1
|
Hua Y, Li L, Zhang H, Guo GC. Advances in crystalline metal-organic photochromic materials. Chem Commun (Camb) 2025; 61:5422-5434. [PMID: 40114647 DOI: 10.1039/d4cc06570k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Metal-organic materials have undergone rapid advancements due to their unique structural properties and exceptional application potential. As a key branch, crystalline metal-organic photochromic materials (CMOPMs), have attracted significant attention for their ability to modulate physical properties in response to light stimulation, thereby expanding the research landscape of metal-organic materials in areas such as molecular switch, gas adsorption and separation, and sensing applications. Furthermore, light as a renewable and clean energy source significantly enhances its application potential. In this feature article, we review the design and synthesis strategies, classification, and applications of CMOPMs. Finally, we present the opportunities and challenges for the development of CMOPMs.
Collapse
Affiliation(s)
- Yang Hua
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Li Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Hong Zhang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Cui Y, Lin J. Metal-organic frameworks as advanced platforms for radionuclide detection. Chem Commun (Camb) 2025; 61:5395-5409. [PMID: 40104900 DOI: 10.1039/d5cc00711a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The development of nuclear energy has significantly increased the prevalence of artificial radionuclides, mainly generated through nuclear fission processes, alongside naturally occurring radionuclides. These radionuclides, encompassing a wide array of elements, including 3H, 85Kr, 90Sr, 99Tc, 129/131I, 137Cs, 222Rn, 232Th, and 235/238U, exist in diverse chemical forms such as gases, ions, and molecular species, posing substantial risks to human health and environmental safety. Consequently, the precise detection and selective separation of these radionuclides are of paramount importance for the timely identification and mitigation of associated hazards. This review explores the application of metal-organic frameworks (MOFs) as advanced platforms for radionuclide detection, utilizing their structural tunability and versatile functionality. The discussion is systematically organized based on the chemical forms of radionuclides, categorizing them into gaseous, cationic, and anionic species. Key detection mechanisms employed by MOFs, including fluorescence sensing (via quenching, enhancement, and fluorochromism), scintillation techniques, colorimetric sensing, electrochemical sensing, and so on, are thoroughly examined. These approaches are analysed to elucidate their principles, practical implementations, and limitations.
Collapse
Affiliation(s)
- Yunyi Cui
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| |
Collapse
|
3
|
Takada K, Ito M, Fukui N, Nishihara H. Modulation between capacitor and conductor for a redox-active 2D bis(terpyridine)cobalt(II) nanosheet via anion-exchange. Commun Chem 2024; 7:186. [PMID: 39174642 PMCID: PMC11341730 DOI: 10.1038/s42004-024-01274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Ionic polymers are intriguing materials whose functionality arises from the synergy between ionic polymer backbones and counterions. A key method for enhancing their functionality is the post-synthetic ion-exchange reaction, which is instrumental in improving the chemical and physical properties of polymer backbones and introducing of the functionalities of the counterions. Electronic interaction between host polymer backbone and guest ions plays pivotal roles in property modulation. The current study highlights the modulation of responses to external electric field in cationic bis(terpyridine)cobalt(II) polymer nanofilms through anion-exchange reactions. Initially, as-prepared chloride-containing polymers exhibited supercapacitor behaviour. Introducing anionic metalladithiolenes into the polymers altered the behaviour to either conductive or insulative, depending on the valence of the metalladithiolenes. This modulation was accomplished by fine tuning of charge-transfer interactions between the bis(terpyridine)cobalt(II) complex moieties and redox-active anions. Our findings open up new avenue for ionic polymers, showcasing their potential as versatile platform in materials science.
Collapse
Affiliation(s)
- Kenji Takada
- Research Institute for Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Miyu Ito
- Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Naoya Fukui
- Research Institute for Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hiroshi Nishihara
- Research Institute for Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan.
- Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
4
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Cuan J, Zhou H, Huang X, Cong X, Zhou Y. Hydro-Photo-Thermo-Responsive Multicolor Luminescence Switching of a Ternary MOF Hybrid for Advanced Information Anticounterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305624. [PMID: 38095512 DOI: 10.1002/smll.202305624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/29/2023] [Indexed: 05/25/2024]
Abstract
Developing smart materials capable of solid-state multicolor photoluminescence (PL) switching in response to multistimuli is highly desirable for advanced anticounterfeiting. Here, a ternary MOF hybrid showing hydro-photo-thermo-responsive multicolor PL switching in the solid state is presented. This hybrid is constructed by co-immobilizing Eu3+ and methyl viologen (MV) cations within an anionic MOF via the cation-exchange approach. The confined guest cations are well arranged in the framework channels, facilitating the synergistic realization of stimuli-responsive multiple PL color-switching through intermolecular coupling. The hybrid undergoes a rapid and reversible PL color-switching from red to blue upon water simulation, which is achieved by activating the blue emission of the framework linker while simultaneously quenching the Eu3+ emission. Furthermore, the hybrid displays photo-thermo-responsive PL switching from red to dark. UV-light irradiation or heating triggers the chromic conversion of MV to its colored radical form, which exhibits perfect spectral overlap with Eu3+, thus activating Förster resonance energy transfer (FRET) from Eu3+ to MV radicals and quenching the Eu3+ emission. Inspired by these results, PL morse patterns are designed and fabricated using a novel triple-level encryption strategy, showcasing the exciting potential of this hybrid in advanced anticounterfeiting applications.
Collapse
Affiliation(s)
- Jing Cuan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hui Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xuefang Huang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xinhang Cong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - You Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
6
|
Huang L, Li XN, Shen Y, Song RH, Cui WB, Zhang H. Zinc tungstate encapsulated into a scarce Zn(II)-viologen framework with photochromic, electrochromic and chemochromic properties. Dalton Trans 2024; 53:5192-5201. [PMID: 38381164 DOI: 10.1039/d3dt03647b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Smart chromic materials reacting to physicochemical stimuli are widely applied in optical switches, smart windows, and chemical sensors. Currently, most materials only respond to a single stimulus, but those that respond to multiple external stimuli are still in the minority. Herein, we report a novel porous zinc tungstate@metaloxoviologen framework [Zn3(Bcbpy)6(H2O)2]-[ZnW12O40]·6H2O (ZnW12@MV, H2BcbpyCl2 = 1,1'-bis(3-carboxybenzyl)-4,4'-bipyridinium dichloride), which shows multiple stimulus-responsive properties due to a combination of different functional motifs, namely, viologen electron acceptors, luminescent zinc-oxygen-clusters, porous cationic frameworks, and ZnW12O406- electron donors. Generally, the large-sized polyoxometalate (POM) anions serving as structure-directing agents can easily direct the formation of the oligomeric metaloxoviologen cations, mainly because POMs may break down some linkages leaving larger spaces for themselves. The large ZnW12O406- anions in ZnW12@MV are encapsulated into three-dimensional (3D) metaloxoviologen frameworks built up from the linkages of trinuclear zinc-oxygen clusters and Bcbpy viologens, which offer the first example of a 3D metaloxoviologen framework induced by large-sized POM anions. ZnW12@MV shows a reversible chromic response to X-ray/UV and electricity via different stimulus-induced electron transfers between electron-rich POM anions and electron-deficient metaloxoviologen frameworks, whereas the coloration changes are ascribed to the formation of radical and mixed-valence colored state ZnW12O406- species. The photochromic behavior is accompanied by photoluminescence quenching. The discriminative response to different-sized amines is attributed to the formation of viologen radicals through host-guest electron transfer. These results indicate that the multi-stimulus response ZnW12@MV can be applied in electrochromic devices, inkless erasable printing, and the detection of amines.
Collapse
Affiliation(s)
- Li Huang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Xiao-Nan Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Yuan Shen
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Run-Hong Song
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Wen-Bo Cui
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Hong Zhang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| |
Collapse
|
7
|
Wang K, Dong Y, Bai X, Zhao X, Zhao R, Zhou J, Yu H, Li L, Tang H, Ma Y. A water-stable Zn (II) coordination polymer as a fluorescence sensor for multifunctional detection of Cefixime in milk, honey, beef and chicken. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Two new Zinc (II)-viologen coordination polymers: Syntheses, structures, and photochromic behaviors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Shen Y, Tissot A, Serre C. Recent progress on MOF-based optical sensors for VOC sensing. Chem Sci 2022; 13:13978-14007. [PMID: 36540831 PMCID: PMC9728564 DOI: 10.1039/d2sc04314a] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/04/2022] [Indexed: 08/16/2023] Open
Abstract
The raising apprehension of volatile organic compound (VOC) exposures urges the exploration of advanced monitoring platforms. Metal-organic frameworks (MOFs) provide many attractive features including tailorable porosity, high surface areas, good chemical/thermal stability, and various host-guest interactions, making them appealing candidates for VOC capture and sensing. To comprehensively exploit the potential of MOFs as sensing materials, great efforts have been dedicated to the shaping and patterning of MOFs for next-level device integration. Among different types of sensors (chemiresistive sensors, gravimetric sensors, optical sensors, etc.), MOFs coupled with optical sensors feature distinctive strength. This review summarized the latest advancements in MOF-based optical sensors with a particular focus on VOC sensing. The subject is discussed by different mechanisms: colorimetry, luminescence, and sensors based on optical index modulations. Critical analysis for each system highlighting practical aspects was also deliberated.
Collapse
Affiliation(s)
- Yuwei Shen
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Antoine Tissot
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| |
Collapse
|
10
|
Li ZJ, Wang X, Zhu L, Ju Y, Wang Z, Zhao Q, Zhang ZH, Duan T, Qian Y, Wang JQ, Lin J. Hydrolytically Stable Zr-Based Metal-Organic Framework as a Highly Sensitive and Selective Luminescent Sensor of Radionuclides. Inorg Chem 2022; 61:7467-7476. [PMID: 35514048 DOI: 10.1021/acs.inorgchem.2c00545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Effective detections of radionuclides including uranium and its predominant fission products, for example, iodine, are highly desired owing to their radiotoxicity and potential threat to human health. However, traditional analytical techniques of radionuclides are instrument-demanding, and chemosensors targeted for sensitization of radionuclides remain limited. In this regard, we report a sensitive and selective sensor of UO22+ and I- based on the unique quenching behavior of a luminescent Zr-based metal-organic framework, Zr6O4(OH)4(OH)6(H2O)6(TCPE)1.5·(H2O)24(C3H7NO)9 (Zr-TCPE). Immobilization of the luminescent tetrakis(4-carboxyphenyl)ethylene (TCPE4-) linkers by Zr6 nodes enhances the photoluminescence quantum yield of Zr-TCPE, which facilitates the effective sensing of radionuclides in a "turn-off" manner. Moreover, Zr-TCPE can sensitively and selectively recognize UO22+ and I- ions with the lowest limits of detection of 0.67 and 0.87 μg/kg, respectively, of which the former one is much lower than the permissible value (30 μg/L) defined by the U.S. EPA. In addition, Zr-TCPE features excellent hydrolytic stability and can withstand pH conditions ranging from 3 to 11. To facilitate real-world applications, we have further fabricated polyvinylidene fluoride-integrating Zr-TCPE as luminescence-based sensor membranes for on-site sensing of UO22+ and I-.
Collapse
Affiliation(s)
- Zi-Jian Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Xue Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.,Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No. 1, Gehu Middle Road, Changzhou 213164, P. R. China
| | - Lin Zhu
- Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Yu Ju
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.,Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No. 1, Gehu Middle Road, Changzhou 213164, P. R. China
| | - Zeru Wang
- Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Qian Zhao
- Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No. 1, Gehu Middle Road, Changzhou 213164, P. R. China
| | - Tao Duan
- Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Yuan Qian
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an 710049, P. R. China
| |
Collapse
|
11
|
Zhao D, Yu S, Jiang WJ, Cai ZH, Li DL, Liu YL, Chen ZZ. Recent Progress in Metal-Organic Framework Based Fluorescent Sensors for Hazardous Materials Detection. Molecules 2022; 27:2226. [PMID: 35408627 PMCID: PMC9000234 DOI: 10.3390/molecules27072226] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
Population growth and industrial development have exacerbated environmental pollution of both land and aquatic environments with toxic and harmful materials. Luminescence-based chemical sensors crafted for specific hazardous substances operate on host-guest interactions, leading to the detection of target molecules down to the nanomolar range. Particularly, the luminescence-based sensors constructed on the basis of metal-organic frameworks (MOFs) are of increasing interest, as they can not only compensate for the shortcomings of traditional detection techniques, but also can provide more sensitive detection for analytes. Recent years have seen MOFs-based fluorescent sensors show outstanding advantages in the field of hazardous substance identification and detection. Here, we critically discuss the application of MOFs for the detection of a broad scope of hazardous substances, including hazardous gases, heavy metal ions, radioactive ions, antibiotics, pesticides, nitro-explosives, and some harmful solvents as well as luminous and sensing mechanisms of MOF-based fluorescent sensors. The outlook and several crucial issues of this area are also discussed, with the expectation that it may help arouse widespread attention on exploring fluorescent MOFs (LMOFs) in potential sensing applications.
Collapse
Affiliation(s)
- Dan Zhao
- School of Marine Science, Ningbo University, Ningbo 315211, China; (W.-J.J.); (Z.-H.C.)
| | - Shuang Yu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Wen-Jie Jiang
- School of Marine Science, Ningbo University, Ningbo 315211, China; (W.-J.J.); (Z.-H.C.)
| | - Zhi-Hao Cai
- School of Marine Science, Ningbo University, Ningbo 315211, China; (W.-J.J.); (Z.-H.C.)
| | - Dan-Li Li
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China;
| | - Ya-Lan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Zhi-Zhou Chen
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China;
| |
Collapse
|
12
|
Synthesis and properties of a novel photochromic metal organic framework for rapid amine selective sensing and Cr2O72− detection. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
A novel multifunctional Cd (II) coordination polymer based on viologen: photochromic, photocontrolled fluorescence and amines detection. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Li G, Liu WS, Yang SL, Zhang L, Bu R, Gao EQ. Anion-Afforded Functions of Ionic Metal-Organic Frameworks: Ionochromism, Anion Conduction, and Catalysis. Inorg Chem 2022; 61:902-910. [PMID: 34978189 DOI: 10.1021/acs.inorgchem.1c02741] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The exchangeable counterions in ionic metal-organic frameworks (IMOFs) provide facile and versatile handles to manipulate functions associated with the ionic guests themselves and host-guest interactions. However, anion-exchangeable stable IMOFs combining multiple anion-related functions are still undeveloped. In this work, a novel porous IMOF featuring unique self-penetration was constructed from an electron-deficient tris(pyridinium)-tricarboxylate zwitterionic ligand. The water-stable IMOF undergoes reversible and single-crystal-to-single-crystal anion exchange and shows selective and discriminative ionochromic behaviors toward electron-rich anions owing to donor-acceptor interactions. The IMOFs with different anions are good ionic conductors with low activation energy, the highest conductivity being observed with chloride. Furthermore, integrating Lewis acidic sites and nucleophilic guest anions in solid state, the IMOFs act as heterogeneous and recyclable catalysts to efficiently catalyze the cycloaddition of CO2 to epoxides without needing the use of halide cocatalysts. The catalytic activity is strongly dependent upon the guest anions, and the iodide shows the highest activity. The results demonstrate the great potential of developing IMOFs with various functions related to the guest ions included in the porous matrices.
Collapse
Affiliation(s)
- Gen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wan-Shan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Lin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
15
|
Chen ZP, Li D, Xu L, Jiang YF, Lin K, Zhao Y, Zhao J. Cationic metal-organic frameworks constructed from a trigonal imidazole-containing ligand for the removal of Cr2O72- in water. NEW J CHEM 2022. [DOI: 10.1039/d2nj01567f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, cationic metal-organic frameworks (MOFs) have drawn considerable attention in the treatment of wastewater containing toxic anions via anion exchange due to the presence of exchangeable anions in their pores....
Collapse
|
16
|
Zhang B, Qian BB, Li CT, Li XW, Nie HX, Yu MH, Chang Z. Donor–acceptor systems in metal–organic frameworks: design, construction, and properties. CrystEngComm 2022. [DOI: 10.1039/d2ce00588c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this highlight, the development of donor acceptor (D–A) MOF was briefly reviewed and summarized in the aspects of design, construction, and properties. Also, an outlook about the research and potential application of D–A MOF has been presented.
Collapse
Affiliation(s)
- Bo Zhang
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Bin-Bin Qian
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Chang-Tai Li
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Xing-Wang Li
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Hong-Xiang Nie
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Ze Chang
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
17
|
Zhu BL, Jin YP, Jiang J, Zuo MH, Cui SX. Two new photochromic supramolecular compositions based on viologen: photocontrolled fluorescence, aniline detection and inkless erasable printing performance. NEW J CHEM 2022. [DOI: 10.1039/d1nj04918f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two multifunctional supramolecular components synthesized by two different viologen ligands and pyromellitic acid.
Collapse
Affiliation(s)
- Bai-Li Zhu
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, People's Republic of China
| | - Yun-Peng Jin
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, People's Republic of China
| | - Jian Jiang
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, People's Republic of China
| | - Ming-Hui Zuo
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, People's Republic of China
| | - Shu-Xin Cui
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, People's Republic of China
| |
Collapse
|
18
|
Li K, Yu S, Li D, Ding L, Wang W, Xie Z, Park EJ, Fujimoto C, Cullen DA, Kim YS, Zhang FY. Engineered Thin Diffusion Layers for Anion-Exchange Membrane Electrolyzer Cells with Outstanding Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50957-50964. [PMID: 34665589 DOI: 10.1021/acsami.1c14693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Anion-exchange membrane electrolyzer cells (AEMECs) are one of the most promising technologies for carbon-neutral hydrogen production. Over the past few years, the performance and durability of AEMECs have substantially improved. Herein, we report an engineered liquid/gas diffusion layer (LGDL) with tunable pore morphologies that enables the high performance of AEMECs. The comparison with a commercial titanium foam in the electrolyzer indicated that the engineered LGDL with thin-flat and straight-pore structures significantly improved the interfacial contacts, mass transport, and activation of more reaction sites, leading to outstanding performance. We obtained a current density of 2.0 A/cm2 at 1.80 V with an efficiency of up to 81.9% at 60 °C under 0.1 M NaOH-fed conditions. The as-achieved high performance in this study provides insight to design advanced LGDLs for the production of low-cost and high-efficiency AEMECs.
Collapse
Affiliation(s)
- Kui Li
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Dongguo Li
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Eun Joo Park
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Cy Fujimoto
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - David A Cullen
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yu Seung Kim
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| |
Collapse
|
19
|
Multifunctional Viologen-Derived Supramolecular Network with Photo/Vapochromic and Proton Conduction Properties. Molecules 2021; 26:molecules26206209. [PMID: 34684791 PMCID: PMC8538028 DOI: 10.3390/molecules26206209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
A supramolecular network [H4bdcbpy(NO3)2·H2O] (H4bdcbpy = 1,1′-Bis(3,5-dicarboxybenzyl)-4,4′-bipyridinium) (1) was prepared by a zwitterionic viologen carboxylate ligand in hydrothermal synthesis conditions. The as-synthesized (1) has been well characterized by means of single-crystal/powder X-ray diffraction, elemental analysis, thermogravimetric analysis and infrared and UV-vis spectroscopy. This compound possesses a three-dimensional supramolecular structure, formed by the hydrogen bond and π–π interaction between the organic ligands. This compound shows photochromic properties under UV light, as well as vapochromic behavior upon exposure to volatile amines and ammonia, in which the electron transfer from electron-rich parts to the electron-deficient viologen unit gives rise to colored radicals. Moreover, the intensive intermolecular H-bonding networks in 1 endows it with a proton conductivity of 1.06 × 10−3 S cm−1 in water at 90 °C.
Collapse
|
20
|
Gao B, Hao P, Li GP, Shen J, Fu Y. An electron-deficient naphthalene diimide-based metal-organic framework for detecting electron-rich molecules through photo-/chemo-induced chromism. Dalton Trans 2021; 50:13993-14000. [PMID: 34546252 DOI: 10.1039/d1dt02555d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel naphthalene diimide-based metal-organic framework (MOF) {[Zn(3-DPMNI)0.5(NDC)]·3DMF} (1@DMF), (H2NDC = 2,6-naphthalenedicarboxylic acid, DPMNI = N,N'-bis(3-pyridylmethyl)-1,4,5,8-naphthalene diimide, DMF = N,N'-dimethylformamide), has been synthesized, which shows a 3D pillar-layer architecture built of carboxylate layers and naphthalene diimide pillars. The compound exhibits outstanding photochromic performance due to photoinduced electron transfer (ET) between the electron-rich guest molecules and electron-deficient host framework (host-guest ET). Of note, the host framework of 1 cannot show a macroscopic color change owing to the absence of the ET pathway. Nevertheless, it exhibits discriminative photochromic behavior in the presence of electron-rich solvents, which is mainly attributed to different electron-donating abilities of guest solvents and distinct interfacial contacts of electron donors/acceptors. Furthermore, the MOF can also show discriminative ET chemochromic response to different sizes and shapes of organic amines, which can be potentially used for the visual detection of electron-rich organic amines, especially n-butylamine (n-BUA).
Collapse
Affiliation(s)
- Bohong Gao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China.
| | - Pengfei Hao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China.
| | - Gao-Peng Li
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China.
| | - Junju Shen
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China.
| | - Yunlong Fu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China.
| |
Collapse
|
21
|
Two Zn-viologen coordination polymers constructed from 1-carboxyethyl-4,4′-bipyridinium ligands: Crystal structures, photochromism and theoretical calculations. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Bu R, Zhang L, Liu XY, Yang SL, Li G, Gao EQ. Synthesis and Acid-Responsive Properties of a Highly Porous Vinylene-Linked Covalent Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26431-26440. [PMID: 34033712 DOI: 10.1021/acsami.1c01791] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The recently emerging vinylene-linked covalent organic frameworks (VCOFs) stand out from other COFs with exceptional chemical stability and favorable light-emitting properties, promising sensing applications for acids/bases or in strong acidic/basic conditions. Here we systematically investigated the reversible color and fluorescent response of a VCOF functionalized with pyridyl groups to acids/pH. The COF was synthesized with a record surface area for VCOFs and shows reversible hydrochromic and acidochromic behaviors and concomitant fluorescence quenching. The mechanisms were probed with systematical experimental comparison with relevant COFs and model molecules in combination with orbital analysis. The response is related to significant electronic changes in the ground and photoexcited states as a result of protonation or hydrogen bonding at pyridyl sites. The COF in aqueous dispersion displays a reversible fluorescence transition with pH change, which follows the Hill equation for multisite protonation. The COF-modified test paper shows immediate and remarkable color change and fluorescence turn-off/on when alternately exposed to HCl and NH3 gases. The work illustrates the great potential of developing highly robust sensory COFs through the vinylene approach.
Collapse
Affiliation(s)
- Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Lin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiao-Yan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Gen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
23
|
Visual Detection of Triethylamine and a Dual Input/Output Logic Gate Based on a Eu 3+-Complex. Molecules 2021; 26:molecules26113244. [PMID: 34071311 PMCID: PMC8198769 DOI: 10.3390/molecules26113244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
A series of Ln3+-metal centered complexes, Ln(TTA)3(DPPI) (Ln = La, 1; Ln = Eu, 2; Ln = Tb, 3; or Ln = Gd, 4) [(DPPI = N-(4-(1H-imidazo [4,5-f][1,10]phenanthrolin-2-yl)phenyl)-N-phenylbenzenamine) and (TTA = 2-Thenoyltrifluoroacetone)] have been synthesized and characterized. Among which, the Eu3+-complex shows efficient purity red luminescence in dimethylsulfoxide (DMSO) solution, with a Commission International De L’ Eclairage (CIE) coordinate at x = 0.638, y = 0.323 and ΦEuL = 38.9%. Interestingly, increasing the amounts of triethylamine (TEA) in the solution regulates the energy transfer between the ligand and the Eu3+-metal center, which further leads to the luminescence color changing from red to white, and then bluish-green depending on the different excitation wavelengths. Based on this, we have designed the IMPLICATION logic gate for TEA recognition by applying the amounts of TEA and the excitation wavelengths as the dual input signal, which makes this Eu3+-complex a promising candidate for TEA-sensing optical sensors.
Collapse
|
24
|
Liu XY, Yin XM, Yang SL, Zhang L, Bu R, Gao EQ. Chromic and Fluorescence-Responsive Metal-Organic Frameworks Afforded by N-Amination Modification. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20380-20387. [PMID: 33878258 DOI: 10.1021/acsami.1c03937] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sensory materials that show color and/or fluorescence changes in response to specific gases or vapors have important applications in many fields. Here, we report the postsynthetic preparation of novel sensory metal-organic frameworks (MOFs) and their multiple responsive properties. Through postsynthetic N-amination, the 2,2'-bipyridyl spacers in a Zr(IV) MOF are partially transformed into N-aminobipyridinium. The new MOF (Zr-bpy-A) shows chromic behavior toward ammonia and amines because the electron-deficient pyridinium groups form charge-transfer complexes with amino moieties. It also shows a unique chromic response to formaldehyde owing to the Schiff-base condensation with the N-amino groups. Furthermore, the N-amino group can be used to graft different polycyclic aromatic hydrocarbons, which endow the MOF with strong fluorescence of variable colors and afford a high-contrast fluorescence response to ammonia/amines and formaldehyde associated with the chromic response. The presence of the unquaternized bipyridyl group also leads to a fluorescence response to HCl. The multiple responsive behaviors hold appeal for applications in sensing, switching, and antifake marking, which are illustrated with a test paper and writing ink.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xue-Mei Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Lin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
25
|
Xu F, Liu AJ, Han SD, Pan J, Wang GM. Decorating Metal Nitrate with a Coplanar Bipyridine Moiety: A Simple and General Method for Fabricating Photochromic Complexes. Chemistry 2021; 27:4709-4714. [PMID: 33428231 DOI: 10.1002/chem.202005402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2021] [Indexed: 12/17/2022]
Abstract
As a significant class of photochromic materials, crystalline hybrid photochromic materials (CHPMs) have attracted widespread attention of researchers because of their possibilities for generating other photoresponsive properties and advantages in understanding the underlying relationship between structure and photoresponsive performance. The predesign of suitable ligands plays a major role in generating desirable CHPMs. Hitherto, most CHPMs have been built from photodeformable or photoresponsive tectons. However, the synthesis of these ligands is usually time-consuming and expensive, and this greatly restricts their large-scale preparation and practical application. Therefore, it is necessary to explore new families of CHPMs besides the existing CHPMs. Herein, a simple and general method for constructing CHPMs by decorating metal nitrate with a coplanar bipyridine moiety, namely 1,10-phenanthroline (phen), is reported. The resulting products exhibit photocoloration in response to Xe-lamp irradiation. The electron transfer (ET) from the coplanar NO3 - species (as π-electron donors, π-EDs) to coplanar phen moieties (as π-electron acceptors, π-EAs) is responsible for the resulting photochromism. The influence of the coordination environment and central metal ion on the photochromism was also studied. This work demonstrates that the introduction of coplanar organic tectons as π-EAs to metal nitrates as π-EDs with the collaboration of ET and coordination-assembly strategies is a simple and general method to manufacture CHPMs.
Collapse
Affiliation(s)
- Fei Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Ai-Ju Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Jie Pan
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| |
Collapse
|