1
|
Yang X, Huang W, Dong H, Zha JW. Smart Polydimethylsiloxane Materials: Versatility for Electrical and Electronic Devices Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500472. [PMID: 40091339 DOI: 10.1002/adma.202500472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/04/2025] [Indexed: 03/19/2025]
Abstract
Bio-inspired autonomous smart polydimethylsiloxane (PDMS) and its composite materials hold immense promise for a wide range of applications in electrical and electronic devices. These materials mimic natural protective mechanisms with self-healing, self-reporting, and self-cleaning properties, enabling innovative and efficient device design. Smart PDMS materials autonomously activate repair mechanisms in response to mechanical or electrical damage, achieving rapid structural and functional recovery and preventing failure due to the accumulation of minor damage. These materials can intuitively report their status through striking color changes, fluorescence, or luminescence when exposed to external stimuli, providing efficient and practical visual feedback for device health monitoring and fault warning. They also have the capacity to effectively eliminate contaminants and ice deposits from their surfaces, thereby ensuring stable device operation. This review aims to introduce the current research progress in self-healing, self-cleaning, and self-reporting PDMS materials. The review systematically discusses the principles, methodological innovations, mechanistic analysis, and applications of these materials, highlighting their significant potential for applications in the field of electrical and electronic devices. Moreover, the review provides an in-depth analysis of the key challenges facing current research and offers insights into future research directions and strategies.
Collapse
Affiliation(s)
- Xing Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wenjie Huang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Hao Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jun-Wei Zha
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528300, P. R. China
| |
Collapse
|
2
|
Dong P, Xu Z, Lv C, Zheng J. Robust Self-Healing PDMS-Based Elastomers Featuring Tunable Mechanical Properties Enabled by Dual Non-Covalent Interactions. Macromol Rapid Commun 2025:e2401096. [PMID: 40119588 DOI: 10.1002/marc.202401096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/02/2025] [Indexed: 03/24/2025]
Abstract
It is desirable to develop highly efficient self-healing polydimethylsiloxane (PDMS) elastomers with excellent mechanical properties, which can be solved by introducing dual non-covalent interactions. However, most of the self-healing PDMS elastomers reported so far require harsh conditions, while the improvement of self-healing ability often compromises the mechanical properties. Moreover, hydrogen bonds of traditional urea derivatives tend to crystallize excessively, adversely affecting the stretchability and toughness of elastomers. In this work, strong Zn2+ coordination is introduced into a thiourea hydrogen bond network, which is unlikely to crystallize, resulting in a series of robust and efficient self-healing elastomers. By changing the content of Zn2+ ions, the mechanical properties of materials can be strategically tuned from superior stretchability (≈6000%) to high strength (≈4.2 MPa). In addition, the elastomers also possess favorable self-healing ability. The surface scratches can be completely healed at room temperature for 24 h, and the self-healing efficiency of mechanical properties under mild conditions (60 °C, 6 h) generally reached more than 90%. In addition, the applications of PDMS-BDTI-Zn on hydrophobic coatings are tentatively explored in view of the remarkable hydrophobicity of PDMS.
Collapse
Affiliation(s)
- Peiyang Dong
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Zifeng Xu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Chi Lv
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Junping Zheng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
3
|
Tian H, Lu W, Wang C, Wang R, Zhou P, Fei F, Xu M, Wang J. Development of highly robust polyurethane elastomers possessing self-healing capabilities for flexible sensors. MATERIALS HORIZONS 2025. [PMID: 40111377 DOI: 10.1039/d5mh00022j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Traditional flexible electronic sensing materials have fallen short in meeting the diverse application needs and environments of modern times. Hence, we require a multi-functional elastomer material to improve the overall performance and expand the functionality of flexible electronic sensors. In this study, we fabricated a multi-block polyurethane (PU) elastomer based on semi-crystalline polycaprolactone (PCL) chain segments and highly flexible polydimethylsiloxane (PDMS) chain segments, which showcases outstanding mechanical properties, self-healing capabilities, and recyclability. By adjusting the ratio parameters of the chain segments, we were able to modulate the thermodynamic behavior, hydrophobicity, mechanical behavior, and self-healing properties of the designed PU elastomers. The optimized ratios exhibited good tensile strength (16.26 MPa), high elongation at break (3300.84%), good toughness (278.82 MJ m-3, fracture energy ≈ 234.96 KJ m-2), high self-repairing (≈100%, at room temperature for 12 h), efficient recyclability, and puncture resistance. Self-healing is accomplished through the interactions between dynamic disulfide bonds, dynamic boron-oxygen bonds, and hydrogen bonds. The conductive ink (PEDOT:PSS) was encapsulated within this elastomer to construct a flexible electronic sensor, attaining excellent sensing performance (stable output for 1000 cycles). This multi-functional polyurethane elastomer acts as an ideal matrix material for flexible electronic sensors, offering novel concepts and perspectives for the next generation of green electronic flexible materials, electronic flexible robots, and other stimulus-responsive materials.
Collapse
Affiliation(s)
- Hao Tian
- Department of Polymer Materials and Engineering, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Wentong Lu
- Department of Polymer Materials and Engineering, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Caiyan Wang
- Department of Polymer Materials and Engineering, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Runhua Wang
- Department of Polymer Materials and Engineering, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Peilong Zhou
- Department of Polymer Materials and Engineering, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Fan Fei
- Department of Polymer Materials and Engineering, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Mengyang Xu
- Department of Polymer Materials and Engineering, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Jincheng Wang
- Department of Polymer Materials and Engineering, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| |
Collapse
|
4
|
Zhu H, Dong D, Wei Y, Lu H, Zhong Y, Wei M, Lai X, Li H, Zeng X. Self-Healing, Degradable, and Biobased Polyurethane Elastomer for High-Performance Piezoresistive Pressure Sensors with a Hump-like Microstructure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5603-5613. [PMID: 39971615 DOI: 10.1021/acs.langmuir.4c05344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Flexible sensors are widely applied in the fields of electronic skins and wearable devices, yet it is still a big challenge to effectively prolong the lifespan of the damaged sensors and reduce environmental pollution caused by discarded sensors after updating and upgrading. Herein, we proposed a self-healing, degradable, and biobased polyurethane elastomer for high-performance flexible pressure sensors. The elastomer synthesized using fatty diamine as a chain extender possessed a high tensile strength of 13.25 MPa and an elongation at break of 830%, and the self-healing efficiency reached up to 109.2%. Additionally, the elastomer could be fully degraded within 7 days in a 1 mol L-1 NaOH solution with the assistance of ethanol. The elastomer-based pressure sensor with a hump-like microstructure was fabricated with reduced graphene oxide as the conductive material via a simple template method. The sensor showed a high sensitivity of 9.448 kPa-1, a large sensing range of 0-300 kPa, a short response/recovery time of 40/80 ms, and a good sensing stability of 14,000 cycles. Moreover, the sensor was utilized to monitor different human motions, including muscle contraction, joint bending, swallowing, voice recognition, and pulse beat. Importantly, even after being severely damaged, the sensor was able to recover its function in detecting human motions. The findings of this research provide a strategy for the sustainable development of environmentally friendly and functional elastomers and flexible sensors.
Collapse
Affiliation(s)
- Hongtao Zhu
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Die Dong
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Ye Wei
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Han Lu
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Yunchang Zhong
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Ming Wei
- Guangzhou ULink International School, Guangzhou 511458, China
| | - Xuejun Lai
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Hongqiang Li
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Xingrong Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Wang C, Qiao L, Li S, Duan P, Fu X, Duan Y, Cheng HB, Liu J, Zhang L. Innovative Synthesis of Photo-Responsive, Self-Healing Silicone Elastomers with Enhanced Mechanical Properties and Thermal Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403941. [PMID: 39058224 DOI: 10.1002/smll.202403941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Photo-responsive materials have garnered significant interest for their ability to react to non-contact stimuli, though achieving self-healing under gentle conditions remains an elusive goal. In this research, an innovative and straightforward approach for synthesizing silicone elastomers is proposed that not only self-heal at room temperature but also possess unique photochromic properties and adjustable mechanical strength, along with being both transparent and reprocessable. Initially, aldehyde-bifunctional dithiophene-ethylene molecules with dialdehyde groups (DTEM) and isocyanurate (IPDI) is introduced into the aminopropyl-terminated polydimethylsiloxane (H2N-PDMS-NH2) matrix. Subsequently, palladium is incorporated to enhance coordination within the matrix. These silicone elastomers transition to a blue state under 254 nm UV light and revert to transparency under 580 nm light. Remarkably, they demonstrate excellent thermal stability at temperatures up to 100 °C and show superior fatigue resistance. The optical switching capabilities of the silicone elastomers significantly affect both their mechanical characteristics and self-healing abilities. Notably, the PDMS-DTEM-IPDI-@Pd silicone elastomer, featuring closed-loop photo-switching molecules, exhibits a fracture toughness that is 1.3 times greater and a room temperature self-healing efficiency 1.4 times higher than its open-loop counterparts. This novel photo-responsive silicone elastomer offers promising potential for applications in data writing and erasure, UV protective coatings, and micro-trace development.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Lili Qiao
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Sai Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Pengwei Duan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xuewei Fu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yatong Duan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| |
Collapse
|
6
|
Yang X, Ren J, Wan B, Qin S, Wang Q, Huang W, Gao J, Xia B, Zha JW. High toughness, healable, self-cleaning polydimethylsiloxane elastomers with "rigid-while-flexible" mutual network structure. MATERIALS HORIZONS 2024; 11:5058-5069. [PMID: 39102285 DOI: 10.1039/d4mh00409d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Polydimethylsiloxane (PDMS) elastomers with high mechanical and healing properties are developed as smart materials for electrical power systems and electronic devices to address electrical or mechanical damage. However, the challenge is to reconcile the conflicting molecular mechanisms of mechanical and healing properties in the development of PDMS elastomers. This study adopts the "rigid-while-flexible" mutual network structure by copolymerizing the rigid polyimide (PI) with flexible segments with dynamic reversible crosslinking designed on the PDMS backbones. This elastomer (designated PSiPI) exhibits high toughness, tensile strength and elongation at break, as well as excellent healing efficiency and recyclability. Moreover, the PSiPI elastomer also exhibits good insulation and corona damage healing properties. Taking advantage of the recyclability and healing properties of PSiPI elastomers, healable superhydrophobic coatings with contact angles greater than 150° have been prepared by compositing PSiPI elastomers with SiO2. Likewise, combining the elastomer with conductive materials can create a healing flexible conductor. This "rigid-while-flexible" design approach provides important inspiration for the development of high-performance, sustainable and environmentally friendly PDMS elastomers for electrical and electronic applications.
Collapse
Affiliation(s)
- Xing Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528300, P. R. China
| | - Jiawen Ren
- School of Electrical Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China.
| | - Baoquan Wan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528300, P. R. China
| | - Sichen Qin
- School of Electrical Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China.
| | - Qian Wang
- School of Electrical Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China.
| | - Wenjie Huang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528300, P. R. China
| | - Jinghui Gao
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Bing Xia
- Beijing Guodianfutong Science & Technology Development Co., Ltd., Beijing 100071, P. R. China
| | - Jun-Wei Zha
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528300, P. R. China
| |
Collapse
|
7
|
Wu H, Li W, Liang Z, Gan T, Hu H, Huang Z, Qin Y, Zhang Y. Mechanical activation-enhanced metal-organic coordination strategy to fabricate high-performance starch/polyvinyl alcohol films by extrusion blowing. Carbohydr Polym 2024; 333:121982. [PMID: 38494234 DOI: 10.1016/j.carbpol.2024.121982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
The production of high-performance starch-based packaging films by extrusion blowing is challenging, ascribed to poor processability of the blend precursors. In this study, a new strategy of mechanical activation (MA)-enhanced metal-organic coordination was proposed to improve the processability of starch (St)/polyvinyl alcohol (PVA) blend precursor, with calcium acetate (CA) as a chelating agent and glycerol as a plasticizer. MA pretreatment activated the hydroxyl groups of starch and PVA for constructing strong metal-organic coordination between CA and St/PVA during reactive extrusion, which effectively enhanced the melt processing properties of the blend precursor, contributing to the fabrication of high-performance St/PVA films by the extrusion-blowing method. The as-prepared St/PVA films exhibited excellent mechanical properties (tensile strength of 34.5 MPa; elongation at break of 271.8 %), water vapor barrier performance (water vapor permeability of 0.704 × 10-12 g·cm-1·s-1·Pa-1), and oxygen barrier performance (oxygen transmission rate of 0.7 cm3/(m2·day·bar)), along with high transmittance and good uniformity. These outstanding characteristics and performances can be attributed to the improved interfacial interaction and compatibility between the two matrix phases. This study uncovers the mechanism of MA-enhanced metal-organic coordination for improving the properties of starch-based films, which provides a convenient and eco-friendly technology for the preparation of high-performance biodegradable films.
Collapse
Affiliation(s)
- Hongrui Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Wanhe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zirong Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tao Gan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China.
| | - Yuben Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China.
| |
Collapse
|
8
|
He D, Cheng X, Wong C, Zeng X, Li L, Teng C, Du G, Zhang C, Ren L, Zeng X, Sun R. Insight into the fracture energy dissipation mechanism in elastomer composites via sacrificial bonds and fillers. Phys Chem Chem Phys 2024; 26:4429-4436. [PMID: 38240037 DOI: 10.1039/d3cp04695h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Most tough elastomer composites are reinforced by introducing sacrificial structures and fillers. Understanding the contribution of fillers and sacrificial bonds in elastomer composites to the energy dissipation is critical for the design of high-toughness materials. However, the energy dissipation mechanism in elastomer composites remains elusive. In this study, using a tearing test and time-temperature superposition, we investigate the effect of fillers and sacrificial bonds on the energy dissipation of elastomer composites consisting of poly(lipoic acid)/silver-coated Al fillers. We found that the fillers and sacrificial bonds mutually enhance both the intrinsic fracture energy and the bulk energy dissipation, and moreover the sacrificial bonds play a more important role in enhancing fracture toughness than the fillers. It is unreasonable to rely solely on the loss factor for bulk energy dissipation. The addition of sacrificial bonds results in a chain segment experiencing greater binding force compared to the addition of fillers. This suggests that the chain segment consumes more energy during its movement. By calculating the length of the Kuhn chain segment and the Kuhn number, it is evident that the addition of sacrificial bonds results in a greater binding force for the chain segment than the addition of fillers, and this enhanced binding force increases the energy consumption during the motion of the chain segment.
Collapse
Affiliation(s)
- Dongyi He
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Xiaxia Cheng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Chunyu Wong
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Xiangliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Linling Li
- Institute of Critical Materials for Integrated Circuits, Shenzhen Polytechnic, Shenzhen, Guangdong 518055, China.
| | - Chao Teng
- Institute of Critical Materials for Integrated Circuits, Shenzhen Polytechnic, Shenzhen, Guangdong 518055, China.
| | - Guoping Du
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Chenxu Zhang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Linlin Ren
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Xiaoliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
9
|
Fan J, Wu W, Zeng X, Zhang J, Zhang H, He H. Dual Reversible Network Nanoarchitectonics for Ultrafast Light-Controlled Healable and Tough Polydimethylsiloxane-Based Composite Elastomers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38996-39007. [PMID: 37530652 DOI: 10.1021/acsami.3c08041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
It is highly desirable to develop polydimethylsiloxane (PDMS) elastomers with high self-healing efficiency and excellent mechanical properties. However, most self-healable materials reported to date still take several hours to self-heal and improving the self-healing property often comes at the expense of mechanical properties. Herein, a simple design strategy of dual reversible network nanoarchitectonics is reported for constructing ultrafast light-controlled healable (40 s) and tough (≈7.2 MJ m-3) PDMS-based composite elastomers. The rupture reconstruction of dynamic bonds and the reinforcement effect of carbon nanotubes (10 wt %) endowed our composite elastomer with excellent fracture toughness that originated from a good yield strength (≈1.1 MPa) and stretchability (≈882%). Moreover, carbon nanotubes can quickly and directly heat the damaged area of the composite to achieve its ultrafast repair with the assistance of dynamic polymer/filler interfacial interaction, greatly shortening the self-healing time (12 h). The self-healing performance is superior to that of reported self-healable PDMS-based materials. This novel strategy and the as-prepared supramolecular elastomer can inspire further various practical applications, such as remote anti-icing/deicing materials.
Collapse
Affiliation(s)
- Jianfeng Fan
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Weijian Wu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiangliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiahao Zhang
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Huanhuan Zhang
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Hezhi He
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Zheng Z, Yang L, Yang Y, Li L, Lin B, Fu L, Xu C. Flexible, sensitive and rapid humidity-responsive sensor based on rubber/aldehyde-modified sodium carboxymethyl starch for human respiratory detection. Carbohydr Polym 2023; 306:120625. [PMID: 36746577 DOI: 10.1016/j.carbpol.2023.120625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Natural polymers with abundant hydrophilic groups are potential candidates for humidity sensor designing. Unfortunately, most of natural polymers lack essential stretchability and high conductivity, which hinder their development in the field of flexible humidity sensor. Cooperation with rubbers and conductive nanometer materials is an effective method to make the best use of natural polymers in flexible humidity sensor. In this paper, a flexible and sensitive sensor with rapid response to humidity change is fabricated based on aldehyde-modified sodium carboxymethyl starch (ACMS), carboxylated styrene-butadiene rubber (XSBR) and Ag nanoflakes through film-forming method. The pre-prepared ACMS owns a better dispersibility in the aqueous phase and serves as reducing agent for formation of Ag nanoflakes. After the film-forming process, the composite film shows a strength of 5.66 MPa and a high stretchability with strain of 367 %. Besides, our sensor shows a rapider response to humidity change than the commercial electronic hygrometer that it takes only 1 s to respond to the humidity change from 25 % RH to 27 % RH. Therefore, the XSBR/ACMS/Ag sensor possesses an impressive sensitive response to slight sweat on human skin and breath, which could find applications in monitoring people's health and distinguish their physical condition.
Collapse
Affiliation(s)
- Zhongjie Zheng
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Li Yang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yunpeng Yang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Luji Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Baofeng Lin
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Lihua Fu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Chuanhui Xu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China..
| |
Collapse
|
11
|
Jiang S, Wei Y, Li X, Shi SQ, Tian D, Fang Z, Li J. Scalable Manufacturing of Environmentally Stable All-Solid-State Plant Protein-Based Supercapacitors with Optimal Balance of Capacitive Performance and Mechanically Robust. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207997. [PMID: 36932937 DOI: 10.1002/smll.202207997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The development of advanced biomaterial with mechanically robust and high energy density is critical for flexible electronics, such as batteries and supercapacitors. Plant proteins are ideal candidates for making flexible electronics due to their renewable and eco-friendly natures. However, due to the weak intermolecular interactions and abundant hydrophilic groups of protein chains, the mechanical properties of protein-based materials, especially in bulk materials, are largely constrained, which hinders their performance in practical applications. Here, a green and scalable method is shown for the fabrication of advanced film biomaterials with high mechanical strength (36.3 MPa), toughness (21.25 MJ m-3 ), and extraordinary fatigue-resistance (213 000 times) by incorporating tailor-made core-double-shell structured nanoparticles. Subsequently, the film biomaterials combine to construct an ordered, dense bulk material by stacking-up and hot-pressing techniques. Surprisingly, the solid-state supercapacitor based on compacted bulk material shows an ultrahigh energy density of 25.8 Wh kg-1 , which is much higher than those previously reported advanced materials. Notably, the bulk material also demonstrates long-term cycling stability, which can be maintained under ambient condition or immersed in H2 SO4 electrolyte for more than 120 days. Thus, this research improves the competitiveness of protein-based materials for real-world applications such as flexible electronics and solid-state supercapacitors.
Collapse
Affiliation(s)
- Shuaicheng Jiang
- College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, China
| | - Yanqiang Wei
- College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, China
| | - Xiaona Li
- College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, China
| | - Sheldon Q Shi
- Department of Mechanical Engineering, University of North Texas, Denton, TX, 76203, USA
| | - Dan Tian
- College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, China
| | - Zhen Fang
- Shandong Laboratory of Yantai Advanced Material and Green Manufacture, No. 300 Changjiang Road, Yantai, 264006, China
| | - Jianzhang Li
- MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing, 100083, China
| |
Collapse
|
12
|
Li C, Shi Y, Su H, Yang Y, Li W, Zhang T, Chen W, Lin R, Li Y, Liao L. Mechanically Robust and Recyclable Siloxane Elastomers Enabled by Adjustable Dynamic Polymer Networks for Electronic Skin. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
13
|
Jin Z, Chen T, Liu Y, Feng W, Chen L, Wang C. Multivalent Design of Low-Entropy-Penalty Ion-Dipole Interactions for Dynamic Yet Thermostable Supramolecular Networks. J Am Chem Soc 2023; 145:3526-3534. [PMID: 36718611 DOI: 10.1021/jacs.2c12133] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dynamic supramolecular networks are constantly accompanied by thermal instability. The fundamental reason is most reversible noncovalent bonds quickly decay at elevated temperatures and dissociate below 100 °C. Here, in this paper, we realize a reversible ion-dipole interaction with high-temperature stability exceeding 150 °C. The resultant supramolecular network can simultaneously possess mechanical strength of 1.32 MPa (14.8 times that of pristine material), dynamic self-healing capability, and a stable working temperature of up to 200 °C. From the prolonged characteristic relaxation time of 600 s even at 100 °C, our material represents one of the most thermally stable dynamic supramolecular polymers. These remarkable performances are achieved by using a new multivalent yet low-entropy-penalty molecular design. In this way, the noncovalent bond can reach a high enthalpy while minimizing the entropy-dominated thermal dissociations.
Collapse
Affiliation(s)
- Zhekai Jin
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Tao Chen
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing100084, China.,Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu610032, China
| | - Yuncong Liu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Wenwen Feng
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Lili Chen
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Chao Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing100084, China
| |
Collapse
|
14
|
Jin H, Lin W, Wu Z, Cheng X, Chen X, Fan Y, Xiao W, Huang J, Qian Q, Chen Q, Yan Y. Surface Hydrophobization Provides Hygroscopic Supramolecular Plastics Based on Polysaccharides with Damage-Specific Healability and Room-Temperature Recyclability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207688. [PMID: 36373548 DOI: 10.1002/adma.202207688] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Supramolecular materials with room-temperature healability and recyclability are highly desired because they can extend materials lifetimes and reduce resources consumption. Most approaches toward healing and recycling rely on the dynamically reversible supramolecular interactions, such as hydrogen, ionic and coordinate bonds, which are hygroscopic and vulnerable to water. The general water-induced plasticization facilitates the healing and reprocessing process but cause a troubling problem of random self-adhesion. To address this issue, here it is reported that by modifying the hygroscopic surfaces with hydrophobic alkyl chains of dodecyltrimethoxysilane (DTMS), supramolecular plastic films based on commercial raw materials of sodium alginate (SA) and cetyltrimethylammonium bromide (CTAB) display extraordinary damage-specific healability. Owing to the hydrophobic surfaces, random self-adhesion is eliminated even under humid environment. When damage occurs, the fresh surfaces with ionic groups and hydroxyl groups expose exclusively at the damaged site. Thus, damage-specific healing can be readily facilitated by water-induced plasticization. Moreover, the films display excellent room-temperature recyclability. After multiple times of reprocessing and re-modifying with DTMS, the rejuvenated films exhibit fatigueless mechanical properties. It is anticipated that this approach to damage-specific healing and room-temperature recycling based on surface hydrophobization can be applied to design various of supramolecular plastic polysaccharides materials for building sustainable societies.
Collapse
Affiliation(s)
- Hongjun Jin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Weilin Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Ziyan Wu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Xinyu Cheng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Xinyuan Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Yingjie Fan
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Wangchuan Xiao
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Raut SK, Asha AB, Singha NK, Narain R. Ultrafast Derived Self-Healable, Reprocessable Polyurethane Elastomer Based on Dynamic “Electrophilic Substitution (ES)-Click” Chemistry. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Sagar Kumar Raut
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G2G6, Canada
| | - Anika B. Asha
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G2G6, Canada
| | - Nikhil K. Singha
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G2G6, Canada
| |
Collapse
|
16
|
Zhang J, Cao L, Chen Y. Malleable and self-healing rubbers covalently crosslinked by reversible boronic ester bonds. SOFT MATTER 2022; 18:8436-8445. [PMID: 36314298 DOI: 10.1039/d2sm01127a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Covalent cross-linking of rubbers is essential to obtain high elasticity, which plays a significant role in practical applications. Integrating dynamic covalent bonds into rubbers is a reliable way to endow them with self-healing capacity to repair damage and extend their service life. Herein, we propose a facile and effective method to introduce a crosslinking network composed of dynamic boronic ester bonds into epoxidized natural rubber (ENR). The reaction between dopamine-modified ENR and the hydrolysate of boric acid in weak alkaline solution formed a cross-linking network with reversible boronic ester bonds. Owing to the rearrangement of the crosslinked network initiated by the boronic ester exchange reaction, covalently crosslinked rubbers exhibit relatively better malleability and excellent self-healing ability under moderate conditions (60 °C/24 h).
Collapse
Affiliation(s)
- Jiahao Zhang
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China.
| | - Liming Cao
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yukun Chen
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China.
- Zhongshan Institute of Modern Industrial Technology, South China University of Technology, Zhongshan 528437, China
| |
Collapse
|
17
|
Strengthened self-healable natural rubber composites based on carboxylated cellulose nanofibers participated in ionic supramolecular network. Int J Biol Macromol 2022; 222:587-598. [PMID: 36167103 DOI: 10.1016/j.ijbiomac.2022.09.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022]
Abstract
Cellulose, as a green reinforcing agent for rubber, has excellent improvement on the tensile strength but usually accompany with a deterioration of extensibility and self-healing property. Herein, we report an efficient method to prepare robust and self-healable natural rubber/zinc dimethacrylate/carboxylated cellulose nanofibers (NR/ZDMA/CNC) composites which are constructed by a CNC participated ionic supramolecular network. Ionic supramolecular network in NR is generated by the polymerization of ZDMA during a controlled peroxide-initiated vulcanization of NR. Interestingly, NR with massive ion clusters has strong affinity with CNC, which facilitates the uniform dispersion of CNC and the compatibility between CNC and NR. Meanwhile, CNC participates into the supramolecular network via non-covalent interaction with NR chains equipped with ionic crosslinks. This greatly reduces the adverse effect of CNC on the dynamic characteristics of supramolecular network. As a result, the tensile strength of NR/ZDMA composite with 20 phr CNC could reach 4.13 MPa, while its self-healing efficiency still maintains at >80 %. Thus, NR composites with non-covalent interaction between CNC and supramolecular network display improved strength, maintained extensibility, and excellent self-healing capability. This study thus demonstrates a feasible approach to reduce the negative effect of reinforcing fillers on a self-healing rubber based on supramolecular networks.
Collapse
|
18
|
Wu Y, Jiang W, Zhang X, Wang J, Chen D, Ma Y, Yang W. Highly conductive, Transparent, Adhesive and Self-healable Ionogel Based on a Deep Eutectic Solvent with Widely Adjustable Mechanical Strength. Macromol Rapid Commun 2022; 43:e2200480. [PMID: 35946394 DOI: 10.1002/marc.202200480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Indexed: 11/06/2022]
Abstract
Ionogels have attracted intensive attentions as promising flexible conductive materials. However, simultaneous integration of excellent mechanical properties, high conductivity, outstanding self-healing ability and strong adhesiveness is still challenging. Here, an ingenious composition design is proposed to address this long-standing challenge of ionogels. High-performance PEI/PAA/CMC ionogels, consisted of a loosely cross-linked poly(acrylic acid) (PAA) network, dynamically cross-linked network based on polycationic polyethyleneimine (PEI) and polyanionic PAA, and carboxymethyl cellulose (CMC) reinforcing filler, are formed in a deep eutectic solvent (DES) composed of choline chloride and urea. Benefiting from the loose PAA network and dynamic noncovalent interactions, ionogels with both highly enhanced mechanical robustness and excellent conductivity are obtained at high loading of DES, overcoming the strength-ductility/conductivity trade-off dilemma. By adjusting PEI/PAA mass ratio, the tensile strength and strain of PEI/PAA/CMC ionogels are effectively controlled in a wide range of 0.15-7.9 MPa and 232-1161%, respectively, while maintaining the desirable conductivity of ∼10-4 S cm-1 . Besides, healed tensile strength over 2.1 MPa and adhesion strength up to 0.2 MPa are achieved for the PEI0.06 /PAA0.25 /CMC0.01 ionogel. The delicate design strategy provides a feasible approach to prepare ionogels with outstanding comprehensive performance, which have potential for applications in flexible electronics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yingxue Wu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenxing Jiang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xianhong Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiadong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dong Chen
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuhong Ma
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
19
|
He D, Wang Z, Zeng X, Fan J, Ren L, Du G, Sun R, Zeng X. Interfacial Coordination Interaction Enables Soft Elastomer Composites High Thermal Conductivity and High Toughness. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33912-33921. [PMID: 35849067 DOI: 10.1021/acsami.2c09761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soft elastomers have attracted wide applications, such as soft electronic devices and soft robotics, due to their ability to undergo large deformation with a small external force. Most elastomers suffer from poor toughness and thermal conductivity, which limits their use. The addition of inorganic fillers can enhance the thermal conductivity and toughness, but it deteriorates the softness (low Young's modulus and high stretchability). Integrating thermal conductivity, toughness, and softness into one elastomer is still a challenge. Here, we report a strategy of interfacial coordination interaction to achieve soft elastomer composites with high thermal conductivity and high toughness. We demonstrate the strategy by using poly(lipoic acid) elastomer and silver-coated aluminum filler as model, where silver-sulfur coordination cross-links are formed at the interface. The resultant elastomer composite shows high streachability (450%), high thermal conductivity (2.35 W m-1 K-1), low modulus (321 kPa), and high toughness (3496 J m-2), which cannot be achieve in existing elastomers. The time domain thermoreflectance technique demonstrates that the silver-sulfur coordination interaction lowers the interfacial thermal resistance, resulting in enhanced thermal conductivity of the elastomer composites. The excellent softness stems from lower bonding energy of the silver-sulfur coordination cross-links compared with covalent chemical cross-links. The high toughness also benefits from the interfacial silver-sulfur coordination interaction that can dissipate more energy upon deformation. We further demonstrate the potential application of the thermally conductive, tough, and soft elastomer composites for thermal management of chip and soft electronic devices.
Collapse
Affiliation(s)
- Dongyi He
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhenyu Wang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiangliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianfeng Fan
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linlin Ren
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guoping Du
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
20
|
Chen K, Hu Y, Wang F, Liu M, Liu P, Li C, Yu Y, Xiao X, Feng Q. Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and wearable epidermal sensors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Mo J, Wu W, Shan S, Wu X, Li D, Li R, Lin Y, Zhang A. A systematic study on Zn(II)-Iminocarboxyl complexation applied in supramolecular PDMS networks. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Wang W, Li M, Zhou P, Yan Z, Wang D. Design and synthesis of mechanochromic poly(ether-ester-urethane) elastomer with high toughness and resilience mediated by crystalline domains. Polym Chem 2022. [DOI: 10.1039/d2py00085g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanochromic elastomers play an important role in stain sensing, materials damage alarming and stress detecting, etc. Low activation strain and stress, high toughness and resilience, and self-recovery ability are essential...
Collapse
|
23
|
Gong Z, Huang J, Fan J, Chen X, Wang H, Chen Y. Super-Tough Poly(lactic Acid)-Based Thermoplastic Vulcanizate Based on Selective Dispersion and In Situ Compatibilization of Commercial Reinforcing Fillers and Its Application in Three-Dimensional Printing. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhou Gong
- Lab of Advanced Elastomer, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
- Zhongshan Wangcai Technology Co., Ltd. Technology Business Incubator, No. 70, Zhongshan Port Avenue, Torch Development Zone, Zhongshan 528403, China
| | - Jiarong Huang
- Lab of Advanced Elastomer, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Jianfeng Fan
- Lab of Advanced Elastomer, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xiaoqing Chen
- Department of Neonatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hui Wang
- Lab of Advanced Elastomer, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Yukun Chen
- Lab of Advanced Elastomer, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
- Zhongshan Wangcai Technology Co., Ltd. Technology Business Incubator, No. 70, Zhongshan Port Avenue, Torch Development Zone, Zhongshan 528403, China
- Zhongshan Institute of Modern Industrial Technology, South China University of Technology, Zhongshan 528437, China
| |
Collapse
|
24
|
Supertough spontaneously self-healing polymer based on septuple dynamic bonds integrated in one chemical group. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1157-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Zhou X, Gong Z, Fan J, Chen Y. Self-healable, recyclable, mechanically tough transparent polysiloxane elastomers based on dynamic microphase separation for flexible sensor. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Wu M, Yang L, Shen Q, Zheng Z, Xu C. Endeavour to balance mechanical properties and self-healing of nature rubber by increasing covalent crosslinks via a controlled vulcanization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Wang X, Wang L, Fan X, Guo J, Li L, Feng S. Multifunctional Polysiloxane with coordinative ligand for ion recognition, reprocessable elastomer, and reconfigurable shape memory. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Jing X, Ma Z, Antwi-Afari MF, Wang L, Li H, Mi HY, Feng PY, Liu Y. Synthesis and Fabrication of Supramolecular Polydimethylsiloxane-Based Nanocomposite Elastomer for Versatile and Intelligent Sensing. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin Jing
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhenping Ma
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| | - Maxwell Fordjour Antwi-Afari
- Department of Civil Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, U.K
| | - Lin Wang
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Heng Li
- Department of Building and Real Estate, Hong Kong Polytechnic University, Hong Kong 518000, China
| | - Hao-Yang Mi
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Pei-Yong Feng
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
29
|
Nie J, Fan J, Gong Z, Xu C, Chen Y. Frame-structured and self-healing ENR-based nanocomposites for strain sensors. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Andersen C, Zverina L, Ehtiati K, Thormann E, Mordhorst H, Pamp SJ, Madsen NJ, Daugaard AE. Antimicrobial PDMS Surfaces Prepared through Fast and Oxygen-Tolerant SI-SARA-ATRP, Using Na 2SO 3 as a Reducing Agent. ACS OMEGA 2021; 6:14551-14558. [PMID: 34124478 PMCID: PMC8190881 DOI: 10.1021/acsomega.1c01611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 05/08/2023]
Abstract
Poly(dimethylsiloxane) (PDMS) is an attractive, versatile, and convenient material for use in biomedical devices that are in direct contact with the user. A crucial component in such a device is its surface in terms of antimicrobial properties preventing infection. Moreover, due to its inherent hydrophobicity, PDMS is rather prone to microbial colonization. Thus, developing an antimicrobial PDMS surface in a simple, large-scale, and applicable manner is an essential step in fully exploiting PDMS in the biomedical device industry. Current chemical modification methods for PDMS surfaces are limited; therefore, we present herein a new method for introducing an atom transfer radical polymerization (ATRP) initiator onto the PDMS surface via the base-catalyzed grafting of [(chloromethyl)phenylethyl]trimethoxysilane to the PDMS. The initiator surface was grafted with poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) brushes via a surface-initiated supplemental activator and reducing agent ATRP (SI-SARA-ATRP). The use of sodium sulfite as a novel reducing agent in SI-SARA-ATRP allowed for polymerization during complete exposure to air. Moreover, a fast and linear growth was observed for the polymer over time, leading to a 400 nm thick polymer layer in a 120 min reaction time. Furthermore, the grafted PDMAEMA was quaternized, using various alkylhalides, in order to study the effect on surface antimicrobial properties. It was shown that antimicrobial activity not only depended highly on the charge density but also on the amphiphilicity of the surface. The fast reaction rate, high oxygen tolerance, increased antimicrobial activity, and the overall robustness and simplicity of the presented method collectively move PDMS closer to its full-scale exploitation in biomedical devices.
Collapse
Affiliation(s)
- Christian Andersen
- Danish
Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 229, 2800 Kgs. Lyngby, Denmark
| | - Libor Zverina
- Danish
Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 229, 2800 Kgs. Lyngby, Denmark
| | - Koosha Ehtiati
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kgs. Lyngby, Denmark
| | - Esben Thormann
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kgs. Lyngby, Denmark
| | - Hanne Mordhorst
- National
Food Institute, Technical University of
Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Sünje J. Pamp
- National
Food Institute, Technical University of
Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | | | - Anders E. Daugaard
- Danish
Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 229, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
31
|
Xiong J, Gong Z, Ding J, Chen Y. A conductive rubber with self‐healing ability enabled by metal‐ligand coordination. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jianxiang Xiong
- Lab of Advanced Elastomer South China University of Technology Guangzhou China
| | - Zhou Gong
- Lab of Advanced Elastomer South China University of Technology Guangzhou China
| | - Jianping Ding
- College of Material Science and Engineering South China University of Technology Guangzhou China
| | - Yukun Chen
- Lab of Advanced Elastomer South China University of Technology Guangzhou China
| |
Collapse
|
32
|
Jiang G, Zhang J, Ding J, Chen Y. Design of
PLA
/
ENR
thermoplastic vulcanizates with balanced stiffness‐toughness based on rubber reinforcement and selective distribution of modified silica. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Gang Jiang
- College of Material Science and Engineering South China University of Technology Guangzhou China
| | - Jiahao Zhang
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou China
| | - Jianping Ding
- College of Material Science and Engineering South China University of Technology Guangzhou China
| | - Yukun Chen
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou China
| |
Collapse
|
33
|
Peng T, Huang J, Gong Z, Ding J, Chen Y. Multiple cross‐linked networks enhanced
ENR
‐based composite with excellent self‐healing properties. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tao Peng
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou China
| | - Jiarong Huang
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou China
| | - Zhou Gong
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou China
| | - Jianping Ding
- College of Material Science and Engineering South China University of Technology Guangzhou China
| | - Yukun Chen
- College of Material Science and Engineering South China University of Technology Guangzhou China
| |
Collapse
|
34
|
Chen ZH, Fan ST, Qiu ZJ, Nie ZJ, Zhang SX, Zhang S, Li BJ, Cao Y. Tough double-network elastomers with slip-rings. Polym Chem 2021. [DOI: 10.1039/d1py00327e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to surmount the inherent trade-off between toughness and stiffness for most elastomers, we developed a strategy which let two polymer networks form an interpenetrated structure through introducing slip-rings by a very simple one-step synthesis method.
Collapse
Affiliation(s)
- Zhi-Hui Chen
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Shu-Ting Fan
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Zhen-Jiang Qiu
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Zi-Jun Nie
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Shao-Xia Zhang
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Bang-Jing Li
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
35
|
Xiong J, Huang J, Wang W, Mou W, Chen Y. Study on Shape Memory Behavior of Ternary Poly(Lactic Acid)/Poly(Methyl Methacrylate)-grafted Natural Rubber/Natural Rubber Thermoplastic Vulcanizates. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1858099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jianxiang Xiong
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China
| | - Jiamei Huang
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China
| | - Wentao Wang
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China
| | - Wenjie Mou
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Chen
- Lab of Advanced Elastomer, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|