggregation, tau protein hyperphosphorylation, and neuroinflammation as key pathological processes. Given the limited efficacy of existing therapeutic strategies, there is an urgent need to explore novel treatment options. Marine natural products have garnered significant attention due to their unique chemical structures and diverse bioactivities, demonstrating potential for multi-target interventions in AD. This review systematically summarizes the roles of marine-derived compounds, including polysaccharides, carotenoids, and polyphenols, in modulating Aβ aggregation, mitigating tau protein pathology, and regulating gut-brain axis dysfunction. Furthermore, the challenges of current research are discussed, with an emphasis on improving blood-brain barrier permeability and optimizing drug delivery systems to facilitate clinical translation.
Collapse
Affiliation(s)
- Chunbo Jia
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jiaxin Chai
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Shenyun Zhang
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yining Sun
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Liheng He
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Zhipei Sang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Dapeng Chen
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xu Zheng
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
2
|
Wang W, Wu X, Zhang Q, Zhang T, Jiang L, Qu L, Lu F, Liu F. Tetrahydrofolic acid accelerates amyloid fibrillization, decreases cytotoxic oligomers and suppresses their toxicity. Int J Biol Macromol 2025; 290:139041. [PMID: 39708879 DOI: 10.1016/j.ijbiomac.2024.139041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Soluble cytotoxic oligomers produced during the fibrillation of both α-synuclein (αS) and amyloid-β protein (Aβ) are key pathogenic factors in Parkinson's disease (PD) and Alzheimer's disease (AD). Reducing toxic oligomers by regulating the aggregation process of αS and Aβ is an important strategy for the treatment of PD and AD. Herein, tetrahydrofolic acid (THF) is found to accelerate amyloid fibrillization, decreases cytotoxic oligomers and suppresses their toxicity. Thioflavin T and atomic force microscopy assays results showed that THF was able to accelerate the formation of dense fibrils from αS and Aβ in a dose-dependent manner. Strikingly, this was accompanied by a reduction in the abundance of toxic oligomers, and these results were confirmed by DB. Meanwhile, MTT and FDA/PI assays demonstrated that THF-induced accelerated fibril formation was accompanied by a reduction in αS- and Aβ-induced cytotoxicity. In addition, the lifespan of genetically modified αS and Aβ expressing C. elegans was extended by feeding THF, although plaque deposits of αS and Aβ increased. These findings suggest that THF enhances the conversion of αS and Aβ oligomers into less toxic fibrils and is a potential therapeutic agent for PD and AD.
Collapse
Affiliation(s)
- Wenqian Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xinming Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qingfu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tong Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lili Qu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
3
|
Gao W, Dong Q, Wu X, Wang Y, Li J, Zhang Q, Lu F, Liu F. Bifunctional Inhibitor Lentinan Inhibits Fibrillogenesis of Amyloid-β Protein and α-Synuclein and Alleviates Their Cytotoxicity: In Vitro and In Vivo Studies. ACS Chem Neurosci 2024; 15:3437-3448. [PMID: 39264814 DOI: 10.1021/acschemneuro.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases in the world. Misfolding of β-amyloid (Aβ) and α-synuclein (α-syn) and subsequent fibril formation are closely associated with the pathogenesis of AD and PD, respectively. Lentinan is a natural product commonly used in medicine and dietary supplements. It has potential antitumor, anti-inflammatory, and antiviral effects, but the underlying mechanism of its action on AD and PD remains unclear. In this study, lentinan inhibited the formation of Aβ and α-syn fibers in a dose-dependent manner and disrupted their mature fibers. Lentinan inhibited the conversion of Aβ and α-syn conformations to β-sheet-rich conformations. Additionally, lentinan protected Caenorhabditis elegans against damage caused by the accumulation of Aβ and α-syn aggregation and prolonged their lifespan. Notably, the beneficial effects of lentinan in AD and PD mice were also demonstrated, including ameliorating the cognitive and memory impairments in AD mice and behavioral deficits in PD mice. Finally, molecular interactions between lentinan and Aβ/α-syn pentamers were also explored using molecular docking.
Collapse
Affiliation(s)
- Wen Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qinchen Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xinni Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yang Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jinbi Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qingfu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
4
|
Huang A, Wu X, Lu F, Liu F. Sustainable Production of Ulva Oligosaccharides via Enzymatic Hydrolysis: A Review on Ulvan Lyase. Foods 2024; 13:2820. [PMID: 39272585 PMCID: PMC11395424 DOI: 10.3390/foods13172820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Ulvan is a water-soluble sulfated polysaccharide extracted from the green algae cell wall. Compared with polysaccharides, oligosaccharides have drawn increasing attention in various industries due to their enhanced biocompatibility and solubility. Ulvan lyase degrades polysaccharides into low molecular weight oligosaccharides through the β-elimination mechanism. The elucidation of the structure, catalytic mechanism, and molecular modification of ulvan lyase will be helpful to obtain high value-added products from marine biomass resources, as well as reduce environmental pollution caused by the eutrophication of green algae. This review summarizes the structure and bioactivity of ulvan, the microbial origin of ulvan lyase, as well as its sequence, three-dimensional structure, and enzymatic mechanism. In addition, the molecular modification of ulvan lyase, prospects and challenges in the application of enzymatic methods to prepare oligosaccharides are also discussed. It provides information for the preparation of bioactive Ulva oligosaccharides through enzymatic hydrolysis, the technological bottlenecks, and possible solutions to address these issues within the enzymatic process.
Collapse
Affiliation(s)
- Ailan Huang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453000, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinming Wu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| |
Collapse
|
5
|
Dong Q, Cui Z, Wu X, Li L, Lu F, Liu F. Natural flavonoid hesperetin blocks amyloid β-protein fibrillogenesis, depolymerizes preformed fibrils and alleviates cytotoxicity caused by amyloids. Food Funct 2024; 15:4233-4245. [PMID: 38517352 DOI: 10.1039/d3fo05566c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The aggregation of β-amyloid (Aβ) peptides to form amyloid plaques is one of the primary hallmarks for Alzheimer's disease (AD). Dietary flavonoid supplements containing hesperetin have an ability to decline the risk of developing AD, but the molecular mechanism is still unclear. In this work, hesperetin, a flavanone abundant in citrus fruits, has been proven to prevent the formation of Aβ aggregates and depolymerized preformed fibrils in a concentration-dependent fashion. Hesperetin inhibited the conformational conversion from the natural structure to a β-sheet-rich conformation. It was found that hesperetin significantly reduced the cytotoxicity and relieved oxidative stress eventuated by Aβ aggregates in a concentration-dependent manner. Additionally, the beneficial effects of hesperetin were confirmed in Caenorhabditis elegans, including the inhibition of the formation and deposition of Aβ aggregates and extension of their lifespan. Finally, the results of molecular dynamics simulations showed that hesperetin directly interacted with an Aβ42 pentamer mainly through strong non-polar and electrostatic interactions, which destroyed the structural stability of the preformed pentamer. To summarize, hesperetin exhibits great potential as a prospective dietary supplement for preventing and improving AD.
Collapse
Affiliation(s)
- Qinchen Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Zhan Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Xinming Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Li Li
- College of Sciences, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| |
Collapse
|
6
|
Kim S, Shin SJ, Nam Y, Park YH, Kim BH, Park HH, Kumar V, Yoo DH, Lee YY, Hoe HS, Moon M. Korean red ginseng polysaccharide as a potential therapeutic agent targeting tau pathology in Alzheimer's disease. Int J Biol Macromol 2024; 263:130516. [PMID: 38423419 DOI: 10.1016/j.ijbiomac.2024.130516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/02/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Tau is a microtubule-associated protein that plays a critical role in the stabilization and modulation of neuronal axons. Tau pathology is stronger associated with cognitive decline in patients with Alzheimer's disease (AD) than amyloid beta (Aβ) pathology. Hence, tau targeting is a promising approach for the treatment of AD. Previous studies have demonstrated that the non-saponin fraction with rich polysaccharide (NFP) from Korean red ginseng (KRG) can modulate tau aggregation and exert a therapeutic effect on AD. Therefore, we investigated the efficacy of NFP isolated from KRG on tau pathology in experimental models of AD. Our results showed that NFP from KRG ameliorated deposition and hyperphosphorylation of tau in the brain of 3xTg mice. Moreover, NFP from KRG modulated the aggregation and dissociation of tau K18 in vitro. We demonstrated the alleviatory effects of NFP from KRG on hyperphosphorylated tau and tau kinase in okadaic acid-treated HT22 cells. Furthermore, NFP from KRG mitigated Aβ deposition, neurodegeneration, and neuroinflammation in 3xTg mice. We revealed the neuroprotective effects of NFP from KRG on tau-induced neuronal loss in HT22 cells. Our results indicate that NFP extracted from KRG is a novel therapeutic agent for the treatment of AD associated with tau pathology.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Byeong-Hyeon Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Doo-Han Yoo
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Department of Occupational Therapy, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Yong Yook Lee
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Gajeong-ro 30, Shinseong-dong, Yuseong-gu, Daejeon 34128, Republic of Korea.
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu 41068, Republic of Korea; Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea.
| |
Collapse
|
7
|
Cui Z, Qu L, Zhang Q, Lu F, Liu F. Brazilin-7-2-butenoate inhibits amyloid β-protein aggregation, alleviates cytotoxicity, and protects Caenorhabditis elegans. Int J Biol Macromol 2024; 264:130695. [PMID: 38458278 DOI: 10.1016/j.ijbiomac.2024.130695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The fibrillogenesis of amyloid β-protein (Aβ) gradually accumulates to form neurotoxic Aβ aggregates in the human brain, which is the direct cause of Alzheimer's disease (AD) related symptoms. There are currently no effective therapies for AD. Brazilin, a natural polyphenol, inhibits Aβ fibrillogenesis, disrupts the mature fibrils and alleviates the corresponding cytotoxicity, but it also has the high toxic. Therefore, brazilin-7-2-butenoate (B-7-2-B), a brazilin derivative, was designed and synthesized. B-7-2-B exhibited lower toxicity and stronger inhibitory effect on Aβ aggregation than brazilin. B-7-2-B could prevent the formation of Aβ fibrils and oligomers, and depolymerize pre-formed aggregates in a dose-dependent manner. Furthermore, B-7-2-B prominently alleviated the cytotoxicity and the oxidative stress induced by Aβ aggregates in PC12 cells. The protective impacts of B-7-2-B were further demonstrated by using the Caenorhabditis elegans model, including decreasing the extent of Aβ aggregation, improving the motility and sensation disorders. Eventually, B-7-2-B was proven to be no apparent damage to worms. In summarize, it can be concluded that B-7-2-B has the potential as a drug for treating AD.
Collapse
Affiliation(s)
- Zhan Cui
- College of Biotechnology, Tianjin University of Science & Technology, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
| | - Lili Qu
- College of Biotechnology, Tianjin University of Science & Technology, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
| | - Qingfu Zhang
- College of Biotechnology, Tianjin University of Science & Technology, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science & Technology, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China.
| |
Collapse
|
8
|
Zhang D, Zhang J, Ma Z, Wu Q, Liu M, Fan T, Ding L, Ren D, Wen A, Wang J. Luteoloside inhibits Aβ1-42 fibrillogenesis, disintegrates preformed fibrils, and alleviates amyloid-induced cytotoxicity. Biophys Chem 2024; 306:107171. [PMID: 38194817 DOI: 10.1016/j.bpc.2023.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Abnormal aggregation and fibrillogenesis of amyloid-β protein (Aβ) can cause Alzheimer's disease (AD). Thus, the discovery of effective drugs that inhibit Aβ fibrillogenesis in the brain is crucial for the treatment of AD. Luteoloside, as one of the polyphenolic compounds, is found to have a certain therapeutic effect on nervous system diseases. However, it remains unknown whether luteoloside is a potential drug for treating AD by modulating Aβ aggregation pathway. In this study, we performed diverse biophysical and biochemical methods to explore the inhibition of luteoloside on Aβ1-42 which is linked to AD. The results demonstrated that luteoloside efficiently prevented amyloid oligomerization and cross-β-sheet formation, reduced the rate of amyloid growth and the length of amyloid fibrils in a dose-dependent manner. Moreover, luteoloside was able to influence aggregation and conformation of Aβ1-42 during different fiber-forming phases, and it could disintegrate already preformed fibrils of Aβ1-42 and convert them into nontoxic aggregates. Furthermore, luteoloside protected cells from amyloid-induced cytotoxicity and hemolysis, and attenuated the level of reactive oxygen species (ROS). The molecular docking study showed that luteoloside interacted with Aβ1-42 mainly via Conventional Hydrogen Bond, Carbon Hydrogen Bond, Pi-Pi T-shaped, Pi-Alkyl and Pi-Anion, thereby possibly preventing it from forming the aggregates. These observations indicate that luteoloside, a natural anti-oxidant molecule, may be applicable as an effective inhibitor of Aβ, and promote further exploration of the therapeutic strategy against AD.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juanli Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongying Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qianwen Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tingting Fan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Likun Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Danjun Ren
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
9
|
Flórez-Fernández N, Rodríguez-Coello A, Latire T, Bourgougnon N, Torres MD, Buján M, Muíños A, Muiños A, Meijide-Faílde R, Blanco FJ, Vaamonde-García C, Domínguez H. Anti-inflammatory potential of ulvan. Int J Biol Macromol 2023; 253:126936. [PMID: 37722645 DOI: 10.1016/j.ijbiomac.2023.126936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Green seaweeds are a widespread group of marine macroalgae that could be regarded as biorenewable source of valuable compounds, in particular sulfated polysaccharides like ulvans with interesting biological properties. Among them, anti-inflammatory activity represents an interesting target, since ulvans could potentially avoid side effects of conventional therapies. However, a great variability in ulvan content, composition, structure and properties occurs depending on seaweed specie and growth and processing conditions. All these aspects should be carefully considered in order to have reproducible and well characterized products. This review presents some concise ideas on ulvan composition and general concepts on inflammation mechanisms. Then, the main focus is on the importance of adequate selection of extraction, depolymerization and purification technologies followed by an updated survey on anti-inflammatory properties of ulvans through modulation of different signaling pathways. The potential application in a number of diseases, with special emphasis on inflammaging, gut microbiota dysbiosis, wound repair, and metabolic diseases is also discussed. This multidisciplinary overview tries to present the potential of ulvans considering not only mechanistic, but also processing and applications aspects, trusting that it can aid in the development and application of this widely available and renewable resource as an efficient and versatile anti-inflammatory agent.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| | - Arianna Rodríguez-Coello
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain.
| | - Thomas Latire
- Laboratoire de Biotechnologie et Chimie Marines, EMR CNRS 6076, UBS, IUEM, F-56000 Vannes, France; Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France.
| | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines, EMR CNRS 6076, UBS, IUEM, F-56000 Vannes, France.
| | - M Dolores Torres
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| | - Manuela Buján
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, 15185 Cerceda, A Coruña, Spain.
| | - Alexandra Muíños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, 15185 Cerceda, A Coruña, Spain.
| | - Antonio Muiños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, 15185 Cerceda, A Coruña, Spain.
| | - Rosa Meijide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain.
| | - Francisco J Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain.
| | - Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain.
| | - Herminia Domínguez
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| |
Collapse
|
10
|
Li C, Tang T, Jiang J, Yao Z, Zhu B. Biochemical characterization of a new ulvan lyase and its applicability in utilization of ulvan and preparation of ulva oligosaccharides. Glycobiology 2023; 33:837-845. [PMID: 37593920 DOI: 10.1093/glycob/cwad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
Ulva is globally distributed specie and has a high economic value. Ulvan is one of the main active substances in Ulva, which has a variety of biological properties. Ulvan lyase degrades ulvan through a β-elimination mechanism which cleaves the β-glycosidic bond between Rha3S and GlcA or IdoA. The complex monosaccharide composition of ulvan makes it promising for use in food and pharmaceutical applications. This thesis explores a putative ulvan lyase from Alteromonas sp. KUL_42. We expressed and purified the protein, performed a series of characterizations and signal peptide had been removed. The results showed that the protein molecular weight of ULA-2 was 53.97 kDa, and it had the highest catalytic activity at 45 °C and pH 8.0 in Tris-HCl buffer. The Km and Vmax values were 2.24 mg · mL-1 and 2.048 μmol · min-1 · mL-1, respectively. The activity of ULA-2 was able to maintain more than 80% at 20 ~ 30 °C. ESI-MS analysis showed that the primary end-products were mainly disaccharides to tetrasaccharides. The study of ULA-2 enriches the ulvan lyase library, promotes the development and high-value utilization of Ulva resources, and facilitates further research applications of ulvan lyase in ulva oligosaccharides.
Collapse
Affiliation(s)
- Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| | - Tiancheng Tang
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| | - Jinju Jiang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co Ltd, 777 Mingyue Road, Qingdao 266400, China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| |
Collapse
|
11
|
Shah S, Famta P, Shahrukh S, Jain N, Vambhurkar G, Srinivasarao DA, Raghuvanshi RS, Singh SB, Srivastava S. Multifaceted applications of ulvan polysaccharides: Insights on biopharmaceutical avenues. Int J Biol Macromol 2023; 234:123669. [PMID: 36796555 DOI: 10.1016/j.ijbiomac.2023.123669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Ulvans are water-soluble sulfated polysaccharides predominantly found in the cell wall of green algae. They hold unique characteristics that are attributed to their 3D conformation, functional groups along with the presence of saccharides and sulfate ions. Traditionally, ulvans are widely used as food supplements and probiotics owing to the high content of carbohydrates. Despite their widespread usage in food industry, an in-depth understanding is required for extrapolating their potential application as a nutraceutical and medicinal agent which could be beneficial in promoting human health and well-being. This review emphasizes novel therapeutic avenues where ulvan polysaccharides can be used beyond their nutritional applications. A collection of literature points towards multifarious applications of ulvan in various biomedical fields. Structural aspects along with extraction and purification methods have been discussed. The underlying molecular mechanisms associated with its biomedical potential in different therapeutic fields like oncology, infectious diseases, inflammation, neuroprotection and tissue engineering, etc. have been unravelled. Challenges associated with clinical translation and future perspectives have been deliberated.
Collapse
Affiliation(s)
- Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
12
|
Oliyaei N, Moosavi-Nasab M, Tanideh N, Iraji A. Multiple roles of fucoxanthin and astaxanthin against Alzheimer's disease: Their pharmacological potential and therapeutic insights. Brain Res Bull 2023; 193:11-21. [PMID: 36435362 DOI: 10.1016/j.brainresbull.2022.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is the most devastating neurodegenerative disorder affecting the elderly. The exact pathology of AD is not yet fully understood and several hallmarks such as the deposition of amyloid-β, tau hyperphosphorylation, and neuroinflammation, as well as mitochondrial, metal ions, autophagy, and cholinergic dysfunctions are known as pathologic features of AD. Since no definitive treatment has been proposed to target AD to date, many natural products have shown promising preventive potentials and contributed to slowing down the disease progression. Algae is a promising source of novel bioactive substances known to prevent neurodegenerative disorders including AD. In this context, fucoxanthin and astaxanthin, natural carotenoids abundant in algae, has shown to possess neuroprotective properties through antioxidant, and anti-inflammatory characteristics in modulating the symptoms of AD. Fucoxanthin and astaxanthin exhibit anti-AD activities by inhibition of AChE, BuChE, BACE-1, and MAO, suppression of Aβ accumulation. Also, fucoxanthin and astaxanthin inhibit apoptosis induced by Aβ1-42 and H2O2-induced cytotoxicity, and modulate the antioxidant enzymes (SOD and CAT), through inhibition of the ERK pathway. Moreover, cellular and animal studies on the beneficial effects of fucoxanthin and astaxanthin against AD were also reviewed. The potential role of fucoxanthin and astaxanthin exhibits great efficacy for the management of AD by acting on multiple targets.
Collapse
Affiliation(s)
- Najmeh Oliyaei
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran; Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Central Research laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Sedov I, Khaibrakhmanova D. Molecular Mechanisms of Inhibition of Protein Amyloid Fibril Formation: Evidence and Perspectives Based on Kinetic Models. Int J Mol Sci 2022; 23:13428. [PMID: 36362217 PMCID: PMC9657184 DOI: 10.3390/ijms232113428] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Inhibition of fibril formation is considered a possible treatment strategy for amyloid-related diseases. Understanding the molecular nature of inhibitor action is crucial for the design of drug candidates. In the present review, we describe the common kinetic models of fibril formation and classify known inhibitors by the mechanism of their interactions with the aggregating protein and its oligomers. This mechanism determines the step or steps of the aggregation process that become inhibited and the observed changes in kinetics and equilibrium of fibril formation. The results of numerous studies indicate that possible approaches to antiamyloid inhibitor discovery include the search for the strong binders of protein monomers, cappers blocking the ends of the growing fibril, or the species absorbing on the surface of oligomers preventing nucleation. Strongly binding inhibitors stabilizing the native state can be promising for the structured proteins while designing the drug candidates targeting disordered proteins is challenging.
Collapse
Affiliation(s)
- Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
- Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | | |
Collapse
|
14
|
Tang T, Zhu B, Yao Z. Biochemical characterization and elucidation the action mode of a new PL25 family ulvan lyase from marine bacterium Alteromonas sp. TK-45 (2). ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Advances in polysaccharides of natural source of the anti-Alzheimer's disease effect and mechanism. Carbohydr Polym 2022; 296:119961. [DOI: 10.1016/j.carbpol.2022.119961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022]
|
16
|
Ulvan inhibits α-synuclein fibrillation and disrupts the mature fibrils: In vitro and in vivo studies. Int J Biol Macromol 2022; 211:580-591. [PMID: 35561861 DOI: 10.1016/j.ijbiomac.2022.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Abstract
Misfolding and aggregation of α-synuclein (α-syn) play a key role in the pathogenesis of Parkinson's disease (PD). Herein, the inhibitory effect of ulvan on α-syn fibrillogenesis was studied using thioflavin T fluorescence and atomic force microscope assays. It is shown that ulvan could inhibit α-syn fibrillogenesis in a dose-dependent manner. Based on the circular dichroism results, it is found that ulvan delays greatly the conformational transition from its initial random coil to β-sheet rich structure. The protective effect of ulvan against celllular death induced by α-syn aggregates was investigated by MTT colorimetric and cellular staining methods. It is found that ulvan protects greatly PC12 cells from α-syn fibril-induced cytotoxicity. In addition, ulvan disaggregates preformed α-syn fibrils and reduces cytotoxicity in a dose-dependent manner. Thereafter, the inhibitory effects of ulvan against α-syn fibrillogenesis were probed using Caenorhabditis elegans model NL5901 expressing human α-syn. It is found that ulvan extends the lifespan of NL5901 and recovers the lipid deposition by reducing the accumulation of α-syn. Finally, the molecular interactions between ulvan and α-syn pentamer was also explored using molecular docking. These findings suggest that ulvan can be pursued as a novel candidate drug for treatment of PD.
Collapse
|
17
|
Chen B, Mou C, Guo F, Sun Q, Qu L, Li L, Cui W, Lu F, Jin C, Liu F. Tolcapone Derivative (Tol-D) Inhibits Aβ42 Fibrillogenesis and Ameliorates Aβ42-Induced Cytotoxicity and Cognitive Impairment. ACS Chem Neurosci 2022; 13:638-647. [PMID: 35148068 DOI: 10.1021/acschemneuro.1c00771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abnormal aggregation and subsequent fibrillogenesis of amyloid-β protein (Aβ) can cause Alzheimer's disease (AD). Thus, the discovery of effective drugs that inhibit Aβ fibrillogenesis in the brain is important for the treatment of AD. Our previous study has proven that tolcapone inhibits Aβ fibrillogenesis and alleviates its cytotoxicity based on systematic in vitro and in vivo experiments. However, the severe hepatotoxicity of tolcapone seriously limits its further potential application in the treatment of AD. Herein, an inhibitory effect of a low-toxicity tolcapone derivative (Tol-D) on Aβ fibrillogenesis was explored. Based on the thioflavin T fluorescence data, Tol-D inhibited Aβ fibrillogenesis, and the inhibitory capacity increased with the increase of its concentrations with an IC50 of ∼8.99 μM. The results of cytotoxicity showed that Tol-D greatly reduced the cytotoxicity induced by Aβ42 fibrillogenesis. Moreover, Tol-D significantly alleviated Aβ deposits and extended the lifespan of nematodes in transgenic Caenorhabditis elegans models. Finally, Tol-D significantly relieved Aβ-induced cognitive dysfunction in mice experiments. Overall, the above experimental results indicated that Tol-D is a novel candidate therapeutic compound for the treatment of AD.
Collapse
Affiliation(s)
- Beibei Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chenye Mou
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Zhejiang 315211, China
| | - Fangyan Guo
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Quancheng Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lili Qu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Li Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Zhejiang 315211, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chenghua Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
18
|
Geng H, Gao D, Wang Z, Liu X, Cao Z, Xing C. Strategies for Inhibition and Disaggregation of Amyloid‐β Fibrillation. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hao Geng
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
| | - Dong Gao
- Key Laboratory of Hebei Province for Molecular, Biophysics Institute of Biophysics, School of Science Hebei University of Technology Tianjin 300130 China
| | - Zijuan Wang
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
| | - Xiaoning Liu
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
| | - Zhanshuo Cao
- College of Chemical Engineering Hebei University of Technology Tianjin 300130 China
| | - Chengfen Xing
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
- Key Laboratory of Hebei Province for Molecular, Biophysics Institute of Biophysics, School of Science Hebei University of Technology Tianjin 300130 China
| |
Collapse
|
19
|
Dhahri M, Alghrably M, Mohammed HA, Badshah SL, Noreen N, Mouffouk F, Rayyan S, Qureshi KA, Mahmood D, Lachowicz JI, Jaremko M, Emwas AH. Natural Polysaccharides as Preventive and Therapeutic Horizon for Neurodegenerative Diseases. Pharmaceutics 2021; 14:1. [PMID: 35056897 PMCID: PMC8777698 DOI: 10.3390/pharmaceutics14010001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 01/06/2023] Open
Abstract
Neurodegenerative diseases are a serious and widespread global public health burden amongst aging populations. The total estimated worldwide global cost of dementia was US$818 billion in 2015 and has been projected to rise to 2 trillion US$ by 2030. While advances have been made to understand different neurodegenerative disease mechanisms, effective therapeutic strategies do not generally exist. Several drugs have been proposed in the last two decades for the treatment of different types of neurodegenerative diseases, with little therapeutic benefit, and often with severe adverse and side effects. Thus, the search for novel drugs with higher efficacy and fewer drawbacks is an ongoing challenge in the treatment of neurodegenerative disease. Several natural compounds including polysaccharides have demonstrated neuroprotective and even therapeutic effects. Natural polysaccharides are widely distributed in plants, animals, algae, bacterial and fungal species, and have received considerable attention for their wide-ranging bioactivity, including their antioxidant, anti-neuroinflammatory, anticholinesterase and anti-amyloidogenic effects. In this review, we summarize different mechanisms involved in neurodegenerative diseases and the neuroprotective effects of natural polysaccharides, highlighting their potential role in the prevention and therapy of neurodegenerative disease.
Collapse
Affiliation(s)
- Manel Dhahri
- Biology Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia;
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.A.); (M.J.)
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan; (S.L.B.); (N.N.)
| | - Noreen Noreen
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan; (S.L.B.); (N.N.)
| | - Fouzi Mouffouk
- Department of Chemistry, Faculty of Science, Kuwait University, Safat 13060, Kuwait;
| | - Saleh Rayyan
- Chemistry Department, Birzeit University, Birzeit P627, Palestine;
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.A.); (M.J.)
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
20
|
Meena VK, Kumar V, Karalia S, Garima, Sundd M. Ellagic Acid Modulates Uninduced as well as Mutation and Metal-Induced Aggregation of α-Synuclein: Implications for Parkinson's Disease. ACS Chem Neurosci 2021; 12:3598-3614. [PMID: 34506119 DOI: 10.1021/acschemneuro.1c00317] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
α-Synuclein (αS) is an intrinsically disordered protein whose aggregation and deposition in Lewy bodies is involved in the progression of Parkinson's disease (PD) and other related disorders. The aggregation process of αS is also triggered by mutations like A53T and E46K in the SNCA gene and disruption in metal-ion homeostasis. Currently, there is no obviating therapy available in the market that could effectively prevent the progression of the disease. In this backdrop, there exists an emerging need to consider naturally occurring polyphenols and flavonoids as potential therapeutic agents against PD. In this study, we demonstrate the modulatory effect of ellagic acid (EA) against wild-type as well as mutation and metal-induced aggregation of αS. Thioflavin T (ThT) fluorescence assay suggests that EA acts on the nucleation phase of αS fibrillization, thereby increasing the lag phase from 21.33 ± 3.01 to 48.20 ± 5.05 h and reducing the fibrils growth rate from 4.60 ± 2.06 to 0.890 ± 0.36 h-1. 8-Anilino-1-naphthalene sulfonic acid (ANS), Congo red (CR), and intrinsic fluorescence studies indicate that the interaction of EA with αS facilitates the structural changes in the protein that lead to inhibition of fibril formation. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) images illustrate that the size of fibrils diminishes up to 100 nm in the presence of EA. Dot blot and seeding experiments put forward that EA directs the αS aggregation toward off-pathway fibrillization. Our 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay deciphers the role of EA in minimizing the αS fibril-induced toxicity, thereupon leading to an increase in cell viability. Also, EA attenuates both mutations as well as metal-induced αS fibrillization and disaggregates the preexisting fibrils. Additionally, computational studies elucidate that EA preferentially interacts with the N-terminal and NAC domain of αS. Hence, this work reveals the aggregation inhibition mechanism of EA and provides considerable therapeutic interventions against PD and related disorders.
Collapse
Affiliation(s)
- Vinod Kumar Meena
- NMR-II Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vijay Kumar
- NMR-II Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shivani Karalia
- NMR-II Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Garima
- NMR-II Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Monica Sundd
- NMR-II Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
21
|
Jiang L, Sun Q, Li L, Lu F, Liu F. Molecular Insights into the Inhibitory Effect of GV971 Components Derived from Marine Acidic Oligosaccharides against the Conformational Transition of Aβ42 Monomers. ACS Chem Neurosci 2021; 12:3772-3784. [PMID: 34565139 DOI: 10.1021/acschemneuro.1c00555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
GV971 derived from marine acidic oligosaccharides has been used to cure Alzheimer's disease (AD). However, the molecular mechanism of its inhibition of the conformational transition of amyloid β-proteins (Aβ) is still unclear. Herein, molecular dynamics simulations were used to explore the molecular mechanism of the main GV971 components including DiM, TetraM, HexaM, and OctaM to inhibit the conformational conversion of the Aβ42 monomer. It is found that the GV971 components inhibit the conformational transition from α-helix to β-sheet and the hydrophobic collapse of the Aβ42 monomer. In addition, the binding energy analysis implies that both electrostatic and van der Waals interactions are beneficial to the binding of GV971 components to the Aβ42 monomer. Among them, electrostatic interactions occupy the dominant position. Moreover, the GV971 components mainly interact directly with the charged residues D1, R5, K16, and K28 by forming salt bridges and hydrogen bonds, which specifically bind to the N-terminal region of Aβ42.
Collapse
Affiliation(s)
- Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Quancheng Sun
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Li Li
- College of Marine and Environmental Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| |
Collapse
|
22
|
Zhao W, Jiang L, Wang W, Sang J, Sun Q, Dong Q, Li L, Lu F, Liu F. Design of carboxylated single-walled carbon nanotubes as highly efficient inhibitors against Aβ40 fibrillation based on the HyBER mechanism. J Mater Chem B 2021; 9:6902-6914. [PMID: 34612337 DOI: 10.1039/d1tb00920f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Misfolding and the subsequent self-assembly of amyloid-β protein (Aβ) is very important in the occurrence of Alzheimer's disease (AD). Thus, inhibition of Aβ aggregation is currently an effective method to alleviate and treat AD. Herein, a carboxylated single-walled carbon nanotube (SWCNT-COOH) was rationally designed based on the hydrophobic binding-electrostatic repulsion (HyBER) mechanism. The inhibitory effect of SWCNT-COOH on Aβ fibrillogenesis was first studied. Based on the results of thioflavin T fluorescence and atomic force microscopy imaging assays, it was shown that SWCNT-COOH can not only effectively inhibit Aβ aggregation, but also depolymerize the mature fibrils of Aβ. In addition, its inhibitory action will be affected by the content of carboxyl groups. Moreover, the influence of SWCNT-COOH on cytotoxicity induced by Aβ was investigated by the MTT method. It was found that SWCNT-COOH can produce an anti-Aβ neuroprotective effect in vitro. Molecular dynamics simulations showed that SWCNT-COOH significantly destroyed the overall and internal structural stability of an Aβ40 trimer. Moreover, SWCNT-COOH interacted strongly with the N-terminal region, turn region and C-terminal region of the Aβ40 trimer via hydrogen bonds, salt bridges and π-π interactions, which triggered a large structural disturbance of the Aβ40 trimer, reduced the β-sheet content of the Aβ40 trimer and led to more disorder in these regions. All the above data not only reveal the suppressive effect of SWCNT-COOH on Aβ aggregation, but also reveal its inhibitory mechanism, which provides a useful clue to exploit anti-Aβ drugs in the future.
Collapse
Affiliation(s)
- Wenping Zhao
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu X, Yu K, Cheng S, Ren T, Maitusong M, Liu F, Chen J, Qian Y, Xu D, Zhu G, Fang J, Cao N, Wang J. Ulvan mediated VE cadherin antibody and REDV peptide co-modification to improve endothelialization potential of bioprosthetic heart valves. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112337. [PMID: 34474888 DOI: 10.1016/j.msec.2021.112337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/29/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022]
Abstract
An aging population and a rapid increase in the incidence of degenerative valve diseases have led to greater use of bioprosthetic heart valves (BHVs). The durability of glutaraldehyde cross-linked bioprostheses currently available for clinical use is poor due to calcification, coagulation, and degradation. Decellularization can partially reduce calcification by removal of xenogenic cells, but can also lead to thrombosis, which can be addressed by further surface modification. The natural sulfated polysaccharide ulvan possesses antithrombotic and anti-inflammatory properties, and can behave as a heparinoid to immobilize proteins through their heparin binding sites. VE-cadherin antibody and the Arg-Glu-Asp-Val (REDV) peptide can facilitate selective endothelial cell attachment, adhesion and proliferation. In this study, we functionalized decellularized porcine pericardium (DPP) with ulvan, REDV, and VE-cadherin antibody (U-R-VE). Ulvan was covalently modified to act as a protective coating and spacer for VE-cadherin antibody, and to immobilize REDV. In in vitro tests, we found that functionalization significantly and selectively promoted adhesion and growth of endothelial cells while reducing platelet adhesion, inflammation, and in vitro calcification of DPPs. In an in vivo subdermal implantation model, U-R-VE modified DPP exhibited greater endothelialization potential and biocompatibility compared with unmodified pericardium. Thus, U-R-VE modification provides a promising solution to the problem of preparing BHVs with enhanced endothelialization potential.
Collapse
Affiliation(s)
- Xianbao Liu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Kaixiang Yu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Si Cheng
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Tanchen Ren
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Miribani Maitusong
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Feng Liu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Jinyong Chen
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Yi Qian
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Dilin Xu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Gangjie Zhu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Juan Fang
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Naifang Cao
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Jian'an Wang
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
24
|
Inhibitory effect of naturally occurring Ocimum sanctum extract on α-Synuclein aggregation in aqueous solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Cui K, Zhou C, Zhang B, Zhang L, Liu Y, Hao S, Tang X, Huang Y, Yu J. Enhanced Catalytic Activity Induced by the Nanostructuring Effect in Pd Decoration onto Doped Ceria Enabling an Origami Paper Analytical Device for High Performance of Amyloid-β Bioassay. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33937-33947. [PMID: 34279896 DOI: 10.1021/acsami.1c09760] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work, we fabricated a novel origami paper-based analytical device (oPAD) assisted by the nanostructuring effect of in situ Pd decoration of Cu/Co-doped CeO2 (CuCo-CeO2-Pd) nanospheres, functionalized with their strongly enhanced electrocatalytic properties to realize an electrochemical and visual signal readout system in oPAD, for highly sensitive detection of amyloid-β (Aβ). The CuCo-CeO2-Pd nanospheres were introduced as an enhanced "signal transducer layer" on account of the electron transfer acceleration caused by catalyzing glucose to produce H2O2 for differential pulse voltammetry signal readout and further 3,3'5,5'-tetramethylbenzidine (TMB) oxidation for colorimetric analysis. Meanwhile, for achieving superior performance of the proposed oPAD, in situ growth of urchin-like gold nanoparticles (Au NPs) onto cellulose fibers was adopted to improve "the recognition layer" in favor of immobilizing antibodies for targeting Aβ through specific antigen-antibody interactions. Combined with the delicate design of oPAD, exhibiting actuation of the conversion procedure between hydrophobicity and hydrophilicity on paper tabs in the assay process, the oPAD successfully enabled sensitive diagnosis of Aβ in a linear range from 1.0 pM to 100 nM with a limit of detection of 0.05 pM (S/N = 3) for electrochemical detection, providing a reliable strategy for quantifying the Aβ protein in clinical applications.
Collapse
Affiliation(s)
- Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Chenxi Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Bowei Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Yue Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Shiji Hao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaohong Tang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, P. R. China
| |
Collapse
|
26
|
|
27
|
Wang F, Wang Y, Jiang L, Wang W, Sang J, Wang X, Lu F, Liu F. The food additive fast green FCF inhibits α-synuclein aggregation, disassembles mature fibrils and protects against amyloid-induced neurotoxicity. Food Funct 2021; 12:5465-5477. [PMID: 33997868 DOI: 10.1039/d0fo03301d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
α-Synuclein (α-syn) aggregates into cytotoxic amyloid fibrils, which are recognized as the defining neuropathological feature of Parkinson's disease (PD). Therefore, inhibiting α-syn fibrillogenesis and disrupting the preformed fibrils are both considered attractive strategies to cure PD. We discovered that a safe food additive, fast green FCF, is capable of inhibiting α-synuclein fibrillogenesis and reducing the related cytotoxicity. Thioflavin T fluorescence assays demonstrated that fast green FCF could inhibit the fibrillogenesis α-synuclein. In the presence of 100 μM fast green FCF, amorphous aggregates were formed and observed by atomic force microscopy. Toxicity assays in cell cultures revealed that fast green FCF significantly reduced the cytotoxicity of α-syn. Molecular dynamics simulations revealed the potential mechanism of the interactions between fast green FCF and α-synuclein. Fast green FCF greatly disrupted the α-synuclein pentamer and reduced the β-sheet content by reducing both nonpolar and polar interactions. Furthermore, two binding sites were identified, named region I (Y39-K45) and region II (H50-Q62). Our data reveal that electrostatic interactions, hydrogen bonds, and π-π interactions synergistically contribute to the binding of fast green FCF to the α-synuclein pentamer. These results indicate that fast green FCF is a candidate prototype for the development of drugs against the aggregation of amyloid fibrils in PD.
Collapse
Affiliation(s)
- Fenghua Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Ying Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Luying Jiang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Wenqian Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Jingcheng Sang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Xinyu Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| |
Collapse
|
28
|
Liu F, Wang W, Xuan Z, Jiang L, Chen B, Dong Q, Zhao F, Cui W, Li L, Lu F. Fast green FCF inhibits Aβ fibrillogenesis, disintegrates mature fibrils, reduces the cytotoxicity, and attenuates Aβ-induced cognitive impairment in mice. Int J Biol Macromol 2020; 170:33-41. [PMID: 33352157 DOI: 10.1016/j.ijbiomac.2020.12.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
Fast green FCF (FGF) is often used in foods, pharmaceuticals, and cosmetics. However, little is known about the interactions of FGF with amyloid-β protein (Aβ) associated with Alzheimer's disease. In this study, the inhibitory effects of FGF on Aβ fibrillogenesis, the disruption of preformed Aβ fibrils, the reduction of Aβ-induced cytotoxicity, and the attenuation of Aβ-induced learning and memory impairments in mice were investigated. FGF significantly inhibited Aβ fibrillogenesis and disintegrated the mature fibrils as evidenced by thioflavin T fluorescence and atomic force microscopy studies. Co-incubation of Aβ with FGF greatly reduced Aβ-induced cytotoxicity in vitro. Moreover, FGF showed a protective effect against cognitive impairment in Aβ-treated mice. Molecular dynamics simulations further showed that FGF could synergistically interact with the Aβ17-42 pentamer via electrostatic interactions, hydrogen bonds and π-π interactions, which reduced the β-sheet content, and disordered random coils and bend structures of the Aβ17-42 pentamer. This study offers a comprehensive understanding of the inhibitory effects of FGF against Aβ neurotoxicity, which is critical for the search of effective food additives that can combat amyloid-associated disease.
Collapse
Affiliation(s)
- Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wenjuan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhenquan Xuan
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Luying Jiang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Beibei Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qinchen Dong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Fang Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Li Li
- College of Marine and Environmental Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
29
|
Zhenxia Z, Min L, Peikui Y, Zikai C, Yaqun L, Junli W, Fenlian Y, Yuzhong Z. Inhibition of tau aggregation and associated cytotoxicity on neuron-like cells by calycosin. Int J Biol Macromol 2020; 171:74-81. [PMID: 33301850 DOI: 10.1016/j.ijbiomac.2020.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/15/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022]
Abstract
In this study, the in vitro assembly of tau and anti-amyloidogenic properties of one naturally occurring phytoestrogen, calycosin, was investigated by spectroscopic techniques including ThT and ANS fluorescence, CD, Congo red absorbance as well as TEM analysis. Afterwards the cytotoxicity of different amyloid species against SH-SY5Y cells was evaluated by MTT assay. Fluorescence spectroscopic studies revealed that calycosin exerts its anti-amyloidogenic effects through increasing the lag time and reducing the apparent growth rate constant (kapp), the amount of fibrillation, and the exposure of hydrophobic regions. Congo red absorbance and CD studies indicated that calycosin prevented the formation of tau aggregate species and β-sheets structures, respectively. TEM analysis also determined the capacity of calycosin to inhibit tau fibrillogenesis through formation of large amorphous aggregates. Furthermore, cellular assays disclosed that calycosin mitigated the cell mortality, LDH release, ROS level, and expression of Bax, Bcl-2, and Caspase-3 in both mRNA and protein levels induced by tau amyloid fibrils. In conclusion, this data may suggest that calycosin can prevent tau amyloid fibrillation and the associated cytotoxicity, mainly due to its effects on formation of lower content of oligomeric and fibrillar aggregates with lower solvent-exposed hydrophobic patches compared to those produced in the absence of calycosin.
Collapse
Affiliation(s)
- Zhang Zhenxia
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, Guangdong, China
| | - Lin Min
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, Guangdong, China
| | - Yang Peikui
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, Guangdong, China
| | - Chen Zikai
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, Guangdong, China
| | - Liu Yaqun
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, Guangdong, China
| | - Wang Junli
- Center of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University For Nationalities, Baise 533000, Guangxi, China
| | - Yang Fenlian
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| | - Zheng Yuzhong
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, Guangdong, China.
| |
Collapse
|
30
|
Sources of Dietary Fiber Are Differently Associated with Prevalence of Depression. Nutrients 2020; 12:nu12092813. [PMID: 32937844 PMCID: PMC7551178 DOI: 10.3390/nu12092813] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Dietary fiber has been actively studied for its profound impacts on mental health by affecting the gut–brain axis communication. However, the association between dietary fiber intake and depression has been inconsistent, partly due to the lack of consideration of the fiber source. Therefore, this study aimed to examine the association between various sources of dietary fiber and depression in Korean adults through a nationwide cross-sectional study. The study population was a total of 2960 adults between 19 and 64 years of age who participated in the Korean National Health and Nutrition Examination Survey (KNHANES, 2012–2016). Dietary fiber intake from each fiber subtype (crude, cereal, vegetable, fruit, seaweed, and mushroom) was calculated using the Food Frequency Questionnaire (FFQ). Depression prevalence was assessed using a Patient Health Questionnaire (PHQ-9) and self-reported clinical diagnosis by a physician. We found that seaweed (odds ratio (OR) = 0.38; 95% confidence interval (CI): 0.20–0.72; p < 0.05) and mushroom fiber intake (OR = 0.18; 95% CI: 0.01–0.37; p < 0.05) were inversely associated with depressive symptoms assessed using the PHQ-9 parameters. Moreover, seaweed fiber intake was inversely associated with clinical depression diagnosed by a physician (OR = 0.45; 95% CI: 0.23–0.88; p < 0.05). This was the first study to find that higher intakes of seaweed and mushroom fiber were associated with a lower likelihood of depression in a representative cohort of Korean adults, indicating that the specific source of dietary fiber may be an important dietary factor in modulating depression.
Collapse
|