1
|
Ye YT, Xia HY, Li J, Wang SB, Chen AZ, Kankala RK. Nanoarchitecting intelligently encapsulated designs for improved cancer therapy. Front Bioeng Biotechnol 2025; 13:1587178. [PMID: 40375976 PMCID: PMC12078215 DOI: 10.3389/fbioe.2025.1587178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/14/2025] [Indexed: 05/18/2025] Open
Abstract
Despite the success in exploring various aspects of origination and therapeutic strategies, cancer has remained one of the most dreadful metabolic disorders due to failure to eradicate tumors comprehensively and frequent recurrence because of acquired resistance to the drugs. Recently, several advancements have been evidenced in the fabrication of various smart nanocarriers encapsulated with multiple components. Several reasons for smart nanoencapsulation include the enhancement of the bioavailability of drugs, precise targetability to reduce adverse effects on normal cells, and the ability to enable controlled drug release rates at the tumor sites. In addition, these smart nanocarriers protect encapsulated therapeutic cargo from deactivation, responsively delivering it based on the physiological or pathological characteristics of tumors. In this review, we present various smart approaches for cancer therapy, including organic materials, inorganic components, and their composites, as well as biomembrane-based nanoencapsulation strategies. These nanoencapsulation strategies, along with practical applications and their potential in cancer treatment, are discussed in depth, highlighting advantages and disadvantages, as well as aiming to reveal the ultimate prospects of nanoencapsulation in enhancing drug delivery efficiency and targeted cancer therapy.
Collapse
Affiliation(s)
- Ying-Tong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
| | - Hong-Ying Xia
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
| | - Jie Li
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
- College of Chemical Engineering, Huaqiao University, Xiamen, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
- College of Chemical Engineering, Huaqiao University, Xiamen, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, China
| |
Collapse
|
2
|
Wu W, Li Z, Feng D, Tang Q, Liu S, Lin W. Dissipative Particle Dynamics: Simulation of Chitosan-Citral Microcapsules. Polymers (Basel) 2025; 17:678. [PMID: 40076170 PMCID: PMC11902801 DOI: 10.3390/polym17050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
In this paper, the dissipative particle dynamics (DPD) method is used to simulate the self-assembly process, appearance, mesoscopic structure, and wrapping properties of microcapsules formed with citral as the core material and chitosan and sodium alginate as the single-wall materials, and with citral as the core material and chitosan-sodium alginate, chitosan-methylcellulose, sodium alginate-chitosan, and sodium alginate-methylcellulose as the double-wall materials. The effects of chitosan content and wall material composition on the structure, morphology, encapsulation performance, and stability of microcapsules are compared and analyzed. In addition, the microcapsules are deeply analyzed by using the mesoscopic structure, radial distribution function, and diffusion coefficient. This study provides a new idea and method for the preparation of citral microcapsules, and is of great significance for the design and development of new composite wall microcapsules.
Collapse
Affiliation(s)
- Wensheng Wu
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (W.W.); (Q.T.); (S.L.)
| | - Zhiwei Li
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (W.W.); (Q.T.); (S.L.)
| | - Dachun Feng
- College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Qing Tang
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (W.W.); (Q.T.); (S.L.)
| | - Shuijiao Liu
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (W.W.); (Q.T.); (S.L.)
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Li F, Zhang Z, Wang X, Yin X, Fu M, Qin T, Ji X, Yang G, Sun S. A physical crosslinked pH-sensitive hydrogel based on hemicellulose/graphene oxide for controlled oral drug delivery. Int J Biol Macromol 2025; 289:138875. [PMID: 39701251 DOI: 10.1016/j.ijbiomac.2024.138875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The design of innovative pH-sensitive hydrogels for oral drug delivery is particularly promising for the treatment of intestinal diseases. The traditional pH-responsive hydrogels still have some problems such as low biocompatibility, complex preparation process and poor therapeutic effect, so a new method needs to be developed to solve these problems. Here, a pH-sensitive hemicellulose/graphene oxide (HC/GO) composite hydrogel (HGCH) was prepared through a one-step strategy. Benefitting from the multiple hydrogen bonding between HC and GO, HGCH possessed a low gelator concentration (∼0.79 wt%), well-defined 3D porous network and excellent mechanical properties. Remarkably, HGCH exhibited pH-induced gel-sol transition and a high drug loading efficiency, showing great potential as a candidate for advanced drug carrier. The drug loading and release test revealed that about 85 % Vitamin B 12 was released in neutral PBS solution (pH 7.4). However, only about 30 % drug was diffused into acid medium (pH 1.7) in the same period, which suggested the HGCH have high adaptability to soluble drugs and pH sensitivity triggered release. Further cellular toxicity tests demonstrated that the HGCH was nontoxic and biocompatible for cells. Thus, the physically cross-linked HGCH would be an attractive drug carrier for controlled drug release at physiological pH in the future.
Collapse
Affiliation(s)
- Fengfeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Zhili Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China.
| | - Xiluan Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Xiuxin Yin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Maoqing Fu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Tianci Qin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Shaolong Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|
4
|
Xin Y, Liang J, Ren C, Song W, Huang B, Liu Y, Zhang S. Physiological and transcriptomic responses of silkworms to graphene oxide exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116434. [PMID: 38728944 DOI: 10.1016/j.ecoenv.2024.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
The growing use of nanomaterials has sparked significant interest in assessing the insect toxicities of nanoparticles. The silkworm, as an economically important insect, serves as a promising model for studying how insects respond to harmful substances. Here, we conducted a comprehensive investigation on the impact of graphene oxide (GO) on silkworms using a combination of physiological and transcriptome analyses. GO can enter the midguts and posterior silk glands of silkworms. High GO concentrations (> 25 mg/L) significantly (P < 0.01) inhibited larval growth. Additionally, GO (> 5 mg/L) significantly reduced the cocooning rate, and GO (> 15 mg/L) hindered oviduct development and egg laying in silkworms. GO increased the reactive oxygen species content and regulated catalase activity, suggesting that it may affect insect growth by regulating reactive oxygen detoxification. The transcriptome data analysis showed that 35 metabolism-related genes and 20 ribosome biogenesis-related genes were differentially expressed in response to GO, and their expression levels were highly correlated. Finally, we propose that a Ribosome biogenesis-Metabolic signaling network is involved in responses to GO. The research provides a new perspective on the molecular responses of insects to GO.
Collapse
Affiliation(s)
- Youchao Xin
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Jiawen Liang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Chunjiu Ren
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Wenhui Song
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Bokai Huang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yangyang Liu
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Shengxiang Zhang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
5
|
Malik S, Fatima B, Hussain D, Imran M, Chohan TA, Khan MS, Majeed S, Najam-Ul-Haq M. Synthesis of novel nonsteroidal anti-inflammatory galloyl β-sitosterol-loaded lignin-capped Ag-based drug. Inflammopharmacology 2024; 32:1333-1351. [PMID: 37994993 DOI: 10.1007/s10787-023-01390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Biocompatible anti-inflammatory lignin-capped Ag (LCAg) nanoparticles (NPs) were synthesized for the delivery of galloyl β-sitosterol (Galloyl-BS). β-Sitosterol (BS) is effective against inflammatory responses, like cancer-induced inflammations. BS was modified via gallic acid esterification to enhance its anti-inflammatory potential. LCAg NPs were synthesized by a green method and loaded with galloyl-BS. For comparison, pure BS was also loaded onto LCAg NPs in a separate assembly. The antioxidant potential of Galloyl-BS was greater (IC50 177 µM) than pure BS. Materials were characterized by FT-IR, SEM, XRD, and Zeta potential. Using UV-Vis spectroscopy, drug release experiments were performed by varying pH, time, concentration, and temperature. Maximum drug release was observed after 18 h at pH 6 and 40 °C. Galloyl-BS showed improved drug loading efficiency, release %age, and antioxidant activity compared to pure BS when loaded onto LCAg NPs. DLCAg exhibited excellent anti-inflammatory activity in rat models. These findings indicate that galloyl-BS (drug)-loaded LCAg (DLCAg) NPs have the potential as an anti-inflammatory agent without any prior release and scavenging in normal cells.
Collapse
Affiliation(s)
- Sana Malik
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Imran
- Biochemistry Section Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Tahir Ali Chohan
- Department of Biochemistry, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
6
|
Yan H, Xu P, Cong H, Yu B, Shen Y. Research progress in construction of organic carrier drug delivery platform using tumor microenvironment. MATERIALS TODAY CHEMISTRY 2024; 37:101997. [DOI: 10.1016/j.mtchem.2024.101997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Noorizadeh M, Geetha M, Bensaali F, Meskin N, Sadasivuni KK, Zughaier SM, Elgamal M, Ait Hssain A. A Path towards Timely VAP Diagnosis: Proof-of-Concept Study on Pyocyanin Sensing with Cu-Mg Doped Graphene Oxide. BIOSENSORS 2024; 14:48. [PMID: 38248425 PMCID: PMC11154305 DOI: 10.3390/bios14010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
In response to the urgent requirement for rapid, precise, and cost-effective detection in intensive care units (ICUs) for ventilated patients, as well as the need to overcome the limitations of traditional detection methods, researchers have turned their attention towards advancing novel technologies. Among these, biosensors have emerged as a reliable platform for achieving accurate and early diagnoses. In this study, we explore the possibility of using Pyocyanin analysis for early detection of pathogens in ventilator-associated pneumonia (VAP) and lower respiratory tract infections in ventilated patients. To achieve this, we developed an electrochemical sensor utilizing a graphene oxide-copper oxide-doped MgO (GO - Cu - Mgo) (GCM) catalyst for Pyocyanin detection. Pyocyanin is a virulence factor in the phenazine group that is produced by Pseudomonas aeruginosa strains, leading to infections such as pneumonia, urinary tract infections, and cystic fibrosis. We additionally investigated the use of DNA aptamers for detecting Pyocyanin as a biomarker of Pseudomonas aeruginosa, a common causative agent of VAP. The results of this study indicated that electrochemical detection of Pyocyanin using a GCM catalyst shows promising potential for various applications, including clinical diagnostics and drug discovery.
Collapse
Affiliation(s)
- Mohammad Noorizadeh
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
| | - Mithra Geetha
- Department of Mechanical and Industrial Engineering, Centre for Advanced Materials, Qatar University, Doha 2713, Qatar; (M.G.); (K.K.S.)
| | - Faycal Bensaali
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
| | - Nader Meskin
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
| | - Kishor K. Sadasivuni
- Department of Mechanical and Industrial Engineering, Centre for Advanced Materials, Qatar University, Doha 2713, Qatar; (M.G.); (K.K.S.)
| | - Susu M. Zughaier
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.M.Z.); (M.E.)
| | - Mahmoud Elgamal
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.M.Z.); (M.E.)
| | - Ali Ait Hssain
- Medical Intensive Care Unit, Hamad Medical Corporation, Doha 3050, Qatar;
| |
Collapse
|
8
|
Bellavita R, Braccia S, Falanga A, Galdiero S. An Overview of Supramolecular Platforms Boosting Drug Delivery. Bioinorg Chem Appl 2023; 2023:8608428. [PMID: 38028018 PMCID: PMC10661875 DOI: 10.1155/2023/8608428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/03/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Numerous supramolecular platforms inspired by natural self-assembly are exploited as drug delivery systems. The spontaneous arrangement of single building blocks into inorganic and organic structures is determined and controlled by noncovalent forces such as electrostatic interactions, π-π interactions, hydrogen bonds, and van der Waals interactions. This review describes the main structures and characteristics of several building blocks used to obtain stable, self-assembling nanostructures tailored for numerous biological applications. Owing to their versatility, biocompatibility, and controllability, these nanostructures find application in diverse fields ranging from drug/gene delivery, theranostics, tissue engineering, and nanoelectronics. Herein, we described the different approaches used to design and functionalize these nanomaterials to obtain selective drug delivery in a specific disease. In particular, the review highlights the efficiency of these supramolecular structures in applications related to infectious diseases and cancer.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, University of Naples ‘Federico II', Naples 80131, Italy
| | - Simone Braccia
- Department of Pharmacy, University of Naples ‘Federico II', Naples 80131, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples ‘Federico II', Portici 80055, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples ‘Federico II', Naples 80131, Italy
| |
Collapse
|
9
|
Chen G, Mao D, Wang X, Chen J, Gu C, Huang S, Yang Y, Zhang F, Tan W. Aptamer-based self-assembled nanomicelle enables efficient and targeted drug delivery. J Nanobiotechnology 2023; 21:415. [PMID: 37946192 PMCID: PMC10634091 DOI: 10.1186/s12951-023-02164-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023] Open
Abstract
Nucleic acid aptamer-based nanomicelles have great potential for nanomedicine and nanotechnology applications. However, amphiphilic aptamer micelles are known to be inherently unstable upon interaction with cell membranes in the physiological environment, thus potentially compromising their specific targeting against cancer cells. This flaw is addressed in the present work which reports a superstable micellar nanodelivery system as an amphiphilic copolymer self-assembled micelle composed of nucleic acid aptamer and polyvalent hydrophobic poly(maleic anhydride-alt-1-octadecene) (C18PMH). Using Ce6 as a drug model, these C18-aptamer micelles exhibit efficient tumor-targeting and -binding ability, facilitating the entry of Ce6 into targeted cells for photodynamic therapy. In addition, they can be loaded with other hydrophobic drugs and still demonstrate favorable therapeutic effects. As such, these C18-aptamer micelles can serve as a universal platform for loading multiple drugs, providing a safer and more effective solution for treating cancer.
Collapse
Affiliation(s)
- Ganghui Chen
- Institute of Molecular Medicine (IMM), Shanghai Jiao Tong University School of Medicine, Renji Hospital, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Dongsheng Mao
- Institute of Molecular Medicine (IMM), Shanghai Jiao Tong University School of Medicine, Renji Hospital, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuan Wang
- Institute of Molecular Medicine (IMM), Shanghai Jiao Tong University School of Medicine, Renji Hospital, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingqi Chen
- Institute of Molecular Medicine (IMM), Shanghai Jiao Tong University School of Medicine, Renji Hospital, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Gu
- Institute of Molecular Medicine (IMM), Shanghai Jiao Tong University School of Medicine, Renji Hospital, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuqin Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Shanghai Jiao Tong University School of Medicine, Renji Hospital, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Fang Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Shanghai Jiao Tong University School of Medicine, Renji Hospital, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Battisti A, Samal SK, Puppi D. Biosensing Systems Based on Graphene Oxide Fluorescence Quenching Effect. MICROMACHINES 2023; 14:1522. [PMID: 37630058 PMCID: PMC10456591 DOI: 10.3390/mi14081522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Graphene oxide (GO) is a versatile material obtained by the strong oxidation of graphite. Among its peculiar properties, there is the outstanding ability to significantly alter the fluorescence of many common fluorophores and dyes. This property has been exploited in the design of novel switch-ON and switch-OFF fluorescence biosensing platforms for the detection of a plethora of biomolecules, especially pathological biomarkers and environmental contaminants. Currently, novel advanced strategies are being developed for therapeutic, diagnostic and theranostic approaches to widespread pathologies caused by viral or bacterial agents, as well as to cancer. This work illustrates an overview of the most recent applications of GO-based sensing systems relying on its fluorescence quenching effect.
Collapse
Affiliation(s)
- Antonella Battisti
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, p.zza San Silvestro 12, I-56127 Pisa, Italy
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-RMRC, Bhubaneswar 751023, Odisha, India;
| | - Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, I-56124 Pisa, Italy;
| |
Collapse
|
11
|
Chen A, Li X, Han W. Construction of spherical cellulose nanocrystals synergized with graphene oxide to stabilize Pickering emulsions. Int J Biol Macromol 2023; 242:124499. [PMID: 37080402 DOI: 10.1016/j.ijbiomac.2023.124499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
In this study, we prepared spherical cellulose nanocrystals (S-CNCs) and stabilized n-hexadecane Pickering emulsions in conjunction with graphene oxide (GO), exploring the interaction between S-CNCs and GO in the emulsions. Both S-CNCs and GO are amphiphilic and synergistically stabilize Pickering emulsions by adhering to the surface of oil droplets and within the emulsion space through hydrogen bonding. GO's two-dimensional sheets assemble into a 3D network structure, further improving the stability of Pickering emulsions. Consequently, the stability of Pickering emulsions can be adjusted by altering the S-CNCs/GO ratio, modifying the spatial distribution relationship of stabilizers in the emulsions. At an S-CNCs concentration of 1 g/L and a GO concentration of 3 g/L, the Pickering emulsion demonstrated excellent stability and exhibited no delamination after 31 days of storage. Thus, the S-CNCs/GO combination serves as an effective Pickering emulsion stabilizer, utilizing the synergistic effect between the two components.
Collapse
Affiliation(s)
- Anxiang Chen
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xia Li
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Wenjia Han
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
12
|
Van Tran V, Wi E, Shin SY, Lee D, Kim YA, Ma BC, Chang M. Microgels based on 0D-3D carbon materials: Synthetic techniques, properties, applications, and challenges. CHEMOSPHERE 2022; 307:135981. [PMID: 35964721 DOI: 10.1016/j.chemosphere.2022.135981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Microgels are three-dimensional (3D) colloidal hydrogel particles with outstanding features such as biocompatibility, good mechanical properties, tunable sizes from submicrometer to tens of nanometers, and large surface areas. Because of these unique qualities, microgels have been widely used in various applications. Carbon-based materials (CMs) with various dimensions (0-3D) have recently been investigated as promising candidates for the design and fabrication of microgels because of their large surface area, excellent conductivity, unique chemical stability, and low cost. Here, we provide a critical review of the specific characteristics of CMs that are being incorporated into microgels, as well as the state-of-the art applications of CM-microgels in pollutant adsorption and photodegradation, H2 evoluation, CO2 capture, soil conditioners, water retention, drug delivery, cell encapsulation, and tissue engineering. Advanced preparation techniques for CM-microgel systems are also summarized and discussed. Finally, challenges related to the low colloidal stability of CM-microgels and development strategies are examined. This review shows that CM-microgels have the potential to be widely used in various practical applications.
Collapse
Affiliation(s)
- Vinh Van Tran
- Laser and Thermal Engineering Laboratory, Department of Mechanical Engineering, Gachon University, Seongnam, 13120, South Korea
| | - Eunsol Wi
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea
| | - Seo Young Shin
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea
| | - Daeho Lee
- Laser and Thermal Engineering Laboratory, Department of Mechanical Engineering, Gachon University, Seongnam, 13120, South Korea
| | - Yoong Ahm Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea; School of Polymer Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea; Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| | - Byung Chol Ma
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea.
| | - Mincheol Chang
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea; School of Polymer Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea; Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
13
|
Akbarzadeh H, Mehrjouei E, Abbaspour M, Salemi S, Yaghoubi H, Ramezanzadeh S. Boron Nitride- and Graphene-Supported Trimetallic Yolk–Shell and Hollow Nanoparticles. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hamed Akbarzadeh
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 96179- 76487, Iran
- Department of Physical Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Esmat Mehrjouei
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 96179- 76487, Iran
| | - Mohsen Abbaspour
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 96179- 76487, Iran
- Department of Chemistry, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Sirous Salemi
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 96179- 76487, Iran
| | - Hamzeh Yaghoubi
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 96179- 76487, Iran
| | - Samira Ramezanzadeh
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 96179- 76487, Iran
| |
Collapse
|
14
|
Dong J, Wang Z, Yang F, Wang H, Cui X, Li Z. Update of ultrasound-assembling fabrication and biomedical applications for heterogeneous polymer composites. Adv Colloid Interface Sci 2022; 305:102683. [PMID: 35523099 DOI: 10.1016/j.cis.2022.102683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/24/2022] [Accepted: 04/23/2022] [Indexed: 01/24/2023]
Abstract
As a power-driving approach, ultrasound irradiation is very appealing to the preparation or modification of new materials. In the review, we overviewed the latest development of ultrasound-mediated effects or reactions in polymer composites, and demonstrated its unique and powerful aspects on the polymerization or aggregation. The review generalized the different categories of heterogeneous polymer composites by defining the constituents, and described the shapes, sizes and basic properties of various purpose-specific or site-specific products. Importantly, the review paid more attention to the main biomedicine applications of heterogeneous polymer composites, such as drug or bioactive substance entrapment, delivery, release, imaging, and therapy, and emphasized many advantages of ultrasound-assembling approaches and heterogeneous polymer composites in biology and medicine fields. In addition, the review also indicated the prospective challenges of heterogeneous polymer composites both in ultrasound-assembling designs and in biomedical applications.
Collapse
|
15
|
Heidari M, Farsad-Akhtar N, Toorchi M, Kazemi EM, Mahna N. Proteomic, biochemical, and anatomical influences of nanographene oxide on soybean (Glycine max). JOURNAL OF PLANT PHYSIOLOGY 2022; 272:153667. [PMID: 35349937 DOI: 10.1016/j.jplph.2022.153667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Nano-graphene oxide (NGO) is an engineered nanostructure that is used in various fields including biology, chemistry, medicine, and environmental protection. This kind of highly used nanomaterial (NM) is being released and accumulated gradually in nature and can have some adverse influences on living organisms including plants. Soybean as a cultivated plant with a high importance in food industry, but sensitive to stresses, was chosen in the present study to be examined in terms of proteomic, biochemical, and anatomical properties under the NGO stress. Accordingly, a 2-dimensional gel electrophoresis (2-DE) approach was adopted for proteomic analysis of the NGO treated soybean roots, where significant changes were observed in the abundance of 48 proteins. MALDI TOF/TOF analysis revealed the upregulation of the proteins involved in the redox regulation in plants. Furthermore, anatomical examination of soybean roots under light microscopy showed that the NGO could enter into the root epidermis through the apoplastic pathway and accumulated in some parts of the root. With increasing NGO concentration, the diameter of the vascular apertures increased and then decreased at higher concentrations. To evaluate the toxicity of NGO, some of the growth parameters including fresh and dry weight, and height of the shoots, as well as some stress-related biochemical properties such as H2O2 production, antioxidant enzymes activity, and phenolics and flavonoids contents were measured. The results indicated that NGO could cause an oxidative stress, which can be considered a toxic effect evoking antioxidative and detoxification mechanisms in soybean.
Collapse
Affiliation(s)
- Maryam Heidari
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Nader Farsad-Akhtar
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mahmoud Toorchi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Elham Mohajel Kazemi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Nasser Mahna
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
16
|
Ashrafizadeh M, Saebfar H, Gholami MH, Hushmandi K, Zabolian A, Bikarannejad P, Hashemi M, Daneshi S, Mirzaei S, Sharifi E, Kumar AP, Khan H, Heydari Sheikh Hossein H, Vosough M, Rabiee N, Thakur Kumar V, Makvandi P, Mishra YK, Tay FR, Wang Y, Zarrabi A, Orive G, Mostafavi E. Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: Stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opin Drug Deliv 2022; 19:355-382. [PMID: 35152815 DOI: 10.1080/17425247.2022.2041598] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The application of doxorubicin (DOX) in cancer therapy has been limited due to its drug resistance and poor internalization. Graphene oxide (GO) nanostructures have the capacity for DOX delivery while promoting its cytotoxicity in cancer. AREAS COVERED The favorable characteristics of GO nanocomposites, preparation method, and application in cancer therapy are described. Then, DOX resistance in cancer is discussed. The GO-mediated photothermal therapy and DOX delivery for cancer suppression are described. Preparation of stimuli-responsive GO nanocomposites, surface functionalization, hybrid nanoparticles, and theranostic applications are emphasized in DOX chemotherapy. EXPERT OPINION Graphene oxide nanoparticle-based photothermal therapy maximizes the anti-cancer activity of DOX against cancer cells. Apart from DOX delivery, GO nanomaterials are capable of loading anti-cancer agents and genetic tools to minimize drug resistance and enhance the cytolytic impact of DOX in cancer eradication. To enhance DOX accumulation in cancer cells, stimuli-responsive (redox-, light-, enzyme- and pH-sensitive) GO nanoparticles have been developed for DOX delivery. Further development of targeted delivery of DOX-loaded GO nanomaterials against cancer cells may be achieved by surface modification of polymers such as polyethylene glycol, hyaluronic acid, and chitosan. Doxorubicin-loaded GO nanoparticles have demonstrated theranostic potential for simultaneous diagnosis and therapy. Hybridization of GO with other nanocarriers such as silica and gold nanoparticles further broadens their potential anti-cancer therapy applications.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Hamidreza Saebfar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Gholami
- DVM. Graduated, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Pooria Bikarannejad
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Alan Prem Kumar
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Vijay Thakur Kumar
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.,School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHUFundación Eduardo Anitua). Vitoria-Gasteiz, Spain.,Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.,Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
17
|
Wang X, Zhang T, Xie H, Wang Z, Jing D, He K, Gao X. Phenotypic responses and potential genetic mechanism of lepidopteran insects under exposure to graphene oxide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113008. [PMID: 34808504 DOI: 10.1016/j.ecoenv.2021.113008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Clarification of the interactions between engineered nanomaterials and multiple generations of insects is crucial to understanding the impact of nanotechnology on the environment and agriculture, particularly in toxicity management, pest management and genetic engineering. To date, there has been very limited information about nanoparticle-insect interactions at the genetic and proteomic levels. Here, we examined the phenotypic responses and potential mechanism of a lepidopteran insect Asian corn borer (ACB) to graphene oxide (GO). It was demonstrated that GO could significantly promote the growth of ACB. The transcriptomic and proteomic results consistently verified that GO might activate trypsin-like serine protease, glutathione S-transferase, heat shock protein and glycosyltransferase to further influence the development of ACB. RNA interference results indicated that the trypsin gene was one of the critical genes to accelerate the growth of ACB fed with GO diet. Moreover, physiological analysis showed potential alterations of the expression levels of genes and proteins, and more cholesterol (CE), triacylglycerides (TG) and lipids were accumulated in GO-exposed ACB. Our findings may help to reveal the phenotypic, physiological and genetic responses of insects under exposure to nanomaterials and to assess the environmental risks of other nanomaterials.
Collapse
Affiliation(s)
- Xiuping Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, PR China
| | - Tiantao Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Haicui Xie
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, PR China
| | - Zhenying Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Dapeng Jing
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Kanglai He
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaoduo Gao
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, PR China
| |
Collapse
|