1
|
Tian Y, Hou LX, Zhang XN, Du M, Zheng Q, Wu ZL. Engineering Tough Supramolecular Hydrogels with Structured Micropillars for Tunable Wetting and Adhesion Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308570. [PMID: 38716740 DOI: 10.1002/smll.202308570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/06/2024] [Indexed: 10/01/2024]
Abstract
Soft-lithography is widely used to fabricate microstructured surfaces on plastics and elastomers for designable physical properties such as wetting and adhesions. However, it remains a big challenge to construct high-aspect-ratio microstructures on the surface of hydrogels due to the difficulty in demolding from the gel with low strength and stiffness. Demonstrated here is the engineering of tough hydrogels by soft-lithography to form well-defined micropillars. The mechanical properties of poly(acrylamide-co-methacrylic acid) hydrogels with dense hydrogen-bond associations severely depend on temperature, with Young's modulus increasing from 8.1 MPa at 15 °C to 821.8 MPa at -30 °C, enabling easy demolding at low temperatures. Arrays of micropillars are maintained on the surface of the gel, and can be used at room temperature when the gel restores soft and stretchable. The hydrogel also exhibits good shape-memory property, favoring tailoring the morphology with a switchable tilt angle of micropillars. Consequently, the hydrogel shows tunable wetting and adhesion properties, as manifested by varying contact angles and adhesion strengths. These surface properties can also be tuned by geometry and arrangement of micropillars. This facile strategy by harnessing tunable viscoelasticity of supramolecular hydrogels should be applicable to other soft materials, and broaden their applications in biomedical and engineering fields.
Collapse
Affiliation(s)
- Ye Tian
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Hangzhou, 310023, China
| | - Li Xin Hou
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xin Ning Zhang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Miao Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Quílez C, Jeon EY, Pappalardo A, Pathak P, Abaci HE. Efficient Generation of Skin Organoids from Pluripotent Cells via Defined Extracellular Matrix Cues and Morphogen Gradients in a Spindle-Shaped Microfluidic Device. Adv Healthc Mater 2024; 13:e2400405. [PMID: 38452278 PMCID: PMC11305970 DOI: 10.1002/adhm.202400405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Indexed: 03/09/2024]
Abstract
Pluripotent stem cell-derived skin organoids (PSOs) emerge as a developmental skin model that is self-organized into multiple components, such as hair follicles. Despite their impressive complexity, PSOs are currently generated in the absence of 3D extracellular matrix (ECM) signals and have several major limitations, including an inverted anatomy (e.g., epidermis inside/dermis outside). In this work, a method is established to generate PSOs effectively in a chemically-defined 3D ECM environment. After examining various dermal ECM molecules, it is found that PSOs generated in collagen -type I (COLI) supplemented with laminin 511 (LAM511) exhibit increased growth compared to conventional free-floating conditions, but fail to induce complete skin differentiation due in part to necrosis. This problem is addressed by generating the PSOs in a 3D bioprinted spindle-shaped hydrogel device, which constrains organoid growth longitudinally. This culture system significantly reduces organoid necrosis and leads to a twofold increase in keratinocyte differentiation and an eightfold increase in hair follicle formation. Finally, the system is adapted as a microfluidic device to create asymmetrical gradients of differentiation factors and improves the spatial organization of dermal and epidermal cells. This study highlights the pivotal role of ECM and morphogen gradients in promoting and spatially-controlling skin differentiation in the PSO framework.
Collapse
Affiliation(s)
- Cristina Quílez
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés, 28911 Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Eun Y. Jeon
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alberto Pappalardo
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pooja Pathak
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hasan E. Abaci
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
3
|
Ye AL, Zhang H, Wu B, Lu H, Si M, Zhang K, Chen T. Hydrogel Rivet with Unidirectional Shape Morphing for Flexible Mechanical Assembly. Macromol Rapid Commun 2024; 45:e2300586. [PMID: 37972640 DOI: 10.1002/marc.202300586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Integrating diverse materials and functions into highly additive produce has piqued global interest due to the increasing demands of intelligent soft robotics. Nevertheless, existing assembly techniques, especially supramolecular assembly which heavily rely on precise chemical design and specific recognition, may prove inadequate when confronted with diverse external demands. Inspired by the traditional mechanical assembly, rivet connection, herein, a thermo-responsive hydrogel with unidirectional shape-morphing is fabricated and a stable mechanical assembly is constructed by emulating the rivet connection mechanism. This system employed poly(acrylamide-co-acrylic acid) [P(AAm-co-AAc)] to induce continuous swelling and hexylamine-modified polyvinyl alcohol (PVA-C6) as a molecular switch to control the swelling process. The hydrogel rivet, initially threaded through pre-fabricated hollows in two components. Subsequently, upon the disassociation of alkane chains the molecular switch would activate, inducing swelling and stable mechanical assembly via anchor structures. Moreover, to enhance the assembly strength, knots are introduced to enhance assembly strength, guiding localized stress release for programmed deformations. Additionally, the system can be remotely controlled using near-infrared light (NIR) by incorporating photo-thermal nanoparticles. This work presents a universal and efficient strategy for constructing stable mechanical assemblies without compromising overall softness, offering significant potential for the fabrication of integrated soft robots.
Collapse
Affiliation(s)
- April L Ye
- Ningbo Hanvos Kent School, Ningbo, 315200, China
- Georgia School Ningbo, Ningbo, 315000, China
| | - Haozhe Zhang
- Ningbo Hanvos Kent School, Ningbo, 315200, China
| | - Baoyi Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Huanhuan Lu
- College of Chemical Engineering, Ningbo Polytechnic, Ningbo, 315800, China
| | - Muqing Si
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Kaihang Zhang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
4
|
Zeng M, Huang Z, Cen X, Zhao Y, Xu F, Miao J, Zhang Q, Wang R. Biomimetic Gradient Hydrogels with High Toughness and Antibacterial Properties. Gels 2023; 10:6. [PMID: 38275844 PMCID: PMC10815424 DOI: 10.3390/gels10010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Traditional hydrogels, as wound dressings, usually exhibit poor mechanical strength and slow drug release performance in clinical biomedical applications. Although various strategies have been investigated to address the above issues, it remains a challenge to develop a simple method for preparing hydrogels with both toughness and controlled drug release performance. In this study, a tannic acid-reinforced poly (sulfobetaine methacrylate) (TAPS) hydrogel was fabricated via free radical polymerization, and the TAPS hydrogel was subjected to a simple electrophoresis process to obtain the hydrogels with a gradient distribution of copper ions. These gradient hydrogels showed tunable mechanical properties by changing the electrophoresis time. When the electrophoresis time reached 15 min, the hydrogel had a tensile strength of 368.14 kPa, a tensile modulus of 16.17 kPa, and a compressive strength of 42.77 MPa. It could be loaded at 50% compressive strain and then unloaded for up to 70 cycles and maintained a constant compressive stress of 1.50 MPa. The controlled release of copper from different sides of the gradient hydrogels was observed. After 6 h of incubation, the hydrogel exhibited a strong bactericidal effect on Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, with low toxicity to NIH/3T3 fibroblasts. The high toughness, controlled release of copper, and enhanced antimicrobial properties of the gradient hydrogels make them excellent candidates for wound dressings in biomedical applications.
Collapse
Affiliation(s)
- Mingzhu Zeng
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Zhimao Huang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Xiao Cen
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Yinyu Zhao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Fei Xu
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiru Miao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Quan Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rong Wang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| |
Collapse
|
5
|
Zhang Z, Abidi N, Lucia LA. Dual Crosslinked-Network Self-Healing Composite Hydrogels Exhibit Enhanced Water Adaptivity and Reinforcement. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Zhen Zhang
- Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, Texas 79403, United States
- Department of Forest Biomaterials, NC State University, Raleigh, North Carolina 27695, United States
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, Texas 79403, United States
| | - Lucian A. Lucia
- Department of Forest Biomaterials, NC State University, Raleigh, North Carolina 27695, United States
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
- Joint Department of Biomedical Engineering, NC State University and The University of North Carolina at Chapel Hill, Raleigh, North Carolina 27695, United States
| |
Collapse
|
6
|
Yang J, Kang Q, Zhang B, Tian X, Liu S, Qin G, Chen Q. Robust, fatigue resistant, self-healing and antifreeze ionic conductive supramolecular hydrogels for wearable flexible sensors. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Ding M, Yuan W, Xu S, Yu C, Zheng Y, Zhou J, Shan G, Bao Y, Pan P. Light-Induced Crystalline Size Heterogeneity of Polymers Enables Programmable Writing, Morphing, and Mechanical Performance Designing. ACS Macro Lett 2022; 11:739-746. [PMID: 35603498 DOI: 10.1021/acsmacrolett.2c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Constructing the spatio-selective crystalline structures has been an effective strategy to diversify the functions and applications of polymers. However, it is still challenging to program the crystalline heterogeneity into commercialized polymers and realize associate functions by a simple yet generalizable method. Herein, we propose a facile approach to fabricate multifunctional materials by programming the spatial distribution of crystal size in semicrystalline polymers. Various crystal size patterns in both plane and depth directions are introduced by the photothermal effect of printed ink and subsequent crystallization at different temperatures, which can be reprogrammed by repeated melting and crystallization. These obtained materials with well-defined crystal size heterogeneities exhibit diverse and regulable optics, mechanical and swelling properties, as manifested in applications including rewritable polymer paper, programmed mechanics, and advanced morphing devices. The light-induced crystal size heterogeneity of polymers has provided insights into developing advanced multifunctional materials.
Collapse
Affiliation(s)
- Mengru Ding
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Wenhua Yuan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Shanshan Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Chengtao Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Institute of Zhejiang University─Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Institute of Zhejiang University─Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Jian Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Institute of Zhejiang University─Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Institute of Zhejiang University─Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Institute of Zhejiang University─Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Institute of Zhejiang University─Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
8
|
Gao Y, Wang P, Zhao F, Liu X, Wu J, Hu J. A facile approach for anisotropic hydrogel with light-regulated stiffness and its application to achieve mechanical toughening. Macromol Rapid Commun 2022; 43:e2200077. [PMID: 35298857 DOI: 10.1002/marc.202200077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/07/2022] [Indexed: 11/10/2022]
Abstract
Many load-bearing tissues in nature obtain high toughness by fabricating anisotropic structures with spatially regulated composition and modulus at macroscale. This reality inspires a toughening strategy for hydrogel based on the controlling of modulus heterogeneity. Herein, a facile approach to realize light-regulated spatial modulus heterogeneity with large contrast in hydrogel is proposed. Ferric citric acid complex is used as a light-responsive ionic crosslinker, which can first stiffen an alginate/polyacrylamide hydrogel by coordinating with the alginate to form another network, then realize light-triggered softening through photoreduction of ferric ions. Based on this, a stripe-patterned hydrogel with alternating stiff and soft segments can be fabricated through photopatterning. The modulus contrast between the stiff and soft phases can be adjusted by control of several influence factors and the maximum modulus contrast reach up to 87 times. As a result, the toughness of the stripe-patterned hydrogel is enhanced by 3.5 times comparing to that hydrogel without pattern. This approach shows great potential in synthesis of smart hydrogel with light-programmable mechanical performances, and may be widely applicable for the hydrogels with functional groups that can coordinate with metal ions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Peiyao Wang
- State Key Laboratory of Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Fei Zhao
- State Key Laboratory of Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiao Liu
- State Key Laboratory of Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jingping Wu
- State Key Laboratory of Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jian Hu
- State Key Laboratory of Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
9
|
Luo T, Tan B, Zhu L, Wang Y, Liao J. A Review on the Design of Hydrogels With Different Stiffness and Their Effects on Tissue Repair. Front Bioeng Biotechnol 2022; 10:817391. [PMID: 35145958 PMCID: PMC8822157 DOI: 10.3389/fbioe.2022.817391] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
Tissue repair after trauma and infection has always been a difficult problem in regenerative medicine. Hydrogels have become one of the most important scaffolds for tissue engineering due to their biocompatibility, biodegradability and water solubility. Especially, the stiffness of hydrogels is a key factor, which influence the morphology of mesenchymal stem cells (MSCs) and their differentiation. The researches on this point are meaningful to the field of tissue engineering. Herein, this review focus on the design of hydrogels with different stiffness and their effects on the behavior of MSCs. In addition, the effect of hydrogel stiffness on the phenotype of macrophages is introduced, and then the relationship between the phenotype changes of macrophages on inflammatory response and tissue repair is discussed. Finally, the future application of hydrogels with a certain stiffness in regenerative medicine and tissue engineering has been prospected.
Collapse
Affiliation(s)
- Tianyi Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lengjing Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yating Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jinfeng Liao,
| |
Collapse
|
10
|
Sun H, Li S, Li K, Liu Y, Tang C, Liu Z, Zhu L, Yang J, Qin G, Chen Q. Tough and
self‐healable carrageenan‐based
double network microgels enhanced physical hydrogels for strain sensor. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Huan Sun
- School of Materials Science and Engineering Henan Polytechnic University Jiaozuo China
| | - Shitong Li
- School of Materials Science and Engineering Henan Polytechnic University Jiaozuo China
| | - Ke Li
- School of Materials Science and Engineering Henan Polytechnic University Jiaozuo China
| | | | - Cheng Tang
- School of Materials Science and Engineering Henan Polytechnic University Jiaozuo China
| | - Zhuangzhuang Liu
- School of Materials Science and Engineering Henan Polytechnic University Jiaozuo China
| | - Lin Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou China
| | - Jia Yang
- School of Materials Science and Engineering Henan Polytechnic University Jiaozuo China
| | - Gang Qin
- School of Materials Science and Engineering Henan Polytechnic University Jiaozuo China
| | - Qiang Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou China
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
- Wenzhou Key Laboratory of Perioperative Medicine The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| |
Collapse
|
11
|
Wang D, Zhang L, Xu L, Zhang X, Cheng C, Zhang A. Bionic Polyurethane with a Reversible Core-Sheath for Real-Time On-Demand Performance Adjustment and Fluorescence Self-Reflection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54375-54385. [PMID: 34729980 DOI: 10.1021/acsami.1c16264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Smart materials that can respond to external stimuli have attracted considerable scientific interest and achieved fruitful results with the advancement of research. However, materials with adjustable performance and which could be intervened on-demand through stimulation are still rarely mentioned. Furthermore, most of these materials published so far usually require high temperature or the assistance of catalysts to change the structure and adjust their performance, and the process is always irreversible. Herein, we proposed an anthracene-functionalized novel polyurethane with adjustable performance and fluorescence self-reflection inspired by shellfish. Anthracene was used as a dynamic group to make the polymer chain structure topologically isomerize after UV exposure, finally constructing a reversible core-sheath in a homogeneous polymer. Moreover, this process is catalyst-free and has strong spatiotemporal controllability. The appearance of the reversible core-sheath structure could achieve the performance adjustment of materials, and the strength can be increased easily in real time and on-demand by UV light exposure. Through selective irradiation, spatial control stiffening of this material can also be realized. In addition, the performance can also be self-reflected through the fluorescence to realize the performance that is visualizable. This work dramatically simplifies the requirements and conditions for material performance adjustment while expanding the versatility and applications in intelligent materials such as artificial muscles, variably flexible electronic devices, heterogeneous materials, 4D printing, and what may be discovered in the future.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Lun Zhang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Liqiang Xu
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Xiaoyu Zhang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Chuchu Cheng
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Aimin Zhang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
12
|
Zhu CN, Bai T, Wang H, Ling J, Huang F, Hong W, Zheng Q, Wu ZL. Dual-Encryption in a Shape-Memory Hydrogel with Tunable Fluorescence and Reconfigurable Architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102023. [PMID: 34081366 DOI: 10.1002/adma.202102023] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/01/2021] [Indexed: 05/07/2023]
Abstract
Materials capable of shape-morphing and/or fluorescence imaging have practical significances in the fields of anti-counterfeiting, information display, and information protection. However, it's challenging to realize these functions in hydrogels due to the poor mechanical properties and lack of tunable fluorescence. A tough hydrogel with good shape-memory ability and phototunable fluorescence is reported here, which affords reprogrammable shape designing and information encoding for dual-encryption. This hydrogel is prepared by incorporating donor-acceptor chromophore units into a poly(1-vinylimidazole-co-methacrylic acid) network, in which the dense intra- and interchain hydrogen bonds lead to desirable features including high stiffness, high toughness, and temperature-mediated shape-memory property. Additionally, the hydrogel shows photomediated tunable fluorescence through a unimer-to-dimer transformation of the chromophores. By combining photolithography and origami/kirigami designs, hydrogel sheets encoded with fluorescent patterns can deform into specific 3D configurations. The geometrically encrypted fluorescent information in the architected hydrogels is readable only after sequential shape recovery and UV light irradiation. As demonstrated by proof-of-concept experiments, both the fluorescent pattern and the 3D configuration are reprogrammable, facilitating repeated information protection and display. The design of tough hydrogels with rewritable fluorescent patterns and reconfigurable shapes should guide the future development of smart materials with improved security and wider applications in aqueous environments.
Collapse
Affiliation(s)
- Chao Nan Zhu
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tianwen Bai
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hu Wang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jun Ling
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Wei Hong
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang Zheng
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zi Liang Wu
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|