1
|
Kumar S, Senapati S, Chang HC. Extracellular vesicle and lipoprotein diagnostics (ExoLP-Dx) with membrane sensor: A robust microfluidic platform to overcome heterogeneity. BIOMICROFLUIDICS 2024; 18:041301. [PMID: 39056024 PMCID: PMC11272220 DOI: 10.1063/5.0218986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
The physiological origins and functions of extracellular vesicles (EVs) and lipoproteins (LPs) propel advancements in precision medicine by offering non-invasive diagnostic and therapeutic prospects for cancers, cardiovascular, and neurodegenerative diseases. However, EV/LP diagnostics (ExoLP-Dx) face considerable challenges. Their intrinsic heterogeneity, spanning biogenesis pathways, surface protein composition, and concentration metrics complicate traditional diagnostic approaches. Commonly used methods such as nanoparticle tracking analysis, enzyme-linked immunosorbent assay, and nuclear magnetic resonance do not provide any information about their proteomic subfractions, including active proteins/enzymes involved in essential pathways/functions. Size constraints limit the efficacy of flow cytometry for small EVs and LPs, while ultracentrifugation isolation is hampered by co-elution with non-target entities. In this perspective, we propose a charge-based electrokinetic membrane sensor, with silica nanoparticle reporters providing salient features, that can overcome the interference, long incubation time, sensitivity, and normalization issues of ExoLP-Dx from raw plasma without needing sample pretreatment/isolation. A universal EV/LP standard curve is obtained despite their heterogeneities.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
2
|
Huang CK, Lin YN, Huang WS, Senapati S, Chang HC, Sun YM, Huang LF. RNA-based detection of genetically modified plants via current-voltage characteristic measurement. J Biotechnol 2024; 383:27-38. [PMID: 38336281 DOI: 10.1016/j.jbiotec.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The widespread adoption of genetically modified (GM) crops has escalated concerns about their safety and ethical implications, underscoring the need for efficient GM crop detection methods. Conventional detection methods, such as polymerase chain reaction, can be costly, lab-bound, and time-consuming. To overcome these challenges, we have developed RapiSense, a cost-effective, portable, and sensitive biosensor platform. This sensor generates a measurable voltage shift (0.1-1 V) in the system's current-voltage characteristics, triggered by an increase in membrane's negative charge upon hybridization of DNA/RNA targets with a specific DNA probe. Probes designed to identify the herbicide resistance gene hygromycin phosphotransferase show a detection range from ∼1 nM to ∼10 μM and can discriminate between complementary, non-specific, and mismatched nucleotide targets. The incorporation of a small membrane sensor to detect fragmented RNA samples substantially improve the platform's sensitivity. In this study, RapiSense has been effectively used to detect specific DNA and fragmented RNA in transgenic variants of Arabidopsis, sweet potato, and rice, showcasing its potential for rapid, on-site GM crop screening.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan, Republic of China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320315, Taiwan, Republic of China; Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan, Republic of China
| | - Yi-Nan Lin
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan, Republic of China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320315, Taiwan, Republic of China
| | - Wen-Shan Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan, Republic of China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320315, Taiwan, Republic of China
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yi-Ming Sun
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320315, Taiwan, Republic of China; R&D Center for Membrane Technology, Chung Yuan University, Taoyuan 320071, Taiwan, Republic of China
| | - Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan, Republic of China.
| |
Collapse
|
3
|
McCarthy KP, Go DB, Senapati S, Chang HC. An integrated ion-exchange membrane-based microfluidic device for irreversible dissociation and quantification of miRNA from ribonucleoproteins. LAB ON A CHIP 2023; 23:285-294. [PMID: 36524732 PMCID: PMC10697430 DOI: 10.1039/d2lc00517d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ribonucleoproteins (RNPs), particularly microRNA-induced silencing complex (miRISC), have been associated with cancer-related gene regulation. Specific RNA-protein associations in miRISC complexes or those found in let-7 lin28A complexes can downregulate tumor-suppressing genes and can be directly linked to cancer. The high protein-RNA electrostatic binding affinity is a particular challenge for the quantification of the associated microRNAs (miRNAs). We report here the first microfluidic point-of-care assay that allows direct quantification of RNP-associated RNAs, which has the potential to greatly advance RNP profiling for liquid biopsy. Key to the technology is an integrated cation-anion exchange membrane (CEM/AEM) platform for rapid and irreversible dissociation (k = 0.0025 s-1) of the RNP (Cas9-miR-21) complex and quantification of its associated miR-21 in 40 minutes. The CEM-induced depletion front is used to concentrate the RNP at the depletion front such that the high electric field (>100 V cm-1) within the concentration boundary layer induces irreversible dissociation of the low KD (∼0.5 nM) complex, with ∼100% dissociation even though the association rate (kon = 6.1 s-1) is 1000 times higher. The high field also electrophoretically drives the dissociated RNA out of the concentrated zone without reassociation. A detection limit of 1.1 nM is achieved for Cy3 labelled miR-21.
Collapse
Affiliation(s)
- Kyle P McCarthy
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | - David B Go
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA.
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| |
Collapse
|
4
|
Tijunelyte I, Teillet J, Bruand P, Courson R, Lecestre A, Joseph P, Bancaud A. Hybridization-based DNA biosensing with a limit of detection of 4 fM in 30 s using an electrohydrodynamic concentration module fabricated by grayscale lithography. BIOMICROFLUIDICS 2022; 16:044111. [PMID: 35992636 PMCID: PMC9385222 DOI: 10.1063/5.0073542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Speeding up and enhancing the performances of nucleic acid biosensing technologies have remained drivers for innovation. Here, we optimize a fluorimetry-based technology for DNA detection based on the concentration of linear targets paired with probes. The concentration module consists of a microfluidic channel with the shape of a funnel in which we monitor a viscoelastic flow and a counter-electrophoretic force. We report that the technology performs better with a target longer than 100 nucleotides (nt) and a probe shorter than 30 nt. We also prove that the control of the funnel geometry in 2.5D using grayscale lithography enhances sensitivity by 100-fold in comparison to chips obtained by conventional photolithography. With these optimized settings, we demonstrate a limit of detection of 4 fM in 30 s and a detection range of more than five decades. This technology hence provides an excellent balance between sensitivity and time to result.
Collapse
Affiliation(s)
- Inga Tijunelyte
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | - Jeffrey Teillet
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | - Paul Bruand
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | - Rémi Courson
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | | | - Pierre Joseph
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | | |
Collapse
|
5
|
Lee H, Sohn S, Alizadeh S, Kwon S, Kim TJ, Park SM, Soh HT, Mani A, Kim SJ. Overlimiting Current in Nonuniform Arrays of Microchannels: Recirculating Flow and Anticrystallization. NANO LETTERS 2021; 21:5438-5446. [PMID: 33784095 DOI: 10.1021/acs.nanolett.0c05049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Overlimiting current (OLC) through electrolytes interfaced with perm-selective membranes has been extensively researched for understanding fundamental nano-electrokinetics and developing efficient engineering applications. This work studies how a network of microchannels in a nonuniform array, which mimics a natural pore configuration, can contribute to OLC. Here, micro/nanofluidic devices are fabricated with arrays of parallel microchannels with nonuniform size distributions, which are faced with a perm-selective membrane. All cases maintain the same surface and bulk conduction to allow probing of the sensitivity only by the nonuniformity. Rigorous experimental and theoretical investigation demonstrates that overlimiting conductance has a maximum value depending on the nonuniformity. Furthermore, in operando visualization reveals that the nonuniform arrays induce flow loops across the microchannel network enhancing advective transport. This recirculating flow eliminates local salt accumulations so that it can effectively suppress undesirable salt crystallization. Therefore, these results can significantly advance not only the fundamental understanding of the driving mechanism of the OLC but also the design rule of electrochemical membrane applications.
Collapse
Affiliation(s)
- Hyekyung Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seoyun Sohn
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Shima Alizadeh
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Soonhyun Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Jin Kim
- Department of Radiation Oncology, Stanford University, Stanford, California 94305, United States
| | - Seung-Min Park
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Hyongsok Tom Soh
- Department of Radiology, Stanford University, Stanford, California 94305, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ali Mani
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sung Jae Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Nano System Institute, Seoul National University, Seoul 08826, Republic of Korea
- Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|