1
|
Wei J, Wang J, Zhang W, Mao Y, Sun C. In Situ Construction of Perovskite Pr 0.5Ba 0.5Mn 0.8Co 0.1Ru 0.1O 2.5+δ/CoRu Nanoparticles with Co-N-C Composite Enabling Efficient Bifunctional Electrocatalyst for Zinc-Air Batteries. Chemistry 2025; 31:e202403445. [PMID: 39462193 DOI: 10.1002/chem.202403445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
Bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential components of rechargeable zinc-air batteries. In this study, we synthesized a Pr0.5Ba0.5Mn0.8Co0.1Ru0.1O2.5+δ (PBMCRO) perovskite composite with in situ exsolved CoRu nanoparticles and Co-N-C, functioning as an efficient bifunctional electrocatalyst for zinc-air batteries. The in situ exsolution of CoRu nanoparticles from the perovskite oxide was facilitated by the reducing action of 2-methylimidazole (2-MIM). Concurrently, Co-N-C was used to decorate PBMCRO, forming a novel bifunctional composite electrode of Co-N-C-PBMCRO. The incorporation of CoRu nanoparticles introduces a significant number of electrochemically active oxygen vacancies in the perovskite matrix, enhancing ORR and OER performance. Additionally, the Co-N-C synergistically improves electrochemical activity while preserving the structural stability of the perovskite oxide. The prepared Co-N-C-PBMCRO catalyst demonstrates significantly enhanced bifunctional performance compared to the undecorated pristine perovskite Pr0.5Ba0.5MnO3-δ (PBMO). The zinc-air battery with Co-N-C-PBMCRO catalyst achieve a peak power density of approximately 90 mW/cm2 and exhibit remarkable cycling stability for 788 h. This study presents a novel and effective strategy to enhance the catalytic performance of perovskite-based air electrodes for rechargeable metal-air batteries.
Collapse
Affiliation(s)
- Jialu Wei
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, P. R. China
| | - Jingyu Wang
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, P. R. China
| | - Wei Zhang
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, P. R. China
| | - Yuezhen Mao
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, P. R. China
| | - Chunwen Sun
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, P. R. China
| |
Collapse
|
2
|
Wang Y, Luo T, Wei Y, Liu Q, Qi Y, Wang D, Zhao J, Zhang J, Li X, Ma Q, Huang J, Kong X, Chen G, Feng Y. Phase Engineering-Mediated D-Band Center of Ru Sites Promote the Hydrogen Evolution Reaction Under Universal pH Condition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407495. [PMID: 39350444 DOI: 10.1002/smll.202407495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Indexed: 12/13/2024]
Abstract
The rational design of pH-universal electrocatalyst with high-efficiency, low-cost and large current output suitable for industrial hydrogen evolution reaction (HER) is crucial for hydrogen production via water splitting. Herein, phase engineering of ruthenium (Ru) electrocatalyst comprised of metastable unconventional face-centered cubic (fcc) and conventional hexagonal close-packed (hcp) crystalline phase supported on nitrogen-doped carbon matrix (fcc/hcp-Ru/NC) is successfully synthesized through a facile pyrolysis approach. Fascinatingly, the fcc/hcp-Ru/NC displayed excellent electrocatalytic HER performance under a universal pH range. To deliver a current density of 10 mA cm-2, the fcc/hcp-Ru/NC required overpotentials of 16.8, 23.8 and 22.3 mV in 1 M KOH, 0.5 M H2SO4 and 1 M phosphate buffered solution (PBS), respectively. Even to drive an industrial-level current density of 500 and 1000 mA cm-2, the corresponding overpotentials are 189.8 and 284 mV in alkaline, 202 and 287 mV in acidic media, respectively. Experimental and theoretical calculation result unveiled that the charge migration from fcc-Ru to hcp-Ru induced by work function discrepancy within fcc/hcp-Ru/NC regulate the d-band center of Ru sites, which facilitated the water adsorption and dissociation, thus boosting the electrocatalytic HER performance. The present work paves the way for construction of novel and efficient electrocatalysts for energy conversion and storage.
Collapse
Affiliation(s)
- Ying Wang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Tianmi Luo
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Ying Wei
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Qingqing Liu
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yirong Qi
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Dongping Wang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Jiayi Zhao
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Jun Zhang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xu Li
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Qunzhi Ma
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Jianfeng Huang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xingang Kong
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Guanjun Chen
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yongqiang Feng
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
3
|
Zhao P, Liu Q, Yang X, Yang S, Chen L, Zhu J, Zhang Q. Ru nanocrystals modified porous FeOOH nanostructures with open 3D interconnected architecture supported on NiFe foam as high-performance electrocatalyst for oxygen evolution reaction and electrocatalytic urea oxidation. J Colloid Interface Sci 2024; 673:49-59. [PMID: 38875797 DOI: 10.1016/j.jcis.2024.06.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
The construction of binder-free electrodes with well-defined three-dimensional (3D) morphology and optimized electronic structure represents an efficient strategy for the design of high-performance electrocatalysts for the development of efficient green hydrogen technologies. Herein, Ru nanocrystals were modified on 3D interconnected porous FeOOH nanostructures with open network-like frameworks on NiFe foam (Ru/FeOOH@NFF), which were used as an efficient electrocatalyst. In this study, a 3D interconnected porous FeOOH with an open network structure was first electrodeposited on NiFe foam and served as the support for the in-situ modification of Ru nanocrystals. Subsequently, the Ru nanocrystals and abundant oxygen vacancies were simultaneously incorporated into the FeOOH matrix via the adsorption-reduction method, which involved NaBH4 reduction. The Ru/FeOOH@NFF electrocatalyst shows a large specific surface area, abundant oxygen vacancies, and modulated electronic structure, which collectively result in a significant enhancement of catalytic properties with respect to the oxygen evolution reaction (OER) and urea oxidation reaction (UOR). The Ru/FeOOH@NFF catalyst exhibits an outstanding OER performance, requiring a low overpotential (360 mV) at 200 mA cm-2 with a small Tafel slope (58 mV dec-1). Meanwhile, the Ru/FeOOH@NFF catalyst demonstrates more efficient UOR activity for achieving 200 mA cm-2 at a lower overpotential of 272 mV. Furthermore, an overall urea electrolysis cell using the Ru/FeOOH@NFF as the anode and Pt as the cathode (Ru/FeOOH@NFF||Pt) reveals a cell voltage of 1.478 V at 10 mA cm-2 and a prominent durability (120 h at 50 mA cm-2). This work will provide a valuable understanding of the construction of high-performance electrocatalysts with 3D microstructure for promoting urea-assisted water electrolysis.
Collapse
Affiliation(s)
- Peng Zhao
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China.
| | - Qiancheng Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China
| | - Xulin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610106, PR China; Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, PR China
| | - Sudong Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Lin Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Jie Zhu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qian Zhang
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China.
| |
Collapse
|
4
|
Kim T, Jung H, Choi H, Lee W, Patil UM, Parale VG, Kim Y, Kim J, Kim SH, Park HH. Partially oxidized inter-doped RuNi alloy aerogel for the hydrogen evolution reaction in both alkaline and acidic media. MATERIALS HORIZONS 2024; 11:4123-4132. [PMID: 38894689 DOI: 10.1039/d4mh00242c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A facile reduction and doping process is employed with the supercritical ethanol drying method to form RuNi alloy aerogels. The optimized heterostructure comprising RuNi metal, RuO2, and NiO phases is synthesized through partial oxidation. When applied to the surface of Ni foam, the multiphase aerogels form a morphology of highly porous 0D colloidal aerogel networks on the surface. RuNi alloy-Ni foam oxidized at 350 °C (RuNi-350@NF) has an overpotential of 89 and 61 mV in 1 M KOH and 0.5 M H2SO4 media at 50 mA cm-2, as well as satisfactory long-term stability. Additionally, the Tafel slopes in alkaline and acidic media are found to be 34 and 30.9 mV dec-1, respectively. Furthermore, it exhibits long-term stability (35 h) in alkaline and acidic media at high current densities of 50 mA cm-2, respectively. This study presents a novel strategy for developing exceptionally efficient and free-standing 3D porous aerogel electrocatalysts with potential applications in hydrogen production.
Collapse
Affiliation(s)
- Taehee Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hwapyung Jung
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Haryeong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Wonjun Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Umakant M Patil
- Aerogel Materials Research Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Vinayak G Parale
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
- Aerogel Materials Research Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Younghun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jiseung Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Sang-Hyun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
- Aerogel Materials Research Center, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Wang K, Bai B, Luo K, Liu J, Ran F, Li Z, Wang J, Li Z, Gao F, Sun W. Stability of Multivalent Ruthenium on CoWO 4 Nanosheets for Improved Electrochemical Water Splitting with Alkaline Electrolyte. CHEMSUSCHEM 2024; 17:e202301952. [PMID: 38380968 DOI: 10.1002/cssc.202301952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
Engineering low-cost electrocatalysts with desired features is vital to decrease the energy consumption but challenging for superior water splitting. Herein, we development a facile strategy by the addition of multivalence ruthenium (Ru) into the CoWO4/CC system. During the synthesis process, the most of Ru3+ ions were insinuated into the lattice of CoWO4, while the residual Ru3+ ions were reduced to metallic Ru and further attached to the interface between carbon cloth and CoWO4 sheets. The optimal Ru2(M)-CoWO4/CC exhibited superior performance for the HER with an overpotential of 85 mV@10 mA cm-2, which was much better than most of reported electrocatalysts, regarding OER, a low overpotential of 240 mV@10 mA cm-2 was sufficient. In comparison to Ru2(0)-CoWO4/CC with the same Ru mass loading, multivalence Ru2(M)-CoWO4/CC required a lower overpotential for OER and HER, respectively. The Ru2(M)-CoWO4/CC couple showed excellent overall water splitting performance at a cell voltage of 1.48 V@10 mA cm-2 for used as both anodic and cathodic electrocatalysts. Results of the study showed that the electrocatalytic activity of Ru2(M)-CoWO4/CC was attributed to the in-situ transformation of Ru/Co sites, the multivalent Ru ions and the synergistic effect of different metal species stimulated the intrinsic activity of CoWO4/CC.
Collapse
Affiliation(s)
- Kai Wang
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Bowen Bai
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kun Luo
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jifei Liu
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Feitian Ran
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zhuoqun Li
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jing Wang
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zengpeng Li
- Key Laboratory of Solar Power System Engineering, Jiuquan Vocational and Technical College, Jiuquan, 735000, China
| | - Fengyang Gao
- School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Wanjun Sun
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
6
|
Wu Y, Gu X, Jiang W, Lang J, Ma Y, Lu Y, Yang X, Liu C, Che G. Ultralow ruthenium modification of cobalt metal-organic frameworks for enhanced efficient bifunctional water splitting. Dalton Trans 2023; 52:15767-15774. [PMID: 37847404 DOI: 10.1039/d3dt02712k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Hydrogen economy has emerged as a promising alternative to the current hydrocarbon economy. It involves harvesting renewable energy to split water into hydrogen and oxygen and then further utilising clean hydrogen fuel for various applications. The rational exploration of advanced non-precious metal bifunctional electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is critical for efficient water splitting. Herein, an ultralow Ru-modified cobalt metal-organic framework (CoRu0.06-MOF/NF) two-dimensional nanosheet array bifunctional catalyst was fabricated through a strategy under mild experimental conditions. The obtained CoRu0.06-MOF/NF exhibited excellent bifunctional electrocatalytic activity and stability in alkaline media, with low overpotentials of 37 and 181 mV and significant durability for more than 95 and 110 h toward the HER and OER at 10 mA cm-2, respectively. The experimental results showed that the two-dimensional nanoarray structure had a large specific surface area and abundant exposed active sites. Additionally, ultralow Ru modification optimized the electronic structure and improved the conductivity of the cobalt metal-organic frameworks, thereby reducing the energy barrier of the rate-limiting step and accelerating the water splitting reaction.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Key Laboratory of Preparation Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Siping 136000, P. R. China.
| | - Xuejiao Gu
- Key Laboratory of Preparation Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Siping 136000, P. R. China.
| | - Wei Jiang
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping, 136000, P. R. China.
| | - Jihui Lang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Yunchao Ma
- Key Laboratory of Preparation Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Siping 136000, P. R. China.
| | - Yang Lu
- College of Mathematics and Computer, Jilin Normal University, Siping 13600, P. R. China
| | - Xiaotian Yang
- Key Laboratory of Preparation Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Siping 136000, P. R. China.
| | - Chunbo Liu
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping, 136000, P. R. China.
| | - Guangbo Che
- Key Laboratory of Preparation Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Siping 136000, P. R. China.
- College of Chemistry, Baicheng Normal University, Baicheng, 13700, P. R. China
| |
Collapse
|
7
|
Yu B, Liu JH, Guo S, Huang G, Zhang S, Chen S, Li X, Wang Y, Lv LP. Densely populated tiny RuO 2 crystallites supported by hierarchically porous carbon for full acidic water splitting. MATERIALS HORIZONS 2023; 10:4589-4596. [PMID: 37591818 DOI: 10.1039/d3mh00587a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The exploitation of highly active bifunctional electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in acidic media has been a subject receiving immense interest. However, the existing catalysts usually suffer from low catalytic efficiency and poor corrosion resistance under acidic conditions. Herein, we report a facile molten salt method to fabricate ruthenium dioxide nanoparticles supported by hierarchically porous carbon (RuO2/PC) as a bifunctional electrocatalyst for full water splitting under strong acidic conditions. The formation of a densely populated nanocrystalline RuO2/carbon heterostructure helps expose catalytic sites, accelerates the mass transfer rate, and further enhances the acid resistance of RuO2 nanoparticles. The as-synthesized RuO2/PC consequently exhibits superior catalytic performance for the OER with an overpotential of 181 mV upon 10 mA cm-2 compared to that of the commercial RuO2 (343 mV) and a comparable performance to Pt/C for the HER (47.5 mV upon 10 mA cm-2) in 0.5 M H2SO4. The RuO2/PC shows promising stability with little degradation over ∼24 h. Impressively, the water electrolyzer based on RuO2/PC shows an overpotential of 326 mV at 10 mA cm-2, much lower than that of the electrolyzer based on the combination of Pt/C and RuO2 (400 mV), indicating its great potential towards practical application.
Collapse
Affiliation(s)
- Bo Yu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE) Shanghai University, Shanghai, 200444, China.
| | - Jin-Hang Liu
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, China
| | - Shuaibiao Guo
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Guanlin Huang
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Shengjia Zhang
- School of Mechanical Engineering, Energy and Power Engineering program, Shanghai JiaoTong University, Shanghai, 200240, China
| | - Shuangqiang Chen
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Xiaopeng Li
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Yong Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE) Shanghai University, Shanghai, 200444, China.
| | - Li-Ping Lv
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE) Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
8
|
Li L, Zhu Q, Han M, Tu X, Shen Y. MOF-derived single-atom catalysts for oxygen electrocatalysis in metal-air batteries. NANOSCALE 2023; 15:13487-13497. [PMID: 37563956 DOI: 10.1039/d3nr02548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Electrocatalysts play a critical role in oxygen electrocatalysis, enabling great improvements for the future development and application of metal-air batteries. Single-atom catalysts (SACs) derived from metal-organic frameworks (MOFs) are promising catalysts for oxygen electrocatalysis since they are endowed with the merits of a distinctive electronic structure, a low-coordination environment, quantum size effect, and strong metal-support interaction. In addition, MOFs afford a desirable molecular platform for ensuring the synthesis of well-dispersed SACs, endowing them with remarkably high catalytic activity and durability. In this review, we focus on the current status of MOF-derived SACs used as catalysts for oxygen electrocatalysis, with special attention to MOF-derived strategies for the fabrication of SACs and their application in various metal-air batteries. Finally, to facilitate the future deployment of high-performing SACs, some technical challenges and the corresponding research directions are also proposed.
Collapse
Affiliation(s)
- Le Li
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| | - Qianyi Zhu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| | - Xiaobin Tu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| | - Ying Shen
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| |
Collapse
|
9
|
Wu Y, Yao R, Zhao Q, Li J, Liu G. RuO 2 nanoparticles anchored on g-C 3N 4 as an efficient bifunctional electrocatalyst for water splitting in acidic media. Dalton Trans 2023. [PMID: 37449381 DOI: 10.1039/d3dt01676e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The electrolysis of water, particularly proton exchange membrane (PEM) water electrolysis, holds great promise for hydrogen production in industry. However, the catalyst used in this process is prone to dissolution in acidic environments, making it imperative to develop cost-effective, highly efficient, and acid-stable electrocatalytic materials to overcome this challenge and enable large-scale application of PEM water electrolysis technology. Herein, we prepared ruthenium oxide (RuO2)/graphitic carbon nitride (g-C3N4) composites (RuO2/C3N4) via a combination of sol-gel and annealing methods. The g-C3N4 provides a large surface area, while RuO2 is uniformly deposited on the g-C3N4 surface. The interaction between g-C3N4 and RuO2 stabilizes the RuO2 nanoparticles and enhances long-term water oxidation stability. This unique structure and the combined advantages of RuO2 and g-C3N4 yield exceptional electrocatalytic activity toward both the oxygen evolution reaction (OER, 240 mV@10 mA cm-2) and the hydrogen evolution reaction (HER, 109 mV@10 mA cm-2), with excellent durability (over 28 h), and a cell voltage of 1.607 V at 10 mA cm-2 when used in an RuO2/C3N4||RuO2/C3N4 electrolyzer. This study highlights the efficacy of the g-C3N4 support method in designing highly stable Ru-based OER electrocatalysts for efficient acidic water splitting.
Collapse
Affiliation(s)
- Yun Wu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Rui Yao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Qiang Zhao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Jinping Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Guang Liu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| |
Collapse
|
10
|
Li J, Hou C, Chen C, Ma W, Li Q, Hu L, Lv X, Dang J. Collaborative Interface Optimization Strategy Guided Ultrafine RuCo and MXene Heterostructure Electrocatalysts for Efficient Overall Water Splitting. ACS NANO 2023. [PMID: 37200598 DOI: 10.1021/acsnano.3c02956] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Developing highly active and robust electrocatalysts for the hydrogen/oxygen evolution reaction (HER/OER) is crucial for the large-scale utilization of green hydrogen. In this study, a collaborative interface optimization guided strategy was employed to prepare a metal-organic framework (MOF) derived heterostructure electrocatalyst (MXene@RuCo NPs). The obtained electrocatalyst requires overpotentials of only 20 mV for the HER and 253 mV for the OER to deliver a current density of 10 mA/cm2 in alkaline media, respectively, and it also exhibits great performance at high current density. Experiments and theoretical calculations reveal that the doped Ru introduces second active sites and decreases the diameter of nanoparticles, which greatly enhances the number of active sites. More importantly, the MXene/RuCo NPs heterogeneous interfaces in the catalysts exhibit great synergistic effects, decreasing the work function of the catalyst and improving the charge transfer rate, thus reducing the energy barrier of the catalytic reaction. This work represents a promising strategy for the development of MOF-derived highly active catalysts to achieve efficient energy conversion in industrial applications.
Collapse
Affiliation(s)
- Jinzhou Li
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P.R. China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, P.R. China
| | - Chengzhen Hou
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P.R. China
| | - Chao Chen
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, P.R. China
| | - Wansen Ma
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P.R. China
| | - Qian Li
- State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Liwen Hu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P.R. China
| | - Xuewei Lv
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P.R. China
| | - Jie Dang
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P.R. China
| |
Collapse
|
11
|
Jin D, Qiao F, Chu H, Xie Y. Progress in electrocatalytic hydrogen evolution of transition metal alloys: synthesis, structure, and mechanism analysis. NANOSCALE 2023; 15:7202-7226. [PMID: 37038769 DOI: 10.1039/d3nr00514c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
At present, the problems of high energy consumption and low efficiency in electrocatalytic hydrogen production have limited the large-scale industrial application of this technology. Constructing effective catalysts has become the way to solve these problems. Transition metal alloys have been proved to be very promising materials in hydrogen evaluation reaction (HER). In this study, the related theories and characterization methods of electrocatalysis are summarized, and the latest progress in the application of binary, ternary, and high entropy alloys to HER in recent years is analyzed and studied. The synthesis methods and optimization strategies of transition metal alloys, including composition regulation, hybrid engineering, phase engineering, and morphological engineering were emphatically discussed, and the principles and performance mechanism analysis of these strategies were discussed in detail. Although great progress has been made in alloy catalysts, there is still considerable room for applications. Finally, the challenges, prospects, and research directions of transition metal alloys in the future were predicted.
Collapse
Affiliation(s)
- Dunyuan Jin
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China.
| | - Fen Qiao
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China.
| | - Huaqiang Chu
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, Anhui, P.R. China
| | - Yi Xie
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
12
|
Chu X, Wang L, Li J, Xu H. Strategies for Promoting Catalytic Performance of Ru-based Electrocatalysts towards Oxygen/Hydrogen Evolution Reaction. CHEM REC 2023; 23:e202300013. [PMID: 36806446 DOI: 10.1002/tcr.202300013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Indexed: 02/22/2023]
Abstract
Ru-based materials hold great promise for substituting Pt as potential electrocatalysts toward water electrolysis. Significant progress is made in the fabrication of advanced Ru-based electrocatalysts, but an in-depth understanding of the engineering methods and induced effects is still in their early stage. Herein, we organize a review that focusing on the engineering strategies toward the substantial improvement in electrocatalytic OER and HER performance of Ru-based catalysts, including geometric structure, interface, phase, electronic structure, size, and multicomponent engineering. Subsequently, the induced enhancement in catalytic performance by these engineering strategies are also elucidated. Furthermore, some representative Ru-based electrocatalysts for the electrocatalytic HER and OER applications are also well presented. Finally, the challenges and prospects are also elaborated for the future synthesis of more effective Ru-based catalysts and boost their future application.
Collapse
Affiliation(s)
- Xianxu Chu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Lu Wang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Junru Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China.,Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| |
Collapse
|
13
|
Raveendran A, Chandran M, Dhanusuraman R. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Adv 2023; 13:3843-3876. [PMID: 36756592 PMCID: PMC9890951 DOI: 10.1039/d2ra07642j] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Electrochemical splitting of water is an appealing solution for energy storage and conversion to overcome the reliance on depleting fossil fuel reserves and prevent severe deterioration of the global climate. Though there are several fuel cells, hydrogen (H2) and oxygen (O2) fuel cells have zero carbon emissions, and water is the only by-product. Countless researchers worldwide are working on the fundamentals, i.e. the parameters affecting the electrocatalysis of water splitting and electrocatalysts that could improve the performance of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) and overall simplify the water electrolysis process. Noble metals like platinum for HER and ruthenium and iridium for OER were used earlier; however, being expensive, there are more feasible options than employing these metals for all commercialization. The review discusses the recent developments in metal and metalloid HER and OER electrocatalysts from the s, p and d block elements. The evaluation perspectives for electrocatalysts of electrochemical water splitting are also highlighted.
Collapse
Affiliation(s)
- Asha Raveendran
- Nano Electrochemistry Lab (NEL), Department of Chemistry, National Institute of Technology Puducherry Karaikal - 609609 India
| | - Mijun Chandran
- Department of Chemistry, Central University of Tamil Nadu Thiruvarur - 610005 India
| | - Ragupathy Dhanusuraman
- Nano Electrochemistry Lab (NEL), Department of Chemistry, National Institute of Technology Puducherry Karaikal - 609609 India
| |
Collapse
|
14
|
Gong R, Liu B, Wang X, Du S, Xie Y, Jia W, Bian X, Chen Z, Ren Z. Electronic Structure Modulation Induced by Cobalt-doping and Lattice-Contracting on Armor-Like Ruthenium Oxide Drives pH-Universal Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204889. [PMID: 36420939 DOI: 10.1002/smll.202204889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Exquisite design of RuO2 -based catalysts to simultaneously improve activity and stability under harsh conditions and reduce the Ru dosage is crucial for advancing energy conversion involving oxygen evolution reaction (OER). Herein, a distinctive cobalt-doped RuOx framework is constructed on Co3 O4 nanocones (Co3 O4 @CoRuOx ) as a promising strategy to realize above urgent desires. Extensive experimental characterization and theoretical analysis demonstrate that cobalt doped in RuOx lattice brings the oxygen vacancies and lattice contraction, which jointly redistribute the electron configuration of RuOx . The optimized d-band center balances the adsorption energies of oxygenated intermediates, lowing the thermodynamical barrier of the rate-determining step; and meanwhile, the over-oxidation and dissolution of Ru species are restrained because of the p-band down-shifting of the lattice oxygen. Co3 O4 @CoRuOx with 3.7 wt.% Ru delivers the extremely low OER overpotentials at 10 mA cm-2 in alkaline (167 mV), neutral (229 mV), and acidic electrolytes (161 mV), and super operating stability over dozens of hours. The unprecedented activity ranks first in all pH-universal OER catalysts reported so far. These findings provide a route to produce robust low-loading Ru catalysts and an engineering approach for regulating the central active metal through synergy of co-existing defects to improve the catalytic performance and stability.
Collapse
Affiliation(s)
- Rui Gong
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Bowen Liu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Xiaolei Wang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Shichao Du
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Wanqi Jia
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Xinxin Bian
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Zhimin Chen
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Zhiyu Ren
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
15
|
Al-Naggar AH, Shinde NM, Kim JS, Mane RS. Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Wang C, Liu D, Zhang K, Xu H, Yu R, Wang X, Du Y. Defect and Interface Engineering of Three-Dimensional Open Nanonetcage Electrocatalysts for Advanced Electrocatalytic Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38669-38676. [PMID: 35993830 DOI: 10.1021/acsami.2c07792] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Defect engineering and interface engineering are two efficient approaches to promote the electrocatalytic performance of transition metal oxides (TMOs) by modulating the local electronic structure and inducing a synergistic effect but usually require costly and complicated processes. Herein, a facile electrochemical etching method is proposed for the controllable tailoring of the defects in a three-dimensional (3D) open nanonetcage CoZnRuOx heterostructure via the in situ electrochemical etching to remove partial ZnO. The highly open 3D nanostructures, numerous defects, and multicomponent heterointerfaces endow the CoZnRuOx nanonetcages with more accessible active sites, moderated local electronic structure, and strong synergistic effect, thereby enabling them to not only deliver an ultralow overpotential (244 mV @ 10 mA cm-2) for oxygen evolution reaction (OER) but also high-performance overall water electrolysis by coupling with commercial Pt/C, with a potential of 1.52 V at 10 mA cm-2. Moreover, experiments and characterizations also reveal that the remaining Zn2+ can facilitate OH- adsorption and charge transfer, which also further improves the electrocatalytic OER performance. This work proposes a promising strategy for creating surface defects in heterostructured TMOs and provides insights to understand the defect- and interface-induced enhancement of OER electrocatalysis.
Collapse
Affiliation(s)
- Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Dongmei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Kewang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Oil and Gas Storage & Transportation Technology, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Rui Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xiaomei Wang
- School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
17
|
Xiong G, Wang Y, Xu F, Tang G, Zhang H, Wang F, Wang Y. Au(111)@Ti 6O 11 heterostructure composites with enhanced synergistic effects as efficient electrocatalysts for the hydrogen evolution reaction. NANOSCALE 2022; 14:3878-3887. [PMID: 35201244 DOI: 10.1039/d1nr07502k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing cost-effective electrocatalysts for the hydrogen evolution reaction (HER) is of great significance for the renewable energy field. The Magnéli phase TinO2n-1 (4 ≤ n ≤ 10) has attracted much attention as a promising carbon-free support for electrocatalysts due to its high electrical conductivity and favorable electrochemical stability. Herein, we report the synthesis of a specific crystal-plane coupling heterostructure between Au(111) nanoparticles (NPs) and Ti6O11 by photoreduction. Benefitting from the modification of the electronic structure and synergistic effects of the heterostructure, the electron density around Au atoms is enhanced, and the Gibbs free energy of hydrogen absorption (ΔGH*) was dramatically optimized to facilitate the HER process. The best electrocatalyst Au(111)@Ti6O11-50 exhibits a lower overpotential of 49 mV at a current density of -10 mA cm-2 and a Tafel slope of 39 mV dec-1 in 0.5 M H2SO4, and shows long-term electrochemical stability over 30 h. Au(111)@Ti6O11-50 shows a mass activity of 9.25 A mgAu-1, which is about 18 times higher than that of commercial Pt/C (0.51 A mgPt-1). Meanwhile, the density functional theory (DFT) calculations suggest that the ΔGH* of Au(111)@Ti6O11 is -0.098 eV, which is comparable to that of Pt (-0.09 eV). This work would be a powerful guide for the realization of efficient utilization of noble metals in catalysis.
Collapse
Affiliation(s)
- Gangquan Xiong
- The School of Electrical Engineering, and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China.
| | - Yanwei Wang
- The School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China.
| | - Fan Xu
- The School of Electrical Engineering, and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China.
| | - Gangrong Tang
- The School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China.
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China.
| | - Feipeng Wang
- The School of Electrical Engineering, and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China.
| | - Yu Wang
- The School of Electrical Engineering, and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China.
- The School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China.
| |
Collapse
|
18
|
Jadhav HS, Bandal HA, Ramakrishna S, Kim H. Critical Review, Recent Updates on Zeolitic Imidazolate Framework-67 (ZIF-67) and Its Derivatives for Electrochemical Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107072. [PMID: 34846082 DOI: 10.1002/adma.202107072] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Design and construction of low-cost electrocatalysts with high catalytic activity and long-term stability is a challenging task in the field of catalysis. Metal-organic frameworks (MOF) are promising candidates as precursor materials in the development of highly efficient electrocatalysts for energy conversion and storage applications. This review starts with a summary of basic concepts and key evaluation parameters involved in the electrochemical water-splitting reaction. Then, different synthesis approaches reported for the cobalt-based Zeolitic imidazolate framework (ZIF-67) and its derivatives are critically reviewed. Additionally, several strategies employed to enhance the electrocatalytic activity and stability of ZIF-67-based electrocatalysts are discussed in detail. The present review provides a succinct insight into the ZIF-67 and its derivatives (oxides, hydroxides, sulfides, selenides, phosphide, nitrides, telluride, heteroatom/metal-doped carbon, noble metal-supported ZIF-67 derivatives) reported for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting applications. Finally, this review concludes with the associated challenges and the perspectives on developing the best economic, durable electrocatalytic materials.
Collapse
Affiliation(s)
- Harsharaj S Jadhav
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Harshad A Bandal
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
19
|
Huang C, Ji Q, Zhang H, Wang Y, Wang S, Liu X, Guo Y, Zhang C. Ru-incorporated Co 3O 4 nanoparticles from self-sacrificial ZIF-67 template as efficient bifunctional electrocatalysts for rechargeable metal-air battery. J Colloid Interface Sci 2022; 606:654-665. [PMID: 34419813 DOI: 10.1016/j.jcis.2021.08.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 01/19/2023]
Abstract
Ru-incorporated Co3O4 nanoparticles have been synthesized from self-sacrificial ZIF-67 template and utilized as efficient electrocatalysts towards oxygen reduction and evolution reactions (ORR and OER). Amongst, Ru@Co3O4-1.0 exhibited the optimum electrocatalytic behavior with an ultra-low potential gap (0.84 V) between the OER potential (1.61 V at 10 mA cm-2) and ORR half-wave potential (0.77 V). The zinc-air battery using Ru@Co3O4-1.0 as a cathode presented high specific capacity (788.1 mAh g-1) and power density (101.2 mW cm-2). Meanwhile, this battery possessed relatively lower voltage gap and higher cycling stability compared with the commercial Pt/C-based one. Ruthenium incorporation induced remarkable lattice expansion of Co3O4 and engineered more oxygen vacancies, promoting the lattice oxygen mobility from the subsurface/bulk phase onto surface. All these properties were recognized to be the crucial parameters for electrocatalytic activity improvement. This work provided a facile approach to design highly active metal oxide with broad potentiality for rechargeable metal-air batteries.
Collapse
Affiliation(s)
- Changfei Huang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Qianqian Ji
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Hongliang Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yating Wang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Shuoming Wang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xuehua Liu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Youmin Guo
- School of Physics and Materials Science, Anhui University, Hefei 230601, PR China
| | - Chuanhui Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
20
|
Hong J, Hyun S, Tsipoaka M, Samdani JS, Shanmugam S. RuFe Alloy Nanoparticle-Supported Mesoporous Carbon: Efficient Bifunctional Catalyst for Li-O2 and Zn–Air Batteries. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04527] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junhyung Hong
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Suyeon Hyun
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Maxwell Tsipoaka
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jitendra S Samdani
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Sangaraju Shanmugam
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
21
|
Xu C, Yang X, Wen X, Wang YY, Sun Y, Xu B, Li C. Nitrogen-doped carbon encapsulating RuCo heterostructure for enhanced electrocatalytic overall water splitting. CrystEngComm 2022. [DOI: 10.1039/d2ce00528j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetically sluggish electrochemical water splitting reaction still faces great challenges, and the rational design of excellent electrocatalysts is the key to solving the problem. Herein, an etching and pyrolysis...
Collapse
|
22
|
Jia HL, Li HC, Zhao J, Guan MY. Hyperdispersed ruthenium nanoparticles anchored on S/N co-doped carbon nanotubes as an efficient HER electrocatalyst. NEW J CHEM 2022. [DOI: 10.1039/d2nj02869g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hyperdispersed ruthenium nanoparticles anchored on S/N co-doped carbon nanotubes show the same high-performance HER catalytic activity as commercial Pt/C.
Collapse
Affiliation(s)
- Hai-Lang Jia
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Analysis and Testing Center of Jiangsu University of Technology, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Hong-Cheng Li
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Analysis and Testing Center of Jiangsu University of Technology, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Jiao Zhao
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Analysis and Testing Center of Jiangsu University of Technology, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Ming-Yun Guan
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Analysis and Testing Center of Jiangsu University of Technology, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
23
|
Jia HL, Zhao J, Wang Z, Chen RX, Guan MY. Ru@N/S/TiO 2/rGO: a high performance HER electrocatalyst prepared by dye-sensitization. Dalton Trans 2021; 50:15585-15592. [PMID: 34668512 DOI: 10.1039/d1dt03072h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hydrogen production from water-splitting is one of the most promising hydrogen production methods, and the preparation of the hydrogen evolution reaction (HER) catalyst is very important. Although Pt-based materials have the best catalytic activity for HER, their high price and scarcity greatly limit their large-scale industrial application prospects. Herein, a new method to prepare HER catalyst is described, where dyes used in dye-sensitized solar cells (DSSCs) were used as precursors. A high performance HER catalyst (Ru@N/S/TiO2/rGO, Ru nanoparticles (NPs) supported on N/S-doped TiO2/rGO hybrids) was prepared, and the stereoscopic molecular structure of the porphyrin dye, JR1, not only provides a prerequisite for the preparation of the hyperdispersed Ru NPs, but also successfully realizes N/S co-doping. The Ru@N/S/TiO2/rGO shows an excellent catalytic performance for the HER, which is almost the same as that with Pt/C. In 0.5 M H2SO4, the overpotential is 60 mV at 10 mA cm-2, and the Tafel slope is only 51 mV dec-1. In 1 M KOH, the overpotential is only 5 mV at 10 mA cm-2, and the Tafel slope is only 45 mV dec-1, and this performance is much better than most of the HER catalysts that have been reported. When Ru@N/S/TiO2/rGO is utilized as a catalyst in an alkaline water electrolyzer, a bias of only 1.52 V is able to complement overall water-splitting at 10 mA cm-2 (1.78 V, 100 mA cm-2). The molecular structure and coordination metal species of the dyes are easy to adjust, and the the stereoscopic structure is very helpful for inhibiting the aggregation of the metal NPs, and the strong anchoring effect with TiO2 or other carbon materials is also very helpful to achieve heteroatom doping. In addition, the process of dye-sensitization is simple and repeatable, and is a novel and efficient method to prepare the electrocatalyst.
Collapse
Affiliation(s)
- Hai-Lang Jia
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, PR China.
| | - Jiao Zhao
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, PR China.
| | - Zhiyuan Wang
- PLA Army Academy of Artillery and Air Defense, Hefei 230031, PR China
| | - Rui-Xin Chen
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, PR China.
| | - Ming-Yun Guan
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, PR China.
| |
Collapse
|
24
|
Shen B, Ding R, Dai J, Ji Y, Wang Q, Wang Y, Huang H, Zhang X. Encapsulating nitroreductase into metal-organic framework: Boosting industrial performance for the reduction of nitro-aromatics. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
25
|
Xie Q, Wang Z, Lin L, Shu Y, Zhang J, Li C, Shen Y, Uyama H. Nanoscaled and Atomic Ruthenium Electrocatalysts Confined Inside Super-Hydrophilic Carbon Nanofibers for Efficient Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102160. [PMID: 34363306 DOI: 10.1002/smll.202102160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Indexed: 06/13/2023]
Abstract
A series of Ru-based catalysts have been developed for the hydrogen evolution reaction (HER) by the facile impregnation of copious and eco-friendly bacterial cellulose (BC) with Ru(bpy)3 Cl2 (bpy = 2,2'-bipyridine) followed by pyrolysis. After the oxidation and molecular recomposition processes that occur within the BC precursors during pyrolysis, sub-2 nm Ru nanoparticles (NPs) and atomic Ru species confined within surface-oxidized N-doped carbon nanofibers (CNFs) can be observed in the derived catalysts. The surface oxidation of CNFs leads the derived catalysts with super hydrophilicity and water-absorbing capacity, and also provides dimensional confinement for the nanoscaled and atomic Ru species. With these added structural advantages and the component synergy, the derived catalysts show superior HER activities, for which the overpotentials are as low as 19.6 mV (1 m KOH) and 55.0 mV (0.5 m H2 SO4 ) for the most active case at the current density of 10 mA cm-2 . Moreover, superior HER activity can be also achieved for the catalysts derived with a wide range of Ru loadings. Finally, the influence of Ru NP size on HER activity is investigated by density functional theory simulations. This method provides a reliable protocol for preparing highly active HER catalysts for scale-up applications.
Collapse
Affiliation(s)
- Qianjie Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Zheng Wang
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Like Lin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Yu Shu
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jingjing Zhang
- College of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Hiroshi Uyama
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
26
|
Palani R, Anitha V, Karuppiah C, Rajalakshmi S, Li YJJ, Hung TF, Yang CC. Imidazolatic-Framework Bimetal Electrocatalysts with a Mixed-Valence Surface Anchored on an rGO Matrix for Oxygen Reduction, Water Splitting, and Dye Degradation. ACS OMEGA 2021; 6:16029-16042. [PMID: 34179648 PMCID: PMC8223441 DOI: 10.1021/acsomega.1c01870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 05/07/2023]
Abstract
This paper presents a simple strategy for manufacturing bifunctional electrocatalysts-graphene nanosheets (GNS) coated with an ultrafine NiCo-MOF as nanocomposites (denoted NiCo-MOF@GNS) having a N-doped defect-rich and abundant cavity structure through one-pool treatment of metal-organic frameworks (MOFs). The precursors included N-doped dodecahedron-like graphene nanosheets (GNS), in which the NiCo-MOF was encompassed within the inner cavities of the GNS (NiCo-MOF@GNS) at the end or middle portion of the tubular furnace with several graphene layers. Volatile imidazolate N x species were trapped by the NiCo-MOF nanosheets during the pyrolysis process, simultaneously inserting N atoms into the carbon matrix to achieve the defect-rich porous nanosheets and the abundantly porous cavity structure. With high durability, the as-prepared nanomaterials displayed simultaneously improved performance in the oxygen reduction reaction (ORR), the oxygen evolution reaction (OER), and photocatalysis. In particular, our material NiCo-MOF@GNS-700 exhibited excellent electrocatalytic activity, including a half-wave potential of 0.83 V (E ORR, 1/2), a low operating voltage of 1.53 V (E OER, 10) at 10 mA cm-2, a potential difference (ΔE) of 1.02 V between E OER, 10 and E ORR, 1/2 in 0.1 M KOH, and a low band gap of 2.61 eV. This remarkable behavior was due to the structure of the defect-rich porous carbon nanosheets and the synergistic impact of the NPs in the NiCo-MOF, the N-doped carbon, and NiCo-N x . Furthermore, the hollow structure enhanced the conductivity and stability. This useful archetypal template allows the construction of effective and stable bifunctional electrocatalysts, with potential for practical viability for energy conversion and storage.
Collapse
Affiliation(s)
- Raja Palani
- Battery
Research Center of Green Energy, Ming Chi
University of Technology, New Taipei
City 24301, Taiwan, R.O.C.
| | - Venkatasamy Anitha
- Departmet
of Chemistry, Sri G.V.G Visalakshi College
for Women (Autonomous), Udumalpet 642128, India
| | - Chelladurai Karuppiah
- Battery
Research Center of Green Energy, Ming Chi
University of Technology, New Taipei
City 24301, Taiwan, R.O.C.
| | | | - Ying-Jeng Jame Li
- Battery
Research Center of Green Energy, Ming Chi
University of Technology, New Taipei
City 24301, Taiwan, R.O.C.
| | - Tai-Feng Hung
- Battery
Research Center of Green Energy, Ming Chi
University of Technology, New Taipei
City 24301, Taiwan, R.O.C.
| | - Chun-Chen Yang
- Battery
Research Center of Green Energy, Ming Chi
University of Technology, New Taipei
City 24301, Taiwan, R.O.C.
- Department
of Chemical Engineering, Ming Chi University
of Technology, New Taipei City 24301, Taiwan, R.O.C.
- Department
of Chemical and Materials Engineering, Chang
Gung University, Kwei-shan, Taoyuan 333, Taiwan,
R.O.C.
- . Tel: 886-2-908-9899, ext. 4601. Fax: 886-2-2904-1914
| |
Collapse
|
27
|
McGuire SC, Ebrahim AM, Hurley N, Zhang L, Frenkel AI, Wong SS. Reconciling structure prediction of alloyed, ultrathin nanowires with spectroscopy. Chem Sci 2021; 12:7158-7173. [PMID: 34123343 PMCID: PMC8153242 DOI: 10.1039/d1sc00627d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/11/2021] [Indexed: 01/04/2023] Open
Abstract
A number of complementary, synergistic advances are reported herein. First, we describe the 'first-time' synthesis of ultrathin Ru2Co1 nanowires (NWs) possessing average diameters of 2.3 ± 0.5 nm using a modified surfactant-mediated protocol. Second, we utilize a combination of quantitative EDS, EDS mapping (along with accompanying line-scan profiles), and EXAFS spectroscopy results to probe the local atomic structure of not only novel Ru2Co1 NWs but also 'control' samples of analogous ultrathin Ru1Pt1, Au1Ag1, Pd1Pt1, and Pd1Pt9 NWs. We demonstrate that ultrathin NWs possess an atomic-level geometry that is fundamentally dependent upon their intrinsic chemical composition. In the case of the PdPt NW series, EDS mapping data are consistent with the formation of a homogeneous alloy, a finding further corroborated by EXAFS analysis. By contrast, EXAFS analysis results for both Ru1Pt1 and Ru2Co1 imply the generation of homophilic structures in which there is a strong tendency for the clustering of 'like' atoms; associated EDS results for Ru1Pt1 convey the same conclusion, namely the production of a heterogeneous structure. Conversely, EDS mapping data for Ru2Co1 suggests a uniform distribution of both elements. In the singular case of Au1Ag1, EDS mapping results are suggestive of a homogeneous alloy, whereas EXAFS analysis pointed to Ag segregation at the surface and an Au-rich core, within the context of a core-shell structure. These cumulative outcomes indicate that only a combined consideration of both EDS and EXAFS results can provide for an accurate representation of the local atomic structure of ultrathin NW motifs.
Collapse
Affiliation(s)
- Scott C McGuire
- Department of Chemistry, Stony Brook University Stony Brook New York 11794-3400 USA
| | - Amani M Ebrahim
- Department of Materials Science and Chemical Engineering, Stony Brook University Stony Brook New York 11794-2275 USA
| | - Nathaniel Hurley
- Department of Chemistry, Stony Brook University Stony Brook New York 11794-3400 USA
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory Upton New York 11973 USA
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University Stony Brook New York 11794-2275 USA
- Chemistry Division, Brookhaven National Laboratory Upton New York 11973 USA
| | - Stanislaus S Wong
- Department of Chemistry, Stony Brook University Stony Brook New York 11794-3400 USA
| |
Collapse
|
28
|
Ye W, Zhang Y, Fan J, Shi P, Min Y, Xu Q. Rod-like nickel doped Co 3Se 4/reduced graphene oxide hybrids as efficient electrocatalysts for oxygen evolution reactions. NANOSCALE 2021; 13:3698-3708. [PMID: 33543742 DOI: 10.1039/d0nr08591j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the oxygen evolution reaction (OER), highly active catalysts are essential for reducing the overpotential and improving the slow kinetics of the process. Cobalt selenide (Co3Se4) has always been considered as a promising electrocatalyst for the OER due to the well-suited electronic configuration of the Co ions in it. However, poor exposure of the active sites and low electron conductivity are still its biggest problems. In this study, we report an efficient Ni-doped rod-like Co3Se4 hybridized with reduced graphene oxide (Ni-Co3Se4/rGO) as an OER electrocatalyst. The Ni doping regulates the electronic structure of Co3Se4 and significantly reduces the overpotential of Co3Se4 toward the OER under alkaline conditions. Simultaneously, hybridization of the reduced graphene oxide (rGO) enhances the conductivity which leads to the improvement in OER activity. The Ni-Co3Se4/rGO catalyst shows a lower overpotential (284 mV at 10 mA cm-2) as well as a Tafel slope (71 mV dec-1), which outperformed the benchmark of commercial RuO2. Moreover, Ni-Co3Se4/rGO also shows high stability and long-term durability.
Collapse
Affiliation(s)
- Wenlong Ye
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China.
| | - Yanan Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China.
| | - Jinchen Fan
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China. and Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Penghui Shi
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China. and Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China. and Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China. and Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
29
|
Jia HL, Guo CL, Chen RX, Zhao J, Liu R, Guan MY. Ruthenium nanoparticles supported on S-doped graphene as an efficient HER electrocatalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj04765e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An efficient HER catalyst was prepared by doping graphene and wrapping ruthenium nanoparticles, and its performance is comparable to that of commercial Pt/C.
Collapse
Affiliation(s)
- Hai-Lang Jia
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Cheng-Lin Guo
- CMCU Engineering Co., Ltd, Chongqing, 400030, P. R. China
| | - Rui-Xin Chen
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Jiao Zhao
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Rui Liu
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Ming-Yun Guan
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|