1
|
Nagime PV, Pandey VK, Rajpal C, Jayeoye TJ, Kumar A, Chidrawar VR, Singh S. Biogenic selenium nanoparticles: a comprehensive update on the multifaceted application, stability, biocompatibility, risk, and opportunity. Z NATURFORSCH C 2025:znc-2024-0176. [PMID: 39920565 DOI: 10.1515/znc-2024-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/18/2025] [Indexed: 02/09/2025]
Abstract
Biogenic selenium nanoparticles (SeNPs) have emerged as promising area of research due to their unique properties and potential multifaceted applications. The biosynthesis of SeNPs through biological methods, such as using microorganism, plant extracts, etc., offers a safe, eco-friendly, and biocompatible approach, compared to traditional chemical synthesis. Recent several studies demonstrated that multifaceted application of SeNPs includes a broad area such as antibacterial, anticancer, antioxidant, antiviral, anti-inflammatory, antidiabetic, and excellent wound healing activity. On the other hand, SeNPs have also shown promising application in sensing of inorganic toxic metals, electrochemistry, agro-industries, aqua-cultures, and in fabrication of solar panels. Additionally, SeNPs capability to enhance the efficacy of traditional antibiotics and act as effective agents against multidrug-resistant pathogens has shown their potential in addressing critical health challenges. Although, the SeNPs exhibit wide applicability, the potential toxicity of Se, particularly in its various oxidative states, necessitates careful assessment of the environmental and health impacts associated with their use. Therefore, understanding the balance between their beneficial properties and potential risks is crucial for its safe applications. This review focuses exclusively on SeNPs synthesized via eco-friendly process, excluding research utilizing other synthesis processes. Moreover, this review aims to offer an overview of the diverse applications, potential risks, stability requirement, and cytocompatibility requirement, and multifaceted opportunities associated with SeNPs. Ultimately, the review bridges a gap in knowledge by providing an updated details of multifaceted applications of SeNPs.
Collapse
Affiliation(s)
- Pooja V Nagime
- Faculty of Agro-Industry, Centre of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Vinay Kumar Pandey
- Research and Development Cell, 231547 School of Engineering and Technology, Manav Rachna International Institute of Research and Studies , Faridabad, Haryana 121003, India
| | - Charu Rajpal
- Research and Development Cell, 231547 School of Engineering and Technology, Manav Rachna International Institute of Research and Studies , Faridabad, Haryana 121003, India
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ashwini Kumar
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, India
- Research and Development Cell, 231547 School of Engineering and Technology, Manav Rachna International Institute of Research and Studies , Faridabad, Haryana 121003, India
| | - Vijay R Chidrawar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed-to-University, Green Industrial Park, Jadcherla, Hyderabad 509301, India
| | - Sudarshan Singh
- Office of Research Administration, Chaing Mai University, Chiang Mai 50200, Thailand
- Faculty of Pharmacy, Chaing Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Yasmeen F, Tarek M, Basith MA. Moisture-Stable CsSnBr 2Cl Halide Perovskite: Electrochemical Insights in Aqueous Environments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47535-47550. [PMID: 39207119 DOI: 10.1021/acsami.4c08313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In this investigation, moisture-stable CsSnBr2Cl nanoparticles were synthesized by incorporating Cl into CsSnBr3 halide perovskite using the hot injection method. Various analyses including XRD, XPS, UV-vis absorbance, photoluminescence, and Mott-Schottky have confirmed that the structural properties, chemical states, optical properties, and electronic band structure of CsSnBr2Cl nanoparticles remain intact even after 75 days of water immersion, thereby conclusively demonstrating their moisture stability. In a three-electrode system, the comparative electrochemical performance of pristine CsSnBr3 nanoparticles and moisture-stable Cl-incorporated CsSnBr2Cl nanoparticles was evaluated in various aqueous electrolytes, including HCl, Na2SO4, and KOH. The results indicate that the CsSnBr2Cl electrode material exhibits superior electrochemical properties, such as a larger integrated cyclic voltammetry (CV) area, a wider potential window, longer charge-discharge times, and lower impedance parameters compared to the pristine CsSnBr3 nanoparticles. The electrochemical performance of CsSnBr2Cl nanoparticles was evaluated for potential applications in batteries, supercapacitors, fuel cells, and water splitting, with a focus on reaction kinetics, charge storage mechanisms, and impedance parameters. The electrochemical properties of the nanoparticles were assessed using a three-electrode configuration across various 0.5 M aqueous electrolytes (HCl, Na2SO4, and KOH). In HCl, the nanoparticles demonstrated impressive charge storage capability, achieving a capacitance of 474 F g-1 at 1 A g-1, affirming their suitability for energy storage devices. In Na2SO4(aq.), the nanoparticles exhibited excellent stability for supercapacitors, operating up to 1.6 V without significant oxygen evolution. Notably, in KOH, they demonstrated potential as effective water-splitting electrodes. The practical applicability of the nanoparticles was evaluated using a symmetric two-electrode configuration with HCl and Na2SO4 electrolytes. The capacitance values were 117 F g-1 in HCl and 70 F g-1 in Na2SO4 at 1 A g-1. Notably, after 5000 GCD cycles in HCl(aq.), the nanoparticles retained 93% of their capacitance and maintained 91% Coulombic efficiency. They also demonstrated stable operation across a temperature range of 3 to 60 °C, achieving an energy density of 5.83 W h kg-1 at a power density of 600 W kg-1. This study emphasizes the considerable potential of CsSnBr2Cl nanoparticles in advancing electrochemical energy storage technologies and sets a solid foundation for future research and development in metal halide perovskites.
Collapse
Affiliation(s)
- Ferdous Yasmeen
- Nanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Mohasin Tarek
- Nanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - M A Basith
- Nanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
3
|
Barhoi A, Mahto B, Ali H, Hussain S. Glutathione-Mediated Synthesis of WO 3 Nanostructures with Controllable Morphology/Phase for Energy Storage, Photoconductivity, and Photocatalytic Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10070-10084. [PMID: 38701115 DOI: 10.1021/acs.langmuir.4c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Developing an improved synthesis method that controls the morphology and crystal phase remains a substantial challenge. Herein, we report phase and morphology-controlled hydrothermal synthesis of tungsten oxides by varying acid concentration and utilizing glutathione (GSH) as a structural directing agent, together with the exploration of their applications in supercapacitors, photoconductivity, and photocatalysis. Orthorhombic hydrated tungsten oxide (WO3·0.33H2O) with nonuniform block and plate-like morphology was obtained at 3 M hydrochloric acid (HCl). In contrast, nonhydrated monoclinic tungsten oxide (WO3) with smaller rectangular blocks was obtained at 6 M HCl. Further, the addition of GSH results in an increase in the surface area of the materials along with a narrowing of the band gap. Moreover, it plays a pivotal role in regulating the morphology through oriented attachments, Ostwald ripening, and the self-assembly of WO3 nuclei. GHTO and GTO polymorphs showed pseudocapacitive behavior with the highest specific capacitances of 450 and 300 F g-1 at 0.5 A g-1, maintaining 94 and 92% retention stability, respectively, over 1000 cycles at 2 A g-1. Also, the synthesized materials displayed favorable photoconductivity under light irradiation, implying potential utilization in photovoltaic applications. Moreover, these materials exhibited remarkable photocatalytic performance in the degradation of methylene blue (MB) dye, establishing themselves as highly effective photocatalysts. Therefore, nanostructured tungsten oxide showcases its versatility, rendering it an appealing candidate for energy storage, photovoltaic systems, and photocatalysis.
Collapse
Affiliation(s)
- Ashok Barhoi
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801103, India
| | - Bhagirath Mahto
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801103, India
| | - Haider Ali
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801103, India
| | - Sahid Hussain
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801103, India
| |
Collapse
|
4
|
Zhu Y, Wang Z, Zhu X, Feng Z, Tang C, Wang Q, Yang Y, Wang L, Fan L, Hou J. Optimizing Performance in Supercapacitors through Surface Decoration of Bismuth Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16927-16935. [PMID: 38506726 DOI: 10.1021/acsami.3c17699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Bismuth (Bi) exhibits a high theoretical capacity, excellent electrical conductivity properties, and remarkable interlayer spacing, making it an ideal electrode material for supercapacitors. However, during the charge and discharge processes, Bi is prone to volume expansion and pulverization, resulting in a decline in the capacitance. Deposition of a nonmetal on its surface is considered an effective way to modulate its morphology and electronic structure. Herein, we employed the chemical vapor deposition technique to fabricate Se-decorated Bi nanosheets on a nickel foam (NF) substrate. Various characterizations indicated that the deposition of Se on Bi nanosheets regulated their surface morphology and chemical state, while sustaining their pristine phase structure. Electrochemical tests demonstrated that Se-decorated Bi nanosheets exhibited a 51.1% improvement in capacity compared with pristine Bi nanosheets (1313 F/g compared to 869 F/g at a current density of 5 A/g). The energy density of the active material in an assembled asymmetric supercapacitor could reach 151.2 Wh/kg at a power density of 800 W/kg. These findings suggest that Se decoration is a promising strategy to enhance the capacity of the Bi nanosheets.
Collapse
Affiliation(s)
- Yiyu Zhu
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Zhen Wang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Xinyuan Zhu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, P. R. China
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, P. R. China
| | - Ziyu Feng
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, P. R. China
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Chaoyang Tang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Qian Wang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Ying Yang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Lei Wang
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Lele Fan
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Jiwei Hou
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| |
Collapse
|
5
|
Memou CH, Bekhti MA, Kiari M, Benyoucef A, Alelyani M, Alqahtani MS, Alshihri AA, Bakkour Y. Fabrication and Characterization of a Poly(3,4-ethylenedioxythiophene)@Tungsten Trioxide-Graphene Oxide Hybrid Electrode Nanocomposite for Supercapacitor Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2664. [PMID: 37836305 PMCID: PMC10574265 DOI: 10.3390/nano13192664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
With the rapid development of nanotechnology, the study of nanocomposites as electrode materials has significantly enhanced the scope of research towards energy storage applications. Exploring electrode materials with superior electrochemical properties is still a challenge for high-performance supercapacitors. In the present research article, we prepared a novel nanocomposite of tungsten trioxide nanoparticles grown over supported graphene oxide sheets and embedded with a poly(3,4-ethylenedioxythiophene) matrix to maximize its electrical double layer capacitance. The extensive characterization shows that the poly(3,4-ethylenedioxythiophene) matrix was homogeneously dispersed throughout the surface of the tungsten trioxide-graphene oxide. The poly(3,4-ethylenedioxythiophene)@tungsten trioxide-graphene oxide exhibits a higher specific capacitance of 478.3 F·g-1 at 10 mV·s-1 as compared to tungsten trioxide-graphene oxide (345.3 F·g-1). The retention capacity of 92.1% up to 5000 cycles at 0.1 A·g-1 shows that this ternary nanocomposite electrode also exhibits good cycling stability. The poly(3,4-ethylenedioxythiophene)@tungsten trioxide-graphene oxide energy density and power densities are observed to be 54.2 Wh·kg-1 and 971 W·kg-1. The poly(3,4-ethylenedioxythiophene)@tungsten trioxide-graphene oxide has been shown to be a superior anode material in supercapacitors because of the synergistic interaction of the poly(3,4-ethylenedioxythiophene) matrix and the tungsten trioxide-graphene oxide surface. These advantages reveal that the poly(3,4-ethylenedioxythiophene)@tungsten trioxide-graphene oxide electrode can be a promising electroactive material for supercapacitor applications.
Collapse
Affiliation(s)
- Cherifa Hakima Memou
- Laboratory of Physical and Macromolecular Organic Chemistry, Faculty of Exact Sciences, Djillali Liabes University, Sidi Bel Abbes 22000, Algeria
| | - Mohamed Amine Bekhti
- LCOMM Laboratory, University of Mustapha Stambouli Mascara, Mascara 29000, Algeria
| | - Mohamed Kiari
- Department of Chemical and Physical Sciences, Materials Institute, University of Alicante (UA), 03080 Alicante, Spain
| | - Abdelghani Benyoucef
- LSTE Laboratory, University of Mustapha Stambouli Mascara, Mascara 29000, Algeria
| | - Magbool Alelyani
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammed S. Alqahtani
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdulaziz A. Alshihri
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Youssef Bakkour
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
6
|
Morka TD, Ujihara M. Enhanced Performance of WO 3/SnO 2 Nanocomposite Electrodes with Redox-Active Electrolytes for Supercapacitors. Int J Mol Sci 2023; 24:ijms24076045. [PMID: 37047016 PMCID: PMC10094020 DOI: 10.3390/ijms24076045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 04/14/2023] Open
Abstract
For effective supercapacitors, we developed a process involving chemical bath deposition, followed by electrochemical deposition and calcination, to produce WO3/SnO2 nanocomposite electrodes. In aqueous solutions, the hexagonal WO3 microspheres were first chemically deposited on a carbon cloth, and then tin oxides were uniformly electrodeposited. The synthesized WO3/SnO2 nanocomposite was characterized by XRD, XPS, SEM, and EDX techniques. Electrochemical properties of the WO3/SnO2 nanocomposite were analyzed by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy in an aqueous solution of Na2SO4 with/without the redox-active electrolyte K3Fe(CN)6. K3Fe(CN)6 exhibited a synergetic effect on the electrochemical performance of the WO3/SnO2 nanocomposite electrode, with a specific capacitance of 640 F/g at a scan rate of 5 mV/s, while that without K3Fe(CN)6 was 530 F/g. The WO3/SnO2 nanocomposite catalyzed the redox reactions of [Fe(CN)6]3/[Fe(CN)6]4- ions, and the [Fe(CN)6]3-/[Fe(CN)6]4- ions also promoted redox reactions of the WO3/SnO2 nanocomposite. A symmetrical configuration of the nanocomposite electrodes provided good cycling stability (coulombic efficiency of 99.6% over 2000 cycles) and satisfied both energy density (60 Whkg-1) and power density (540 Wkg-1) requirements. Thus, the WO3/SnO2 nanocomposite prepared by this simple process is a promising component for a hybrid pseudocapacitor system with a redox-flow battery mechanism.
Collapse
Affiliation(s)
- Tamiru Deressa Morka
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Keelung Road, Taipei 10607, Taiwan
| | - Masaki Ujihara
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Keelung Road, Taipei 10607, Taiwan
| |
Collapse
|
7
|
Guo Y, Wei Y, Shu L, Li A, Zhang J, Wang R. Structure related RuSe2 nanoparticles and their application in supercapacitors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Zhang B, Zhang H, Wang Y, Fang S. Adsorption behavior and mechanism of amine/quaternary ammonium lignin on tungsten. Int J Biol Macromol 2022; 216:882-890. [DOI: 10.1016/j.ijbiomac.2022.07.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 11/05/2022]
|
9
|
Influencing In situ tuned nanostructures of pulsed laser ablated Co3O4 & WO3 thin film electrodes for binder free flexible operando hybrid supercapacitor devices. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Partially carbonized tungsten oxide as electrode material for asymmetric supercapacitors. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Chawla H, Garg S, Upadhyay S, Rohilla J, Szamosvölgyi Á, Sapi A, Popinand Ingole P, Sagadevan S, Kónya Z, Chandra A. Efficient charge separation and improved photocatalytic activity in Type-II & Type-III heterojunction based multiple interfaces in BiOCl 0.5Br 0.5-Q: DFT and Experimental Insight. CHEMOSPHERE 2022; 297:134122. [PMID: 35257701 DOI: 10.1016/j.chemosphere.2022.134122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022]
Abstract
The nanostructured, inner-coupled Bismuth oxyhalides (BiOX0.5X'0.5; X, X' = Cl, Br, I; X≠X') heterostructures were prepared using Quercetin (Q) as a sensitizer. The present study revealed the tuning of the band properties of as-prepared catalysts. The catalysts were characterized using various characterization techniques for evaluating the superior photocatalytic efficiency and a better understanding of elemental interactions at interfaces formed in the heterojunction. The material (BiOCl0.5Br0.5-Q) reflected higher degradation of MO (about 99.85%) and BPA (98.34%) under visible light irradiation than BiOCl0.5I0.5-Q and BiOBr0.5I0.5-Q. A total of 90.45 percent of total organic carbon in BPA was removed after visible light irradiation on BiOCl0.5Br0.5-Q. The many-fold increase in activity is attributed to the formation of multiple interfaces between halides, conjugated π-electrons and multiple -OH groups of quercetin (Q). The boost in degradation efficiency can be attributed to the higher surface area, 2-D nanostructure, inhibited electron-hole recombination, and appropriate band-gap of the heterostructure. Photo-response of BiOCl0.5Br0.5-Q is higher compared to BiOCl0.5I0.5-Q and BiOBr0.5I0.5-Q, indicating better light absorption properties and charge separation efficiency in BiOCl0.5Br0.5-Q due to band edge position. First-principles Density Functional Theory (DFT) based calculations have also provided an insightful understanding of the interface formation, physical mechanism, and superior photocatalytic performance of BiOCl0.5Br0.5-Q heterostructure over other samples.
Collapse
Affiliation(s)
- Harshita Chawla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, 201313, Uttar Pradesh, India
| | - Seema Garg
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, 201313, Uttar Pradesh, India.
| | - Sumant Upadhyay
- Department of Nanotechnology, Amity Institute of Nanotechnology, Amity University, Sector-125, Noida, 201313, Uttar Pradesh, India
| | - Jyoti Rohilla
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ákos Szamosvölgyi
- University of Szeged, Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, H-6720, Rerrich Béla tér 1, Szeged, Hungary
| | - Andras Sapi
- University of Szeged, Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, H-6720, Rerrich Béla tér 1, Szeged, Hungary
| | - Pravin Popinand Ingole
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zoltán Kónya
- University of Szeged, Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, H-6720, Rerrich Béla tér 1, Szeged, Hungary; MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, Szeged, H-6720, Hungary
| | - Amrish Chandra
- Amity Institute of Pharmacy, Amity University, Sector-125, Noida, 201313, Uttar Pradesh, India; Amity Institute of Public Health, Amity University, Sector-125, Noida, 201313, Uttar Pradesh, India
| |
Collapse
|
12
|
Barik R, Barik G, Tanwar V, Ingole PP. Supercapacitor performance and charge storage mechanism of brannerite type CuV2O6/PANI nanocomposites synthesis with their theoretical aspects. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Boateng E, Thind SS, Chen S, Chen A. Synthesis and electrochemical studies of WO
3
‐based nanomaterials for environmental, energy and gas sensing applications. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Emmanuel Boateng
- Department of Chemistry Electrochemical Technology Centre University of Guelph Guelph Ontario Canada
| | - Sapanbir S. Thind
- Department of Chemistry Lakehead University Thunder Bay Ontario Canada
| | - Shuai Chen
- Department of Chemistry Electrochemical Technology Centre University of Guelph Guelph Ontario Canada
| | - Aicheng Chen
- Department of Chemistry Electrochemical Technology Centre University of Guelph Guelph Ontario Canada
- Department of Chemistry Lakehead University Thunder Bay Ontario Canada
| |
Collapse
|
14
|
Li J, Li X, Wei W, Wang D, Liu P. Hollow core-shell polypyrrole@poly(1,5-diaminoanthraquinone) composites with superior electrochemical performance for supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
|
16
|
He H, Zhang Y, Zhang W, Li Y, Wang Y, Wang P, Hu D. Dual Metal-Loaded Porous Carbon Materials Derived from Silk Fibroin as Bifunctional Electrocatalysts for Hydrogen Evolution Reaction and Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30678-30692. [PMID: 34167298 DOI: 10.1021/acsami.1c07058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developing electrocatalysts with high efficiency and long-term stability for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is significant to massively generate hydrogen energy by water splitting. In this work, cobalt and tungsten dual metal-loaded N-doped porous carbon electrocatalysts derived from silk fibroin were successfully prepared through facile carbonization and chemical activation by KCl and applied as efficient electrocatalysts for HER and OER. After chemical activation, the resulting catalysts present a unique hierarchical porous structure with micro-, meso-, and macropores, which is able to expose more implantation sites for catalytic active metals and will in turn promote the efficient diffusion of the electrolyte. The catalyst under the optimized condition (CoW@ACSF) has a specific area of 326.01 m2 g-1. The overpotential at a current density of 10 mA cm -2 of CoW@ACSF is 138.42 ± 10.39 mV toward HER and 492.05 ± 19.04 mV toward OER. Furthermore, the overpotential only increases 101.2 mV toward HER and 66.00 mV toward OER after the long-term stability test of chronopotentiometric test over 10 h, which confirms the excellent stability of the CoW@ACSF, owing to its unique carbon shell structure. This work gives an insight into the design and engineering of silk fibroin-derived carbon materials for electrocatalysis toward HER and OER.
Collapse
Affiliation(s)
- Hongzhe He
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yan Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Wenqin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yuanyuan Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Ying Wang
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Ping Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Dongmei Hu
- Key Laboratory of Multifunctional and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
17
|
Zhu Z, Gao F, Zhang Z, Zhuang Q, Yu H, Huang Y, Liu Q, Fu M. Synthesis of the cathode and anode materials from discarded surgical masks for high-performance asymmetric supercapacitors. J Colloid Interface Sci 2021; 603:157-164. [PMID: 34186393 DOI: 10.1016/j.jcis.2021.06.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/13/2023]
Abstract
Advanced carbon-based electrode materials derived from wastes are essential to high-performance supercapacitors due to their abundance and sustainability. In this work, we fabricate novel cathodes and anodes based on discarded surgicalmask-derived carbon (DSM-C). Discarded surgicalmasks are good candidates for carbon-based electrode materials due to their unique fibrous structure and simple composition compared to conventional biomass sources. Benefiting from the excellent electrical conductivity of DSM-C and abundant redox reactions from nickel oxide (NiO), the electrochemical performances of NiO/DSM-C composites have been greatly improved. Specifically, the DSM-C and NiO/DSM-C electrodes show high specific capacitances of 240 F g-1 and 496 F g-1 at 1 A g-1 respectively, and excellent rate capability. Moreover,asymmetric supercapacitors (ASCs) are assembled using DSM-C and NiO/DSM-C as anodes and cathodes, respectively. They deliver a high energy density of 57 Wh kg-1 at a power density of 702 W kg-1, accompanied by superior cycling stability (98.5% capacitance retention after 10,000 cycles). This work shows prospective applications of DSM-C as an electrode material for energy storage systems.
Collapse
Affiliation(s)
- Zitong Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fan Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhihao Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qingru Zhuang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hao Yu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yongqing Huang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Min Fu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|