1
|
Tian SC, Song XH, Feng KK, Li CL, Tu YF, Hu YS, Shao JW. Self-oxygenating nanoplatform integrating CRISPR/Cas9 gene editing and immune activation for highly efficient photodynamic therapy. J Colloid Interface Sci 2025; 693:137632. [PMID: 40262200 DOI: 10.1016/j.jcis.2025.137632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
Photodynamic therapy (PDT) has arisen as a promising method due to its spatiotemporal precision and minimal invasiveness. It encounters significant obstacles in solid tumors due to hypoxia-induced therapeutic resistance and the self-protective mechanisms of cancer cells facilitated by MutT homolog 1 (MTH1), an enzyme involved in oxidative damage repair. Herein, we fabricate a tumor-microenvironment responsive CRISPR nanoplatform based on hollow mesoporous manganese dioxide (H-MnO2) for PDT. This platform utilizes H-MnO2 to produce oxygen (O2) through the decomposition of hydrogen peroxide (H2O2) in TME, thereby mitigating hypoxia and enhancing reactive oxygen species (ROS) generation. The high concentration of glutathione (GSH) and hyaluronidase (HAase) in TME induces the release of CRISPR/Cas9 ribonucleoproteins (RNP) to target the MTH1 gene, thereby impairs oxidative damage repair pathways and amplifys ROS-mediated cytotoxicity. The released Mn2+ ions function as immunomodulatory agents, activate innate immune responses via stimulating STING signal pathway. In vitro, IHMRH NPs markedly increased intracellular O2 levels, ROS production, lipid peroxidation and DNA damage, leading to tumor cell death, immune activation, and effective gene editing. In vivo, the nanoplatform suppressed tumor growth, diminished MTH1 gene expression, stimulated dendritic cell (DC) maturation through immunogenic cell death (ICD). This multimodal nanosystem may amplifies oxidative stress, collaborates with innate and adaptive immune activation to surpass the constraints of traditional PDT. The research presents a novel framework for cancer combination therapy by systematically integrating nanotechnology with precision gene editing.
Collapse
Affiliation(s)
- Shi-Cheng Tian
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xun-Huan Song
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ke-Ke Feng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Cheng-Lei Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yi-Fan Tu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yong-Shan Hu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
2
|
Zhang Z, Fan YN, Jiang SQ, Ma YJ, Yu YR, Qing YX, Li QR, Liu YL, Shen S, Wang J. Recent Advances in mRNA Delivery Systems for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e17571. [PMID: 40391789 DOI: 10.1002/advs.202417571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/01/2025] [Indexed: 05/22/2025]
Abstract
mRNA therapy is a promising approach in oncology, offering innovative applications such as tumor vaccines, protein replacement therapy, cell therapy, and gene therapy. However, challenges such as mRNA stability and delivery efficiency must be addressed. Advances in delivery system technologies are crucial for precise mRNA delivery, enhancing treatment safety and efficacy. The development of delivery systems requires accurate organ or cell targeting, intelligent release mechanisms, and optimized administration routes. This review outlines the applications of mRNA therapy in oncology, as well as the utilization of nonviral vectors, encompassing organic, inorganic, and biomimetic systems. It further elucidates the strategies for passive and active vector targeting and examines recent advances in the realm of stimuli-responsive delivery systems that are sensitive to pH and ultrasound. Additionally, the review addresses the development of noninvasive mRNA delivery systems designed for oral and pulmonary administration. The current challenges and emerging trends of mRNA therapy are discussed, and the potential strategies to mitigate these issues are emphasized.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Ya-Nan Fan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Si-Qi Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Ya-Jing Ma
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Yao-Ru Yu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Yu-Xin Qing
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Qian-Ru Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Yi-Lin Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Song Shen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
3
|
Milheiro C, Moura ML, Amendola M, Barbosa MA, Caldeira J. Harnessing CRISPR potential for intervertebral disc regeneration strategies. Front Bioeng Biotechnol 2025; 13:1562412. [PMID: 40406584 PMCID: PMC12095242 DOI: 10.3389/fbioe.2025.1562412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/15/2025] [Indexed: 05/26/2025] Open
Abstract
Genome editing technologies, particularly CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), have broadened the possibilities of genetic research and molecular biology by enabling precise modifications of the genome, offering novel therapeutic potential for various disorders. Herein, we present an overview of traditional genome editing techniques and delve deeper into the CRISPR toolbox, with particular attention given to epigenetic and transcriptional regulation. In the context of the intervertebral disc (IVD), CRISPR offers an unprecedented approach to address the mechanisms underlying tissue degeneration, advancing the development of revolutionary therapies for Low Back Pain (LBP). As so, we showcase how to leverage CRISPR systems for IVD. This cutting-edge technology has been successfully used to improve our understanding of IVD biology through functional studies and disease modeling. Most relevant research prioritizes new targets associated with the extracellular matrix (ECM), pain sensing or inflammatory pathways. Promising CRISPR applications encompass IVD regeneration by recapitulation of a regenerative environment or by targeting important degenerative catalysts. In the future, priority should be given to fetal gene reactivation, multiple healthy gene expression enhancement and disease-associated polymorphisms' correction. Despite several challenges such as effective delivery, off-target effects, as well as ethical and safety concerns, exciting clinical trials are anticipated in the years to come, providing more effective and long-lasting solutions for IVD degeneration.
Collapse
Affiliation(s)
- Catarina Milheiro
- i3S – Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Maria L. Moura
- i3S – Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Mario Amendola
- Généthon, Évry, France
- Integrare Research Unit UMR_S951, Université Paris-Saclay, Université Evry, Inserm, Généthon, Évry, France
| | - Mário A. Barbosa
- i3S – Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Joana Caldeira
- i3S – Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Xu J, Xu J, Sun C, He X, Shu Y, Huangfu Q, Meng L, Liang Z, Wei J, Cai M, Wen J, Wang B. Effective delivery of CRISPR/dCas9-SAM for multiplex gene activation based on mesoporous silica nanoparticles for bladder cancer therapy. Acta Biomater 2025; 197:460-475. [PMID: 40113021 DOI: 10.1016/j.actbio.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/01/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
The molecular complexity of bladder cancer restricts reliance on single-feature or single-gene targeted therapies, necessitating integrated individualized treatments and multi-gene interventions. In this study, we introduced the CRISPR/dCas9-SAM system to BCa treatment, known for its high specificity, low off-target effects, and reduced genetic toxicity, making it ideal for multiplexed gene activation at minimal cost-just 20 nucleotides per target. However, despite its potential in complex gene therapy and cellular engineering, challenges persist due to safety concerns associated with viral vectors and the risk of off-target effects during in vivo delivery, necessitating the development of new vectors. Herein, we reported pH-sensitive hollow mesoporous silica nanoparticles modified with PLZ4 ligands (PLZ4-Lip@AMSN/CRISPR/dCas9-SAM, PLACS NPs) for precise targeting of bladder tumors and co-delivery of CRISPR/dCas9-SAM system. With good stability and high plasmid loading capacity, they efficiently co-delivered dCas9-VP64, MS2-P65-HSF1, and sgRNA. Compared to Lipofectamine 3000, these nanoparticles exhibited superior lysosomal escape capability, significantly enhancing transfection efficiency in bladder cancer cells. Moreover, PLACS NPs simultaneously activated the expression of four target genes, inhibiting proliferation and migration, and promoting apoptosis in bladder cancer cells. In vivo, they achieved efficient gene editing at tumor sites, significantly inhibiting bladder tumor growth. Real-time imaging revealed their substantial accumulation and prolonged retention at bladder tumor sites without significant liver targeting and major organ damage, showcasing good specificity and biosafety. This study overcomes in vivo delivery challenges of multi-component CRISPR/dCas9 systems, enabling precise gene editing and anti-tumor effects, presenting an innovative strategy for targeted therapy in bladder cancer treatment. STATEMENT OF SIGNIFICANCE: This study introduces a newly-developed approach to address key challenges in bladder cancer gene therapy, namely low gene upregulation efficiency, limited targeting specificity, and inefficient nucleic acid delivery. By integrating the CRISPR/dCas9-SAM system, we achieve highly specific gene activation with minimal off-target effects, enabling the addition of treatment targets with just 20 nucleotides per target. To improve bladder cancer targeting, we developed PLACS NPs, a mesoporous silica nanoparticle system that enhances plasmid delivery, transfection efficiency, and endosomal escape. This system shows good tumor targeting and significant anti-tumor effects in bladder cancer, without significant liver targeting and major organ toxicity, offering promising therapeutic potential and broad clinical applications.
Collapse
Affiliation(s)
- Jinming Xu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Jiaju Xu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Chengfang Sun
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Xuhong He
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yichang Shu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Qi Huangfu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Longxiyu Meng
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Zhengxin Liang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Jingchao Wei
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Ming Cai
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Jiaming Wen
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Bohan Wang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
5
|
Liu X, Gao M, Bao J. Precisely Targeted Nanoparticles for CRISPR-Cas9 Delivery in Clinical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:540. [PMID: 40214585 PMCID: PMC11990453 DOI: 10.3390/nano15070540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR-Cas9), an emerging gene-editing technology, has recently gained rapidly increasing attention. However, the lack of efficient delivery vectors to deliver CRISPR-Cas9 to specific cells or tissues has hindered the translation of this biotechnology into clinical applications. Chemically synthesized nanoparticles (NPs), as attractive non-viral delivery platforms for CRISPR-Cas9, have been extensively investigated because of their unique characteristics, such as controllable size, high stability, multi-functionality, bio-responsive behavior, biocompatibility, and versatility in chemistry. In this review, the key considerations for the precise design of chemically synthesized-based nanoparticles include efficient encapsulation, cellular uptake, the targeting of specific tissues and cells, endosomal escape, and controlled release. We discuss cutting-edge strategies to integrate chemical modifications into non-viral nanoparticles that guide the CRISPR-Cas9 genome-editing machinery to specific edits. We also highlighted the rationale of intelligent nanoparticle design. In particular, we have summarized promising functional groups and molecules that can effectively optimize carrier function. In addition, this review focuses on advances in the widespread application of NPs delivery in the biomedical fields to promote the development of safe, specific, and efficient NPs for delivering CRISPR-Cas9 systems, providing references for accelerating their clinical translational applications.
Collapse
Affiliation(s)
| | | | - Ji Bao
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, National Health Commission of China, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Cavazza A, Molina-Estévez FJ, Reyes ÁP, Ronco V, Naseem A, Malenšek Š, Pečan P, Santini A, Heredia P, Aguilar-González A, Boulaiz H, Ni Q, Cortijo-Gutierrez M, Pavlovic K, Herrera I, de la Cerda B, Garcia-Tenorio EM, Richard E, Granados-Principal S, López-Márquez A, Köber M, Stojanovic M, Vidaković M, Santos-Garcia I, Blázquez L, Haughton E, Yan D, Sánchez-Martín RM, Mazini L, Aseguinolaza GG, Miccio A, Rio P, Desviat LR, Gonçalves MA, Peng L, Jiménez-Mallebrera C, Molina FM, Gupta D, Lainšček D, Luo Y, Benabdellah K. Advanced delivery systems for gene editing: A comprehensive review from the GenE-HumDi COST Action Working Group. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102457. [PMID: 39991472 PMCID: PMC11847086 DOI: 10.1016/j.omtn.2025.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
In the past decade, precise targeting through genome editing has emerged as a promising alternative to traditional therapeutic approaches. Genome editing can be performed using various platforms, where programmable DNA nucleases create permanent genetic changes at specific genomic locations due to their ability to recognize precise DNA sequences. Clinical application of this technology requires the delivery of the editing reagents to transplantable cells ex vivo or to tissues and organs for in vivo approaches, often representing a barrier to achieving the desired editing efficiency and safety. In this review, authored by members of the GenE-HumDi European Cooperation in Science and Technology (COST) Action, we described the plethora of delivery systems available for genome-editing components, including viral and non-viral systems, highlighting their advantages, limitations, and potential application in a clinical setting.
Collapse
Affiliation(s)
- Alessia Cavazza
- Molecular and Cellular Immunology Section, Department of Infection, Immunity & Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, 20 Guilford Street, London WC1N 1DZ, UK
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Via del Pozzo 71, 41125 Modena, Italy
| | - Francisco J. Molina-Estévez
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Fundación para la Investigación Biosanitaria de Andalucía Oriental, Alejandro Otero (FIBAO), Avda. de Madrid 15, 18012 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
| | - Álvaro Plaza Reyes
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Americo Vespucio, 24, 41092 Seville, Spain
| | - Victor Ronco
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
| | - Asma Naseem
- Molecular and Cellular Immunology Section, Department of Infection, Immunity & Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, 20 Guilford Street, London WC1N 1DZ, UK
| | - Špela Malenšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Kongresni trg, 1000 Ljubljana, Slovenia
| | - Peter Pečan
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Kongresni trg, 1000 Ljubljana, Slovenia
| | - Annalisa Santini
- Imagine Institute, UMR 163 INSERM, 24 Bd du Montparnasse, 75015 Paris, France
- Paris City University, 45 Rue des Saints-Pères, 75006 Paris, France
| | - Paula Heredia
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Department of Anatomy and Human Embryology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Araceli Aguilar-González
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry applied to Bio-medicine and the Environment, ” Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Houria Boulaiz
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Anatomy and Human Embryology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Qianqian Ni
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Marina Cortijo-Gutierrez
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
| | - Kristina Pavlovic
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
| | - Inmaculada Herrera
- Department of Hematology, Reina Sofía University Hospital, Av. Menéndez Pidal, Poniente Sur, 14004 Córdoba, Spain
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Cell Therapy, Av. Menéndez Pidal, Poniente Sur, 14004 Córdoba, Spain
| | - Berta de la Cerda
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Americo Vespucio, 24, 41092 Seville, Spain
| | - Emilio M. Garcia-Tenorio
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, IUBM, CIBERER, IDIPAZ, Universidad Autónoma de Madrid, C. de Pedro Rico, 6, Fuencarral-El Pardo, 28029 Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, IUBM, CIBERER, IDIPAZ, Universidad Autónoma de Madrid, C. de Pedro Rico, 6, Fuencarral-El Pardo, 28029 Madrid, Spain
| | - Sergio Granados-Principal
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Arístides López-Márquez
- Neuromuscular Unit, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, C. de Sta. Rosa, 39, 08950 Barcelona, Spain
- Biomedical Research Network on Rare Diseases (CIBERER), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Gran Via de les Corts Catalanes, 585, L'Eixample, 08007 Barcelona, Spain
| | - Mariana Köber
- Biomedical Research Network on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Marijana Stojanovic
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar despota Stefana 142, 10060 Belgrade, Serbia
| | - Melita Vidaković
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar despota Stefana 142, 10060 Belgrade, Serbia
| | - Irene Santos-Garcia
- Department of Neurosciences, Biogipuzkoa Health Research Institute, Paseo Dr. Begiristain, s/n, 20014 San Sebastián, Gipuzkoa, Spain
| | - Lorea Blázquez
- Department of Neurosciences, Biogipuzkoa Health Research Institute, Paseo Dr. Begiristain, s/n, 20014 San Sebastián, Gipuzkoa, Spain
- CIBERNED, ISCIII CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Av. de Monforte de Lemos, 5, Fuencarral-El Pardo, 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Euskadi Pl., 5, Abando, 48009 Bilbao, Biscay, Spain
| | - Emily Haughton
- Institute of Developmental & Regenerative Medicine, University of Oxford, Campus, Old Rd, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
| | - Dongnan Yan
- Institute of Developmental & Regenerative Medicine, University of Oxford, Campus, Old Rd, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rosario María Sánchez-Martín
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry applied to Bio-medicine and the Environment, ” Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Loubna Mazini
- Technological, Medical and Academic Park (TMAP), N°109, Abdelkrim Elkhatabi, Bd Abdelkrim Al Khattabi, Marrakech 40000, Morocco
| | - Gloria Gonzalez Aseguinolaza
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Av. de Pío XII, 55, 31008 Pamplona, Navarra, Spain
- Vivet Therapeutics, Av. de Pío XII 31, 31008 Pamplona, Navarra, Spain
| | - Annarita Miccio
- Imagine Institute, UMR 163 INSERM, 24 Bd du Montparnasse, 75015 Paris, France
- Paris City University, 45 Rue des Saints-Pères, 75006 Paris, France
| | - Paula Rio
- Biomedical Research Network on Rare Diseases (CIBERER), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
- Division of Hematopoietic Innovative Therapies, CIEMAT, Av. Complutense, 40, Moncloa - Aravaca, 28040 Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Av. de los Reyes Católicos, 2, Moncloa - Aravaca, 28040 Madrid, Spain
| | - Lourdes R. Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, IUBM, CIBERER, IDIPAZ, Universidad Autónoma de Madrid, C. de Pedro Rico, 6, Fuencarral-El Pardo, 28029 Madrid, Spain
| | - Manuel A.F.V. Gonçalves
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Ling Peng
- Aix-Marseille Universite, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, “Equipe Labellisee Ligue Ćontre le Cancer”, Campus de Luminy, case 913, 13009 Marseille, France
| | - Cecilia Jiménez-Mallebrera
- Neuromuscular Unit, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, C. de Sta. Rosa, 39, 08950 Barcelona, Spain
- Biomedical Research Network on Rare Diseases (CIBERER), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
| | - Francisco Martin Molina
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University of Granada, Av. de Madrid, 15, Beiro, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Dhanu Gupta
- Institute of Developmental & Regenerative Medicine, University of Oxford, Campus, Old Rd, Roosevelt Dr, Headington, Oxford OX3 7TY, UK
- Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Huddinge, Sweden
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Centre for Technologies of Gene and Cell Therapy, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000 Ljubljana, Slovenia
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karim Benabdellah
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Av. de la Ilustración, 114, 18016 Granada, Spain
| |
Collapse
|
7
|
Liu B, Liu W, Xu M, Zhao T, Zhou B, Zhou R, Zhu Z, Chen X, Bao Z, Wang K, Li H. Drug delivery systems based on mesoporous silica nanoparticles for the management of hepatic diseases. Acta Pharm Sin B 2025; 15:809-833. [PMID: 40177563 PMCID: PMC11959912 DOI: 10.1016/j.apsb.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 04/05/2025] Open
Abstract
The liver performs multiple life-sustaining functions. Hepatic diseases, including hepatitis, cirrhosis, and hepatoma, pose significant health and economic burdens globally. Along with the advances in nanotechnology, mesoporous silica nanoparticles (MSNs) exhibiting diversiform size and shape, distinct morphological properties, and favorable physico-chemical features have become an ideal choice for drug delivery systems and inspire alternative thinking for the management of hepatic diseases. Initially, we introduce the physiological structure of the liver and highlight its intrinsic cell types and correlative functions. Next, we detail the synthesis methods and physicochemical properties of MSNs and their capacity for controlled drug loading and release. Particularly, we discuss the interactions between liver and MSNs with respect to the passive targeting mechanisms of MSNs within the liver by adjusting their particle size, pore diameter, surface charge, hydrophobicity/hydrophilicity, and surface functionalization. Subsequently, we emphasize the role of MSNs in regulating liver pathophysiology, exploring their value in addressing liver pathological states, such as tumors and inflammation, combined with multi-functional designs and intelligent modes to enhance drug targeting and minimize side effects. Lastly, we put forward the problems, challenges, opportunities, as well as clinical translational issues faced by MSNs in the management of liver diseases.
Collapse
Affiliation(s)
- Boyan Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
- China Medical University and Queen University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Wenshi Liu
- Department of Organ Transplantation and Hepatobiliary, the First Hospital of China Medical University, Shenyang 110001, China
| | - Miao Xu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Tongyi Zhao
- School of Pharmacy, China Medical University, Shenyang 110122, China
- China Medical University and Queen University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Bingxin Zhou
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ruilin Zhou
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ze Zhu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xuchun Chen
- Department of Organ Transplantation and Hepatobiliary, the First Hospital of China Medical University, Shenyang 110001, China
| | - Zhiye Bao
- Department of Organ Transplantation and Hepatobiliary, the First Hospital of China Medical University, Shenyang 110001, China
| | - Keke Wang
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang 110001, China
| | - Heran Li
- School of Pharmacy, China Medical University, Shenyang 110122, China
- China Medical University and Queen University of Belfast Joint College, China Medical University, Shenyang 110122, China
| |
Collapse
|
8
|
Fatima H, Singh D, Muhammad H, Acharya S, Aziz MA. Improving the use of CRISPR/Cas9 gene editing machinery as a cancer therapeutic tool with the help of nanomedicine. 3 Biotech 2025; 15:17. [PMID: 39711922 PMCID: PMC11656010 DOI: 10.1007/s13205-024-04186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) has revolutionized gene editing tools and paved the way for innovations in medical research for disease diagnosis and treatment. However, better specificity and efficient delivery of this gene machinery make it challenging to successfully edit genes for treating various diseases. This is mainly due to cellular barriers, instability in biological environments, and various off-target effects that prohibit safe and efficient delivery under in vivo conditions. This review examines several delivery modes [plasmid, mRNA, RNP (ribonucleoprotein)] and methods for the CRISPR-Cas9 system delivery, focusing on its potential applications in cancer therapy. Biocompatibility and cytotoxicity are crucial factors determining their safe and effective use. Various nanomaterials have been reviewed for their biocompatibility, limitations, and challenges in treating cancer. Among the reviewed nanoparticles, lipid nanoparticles (LNPs) stand out for their biocompatibility due to their biomimetic lipid bilayer that effectively delivers CRISPR/Cas9 cargoes while reducing toxicity. We discuss challenges in in vivo delivery and associated findings such as encapsulation, target delivery, controlled release, and endosomal escape. Future directions involve addressing limitations and adapting CRISPR-Cas9 for clinical trials, ensuring its safe and effective use.
Collapse
Affiliation(s)
- Hina Fatima
- Polymer and Process Engineering Department, Indian Institute of Technology Roorkee, Uttarakhand, 247001 India
- College of Medicine, Alfaisal University, 11533 Riyadh, Saudi Arabia
| | - Dimple Singh
- Department of Paper Technology, Indian Institute of Technology, Roorkee, Uttarakhand 247001 India
| | - Huzaifa Muhammad
- College of Medicine, Alfaisal University, 11533 Riyadh, Saudi Arabia
| | - Swati Acharya
- Cancer Nanomedicine Lab, Interdisciplinary Nanotechnology Center, Aligarh Muslim University, Aligarh, UP 202002 India
| | - Mohammad Azhar Aziz
- Cancer Nanomedicine Lab, Interdisciplinary Nanotechnology Center, Aligarh Muslim University, Aligarh, UP 202002 India
- Cancer Nanomedicine Consortium, Aligarh Muslim University, Aligarh, UP 202002 India
| |
Collapse
|
9
|
Chen W, Lai Q, Zhang Y, Mo L, Liu Z. Targeted Delivery of Peptide Nucleic Acid by Biomimetic Nanoparticles based on Extracellular Vesicle-coated Mesoporous Silica Nanoparticles. Curr Med Chem 2025; 32:1378-1390. [PMID: 38251696 DOI: 10.2174/0109298673266457231123042819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/05/2023] [Accepted: 10/27/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Peptide nucleic acid (PNA) plays an important role in antimicrobial activity, but its cellular permeability is poor. To overcome this limitation, we constructed biomimetic nanoparticles by using extracellular vesicle (EV)-coated mesoporous silicon nanoparticles (MSNs) to deliver PNA to Staphylococcus aureus (S. aureus) and improve its antisense therapeutic effect. METHODS MSN was prepared by the sol-gel method, and EV was extracted by affinity resin chromatography. EV was coated on MSN by simple sonication (50 W, 3 mins) to prepare biomimetic nanoparticles with PNA-loaded MSN as the core and EV isolated from S. aureus as the shell. RESULTS The MSN prepared by the sol-gel method had a uniform particle size (100 nm) and well-defined pore size for loading PNA with good encapsulation efficiency (62.92%) and drug loading (7.74%). The concentration of EV extracted by affinity resin chromatography was about 1.74 mg/mL. EV could be well coated on MSN through simple ultrasonic treatment (50 W, 3 mins), and the stability and blood compatibility of MSN@ EV were good. Internalization experiments showed that EV could selectively enhance the uptake of biomimetic nanoparticles by S. aureus. Preliminary in vitro antibacterial tests revealed that PNA@MSN@EV exhibited enhanced antibacterial activity against S. aureus and had stronger bactericidal activity than free PNA and PNA@MSN at equivalent PNA concentrations (8 μM). CONCLUSION Biomimetic nanoparticles based on EV-coated MSN offer a new strategy to improve the efficacy of PNA for the treatment of bacterial infections, and the technology holds promise for extension to the delivery of antibiotics that are traditionally minimally effective or prone to resistance.
Collapse
Affiliation(s)
- Wei Chen
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Qingteng Lai
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Yanke Zhang
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Long Mo
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhengchun Liu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| |
Collapse
|
10
|
Merlin JPJ, Abrahamse H. Optimizing CRISPR/Cas9 precision: Mitigating off-target effects for safe integration with photodynamic and stem cell therapies in cancer treatment. Biomed Pharmacother 2024; 180:117516. [PMID: 39332185 DOI: 10.1016/j.biopha.2024.117516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024] Open
Abstract
CRISPR/Cas9 precision genome editing has revolutionized cancer treatment by introducing specific alterations to the cancer genome. But the therapeutic potential of CRISPR/Cas9 is limited by off-target effects, which can cause undesired changes to genomic regions and create major safety concerns. The primary emphasis lies in their implications within the realm of cancer photodynamic therapy (PDT), where precision is paramount. PDT is a promising cancer treatment method; nevertheless, its effectiveness is severely limited and readily leads to recurrence due to the therapeutic resistance of cancer stem cells (CSCs). With a focus on targeted genome editing into cancer cells during PDT and stem cell treatment (SCT), the review aims to further the ongoing search for safer and more accurate CRISPR/Cas9-mediated methods. At the core of this exploration are recent advancements and novel techniques that offer promise in mitigating the risks associated with off-target effects. With a focus on cancer PDT and SCT, this review critically assesses the landscape of off-target effects in CRISPR/Cas9 applications, offering a comprehensive knowledge of their nature and prevalence. A key component of the review is the assessment of cutting-edge delivery methods, such as technologies based on nanoparticles (NPs), to optimize the distribution of CRISPR components. Additionally, the study delves into the intricacies of guide RNA design, focusing on advancements that bolster specificity and minimize off-target effects, crucial elements in ensuring the precision required for effective cancer PDT and SCT. By synthesizing insights from various methodologies, including the exploration of innovative genome editing tools and leveraging robust validation methods and bioinformatics tools, the review aspires to chart a course towards more reliable and precise CRISPR-Cas9 applications in cancer PDT and SCT. For safe PDT and SCT integration in cancer therapy, CRISPR/Cas9 precision optimization is essential. Utilizing sophisticated molecular and computational techniques to address off-target effects is crucial to realizing the therapeutic promise of these technologies, which will ultimately lead to the development of individualized and successful cancer treatment strategies. Our long-term goals are to improve precision genome editing for more potent cancer therapy approaches by refining the way CRISPR/Cas9 is integrated with photodynamic and stem cell therapies.
Collapse
Affiliation(s)
- J P Jose Merlin
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, South Africa
| |
Collapse
|
11
|
Kachanov A, Kostyusheva A, Brezgin S, Karandashov I, Ponomareva N, Tikhonov A, Lukashev A, Pokrovsky V, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. The menace of severe adverse events and deaths associated with viral gene therapy and its potential solution. Med Res Rev 2024; 44:2112-2193. [PMID: 38549260 DOI: 10.1002/med.22036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, in vivo gene replacement therapy has significantly advanced, resulting in market approval of numerous therapeutics predominantly relying on adeno-associated viral vectors (AAV). While viral vectors have undeniably addressed several critical healthcare challenges, their clinical application has unveiled a range of limitations and safety concerns. This review highlights the emerging challenges in the field of gene therapy. At first, we discuss both the role of biological barriers in viral gene therapy with a focus on AAVs, and review current landscape of in vivo human gene therapy. We delineate advantages and disadvantages of AAVs as gene delivery vehicles, mostly from the safety perspective (hepatotoxicity, cardiotoxicity, neurotoxicity, inflammatory responses etc.), and outline the mechanisms of adverse events in response to AAV. Contribution of every aspect of AAV vectors (genomic structure, capsid proteins) and host responses to injected AAV is considered and substantiated by basic, translational and clinical studies. The updated evaluation of recent AAV clinical trials and current medical experience clearly shows the risks of AAVs that sometimes overshadow the hopes for curing a hereditary disease. At last, a set of established and new molecular and nanotechnology tools and approaches are provided as potential solutions for mitigating or eliminating side effects. The increasing number of severe adverse reactions and, sadly deaths, demands decisive actions to resolve the issue of immune responses and extremely high doses of viral vectors used for gene therapy. In response to these challenges, various strategies are under development, including approaches aimed at augmenting characteristics of viral vectors and others focused on creating secure and efficacious non-viral vectors. This comprehensive review offers an overarching perspective on the present state of gene therapy utilizing both viral and non-viral vectors.
Collapse
Affiliation(s)
- Artyom Kachanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Ivan Karandashov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Andrey Tikhonov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Vadim Pokrovsky
- Laboratory of Biochemical Fundamentals of Pharmacology and Cancer Models, Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People's Friendship University, Russia (RUDN University), Moscow, Russia
| | - Andrey A Zamyatnin
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Research, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Li T, Li S, Kang Y, Zhou J, Yi M. Harnessing the evolving CRISPR/Cas9 for precision oncology. J Transl Med 2024; 22:749. [PMID: 39118151 PMCID: PMC11312220 DOI: 10.1186/s12967-024-05570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system, a groundbreaking innovation in genetic engineering, has revolutionized our approach to surmounting complex diseases, culminating in CASGEVY™ approved for sickle cell anemia. Derived from a microbial immune defense mechanism, CRISPR/Cas9, characterized as precision, maneuverability and universality in gene editing, has been harnessed as a versatile tool for precisely manipulating DNA in mammals. In the process of applying it to practice, the consecutive exploitation of novel orthologs and variants never ceases. It's conducive to understanding the essentialities of diseases, particularly cancer, which is crucial for diagnosis, prevention, and treatment. CRISPR/Cas9 is used not only to investigate tumorous genes functioning but also to model disparate cancers, providing valuable insights into tumor biology, resistance, and immune evasion. Upon cancer therapy, CRISPR/Cas9 is instrumental in developing individual and precise cancer therapies that can selectively activate or deactivate genes within tumor cells, aiming to cripple tumor growth and invasion and sensitize cancer cells to treatments. Furthermore, it facilitates the development of innovative treatments, enhancing the targeting efficiency of reprogrammed immune cells, exemplified by advancements in CAR-T regimen. Beyond therapy, it is a potent tool for screening susceptible genes, offering the possibility of intervening before the tumor initiative or progresses. However, despite its vast potential, the application of CRISPR/Cas9 in cancer research and therapy is accompanied by significant efficacy, efficiency, technical, and safety considerations. Escalating technology innovations are warranted to address these issues. The CRISPR/Cas9 system is revolutionizing cancer research and treatment, opening up new avenues for advancements in our understanding and management of cancers. The integration of this evolving technology into clinical practice promises a new era of precision oncology, with targeted, personalized, and potentially curative therapies for cancer patients.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China
| | - Shuiquan Li
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Yue Kang
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China.
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
13
|
Masarwy R, Stotsky-Oterin L, Elisha A, Hazan-Halevy I, Peer D. Delivery of nucleic acid based genome editing platforms via lipid nanoparticles: Clinical applications. Adv Drug Deliv Rev 2024; 211:115359. [PMID: 38857763 DOI: 10.1016/j.addr.2024.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
CRISPR/Cas technology presents a promising approach for treating a wide range of diseases, including cancer and genetic disorders. Despite its potential, the translation of CRISPR/Cas into effective in-vivo gene therapy encounters challenges, primarily due to the need for safe and efficient delivery mechanisms. Lipid nanoparticles (LNPs), FDA-approved for RNA delivery, show potential for delivering also CRISPR/Cas, offering the capability to efficiently encapsulate large mRNA molecules with single guide RNAs. However, achieving precise targeting in-vivo remains a significant obstacle, necessitating further research into optimizing LNP formulations. Strategies to enhance specificity, such as modifying LNP structures and incorporating targeting ligands, are explored to improve organ and cell type targeting. Furthermore, the development of base and prime editing technology presents a potential breakthrough, offering precise modifications without generating double-strand breaks (DSBs). Prime editing, particularly when delivered via targeted LNPs, holds promise for treating diverse diseases safely and precisely. This review assesses both the progress made and the persistent challenges faced in using LNP-encapsulated CRISPR-based technologies for therapeutic purposes, with a particular focus on clinical translation.
Collapse
Affiliation(s)
- Razan Masarwy
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Aviad Elisha
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Hazan-Halevy
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.
| | - Dan Peer
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Fan QQ, Tian H, Cheng JX, Zou JB, Luan F, Qiao JX, Zhang D, Tian Y, Zhai BT, Guo DY. Research progress of sorafenib drug delivery system in the treatment of hepatocellular carcinoma: An update. Biomed Pharmacother 2024; 177:117118. [PMID: 39002440 DOI: 10.1016/j.biopha.2024.117118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors in the contemporary era, representing a significant global health concern. Early HCC patients have mild symptoms or are asymptomatic, which promotes the onset and progression of the disease. Moreover, advanced HCC is insensitive to chemotherapy, making traditional clinical treatment unable to block cancer development. Sorafenib (SFB) is a first-line targeted drug for advanced HCC patients with anti-angiogenesis and anti-tumor cell proliferation effects. However, the efficacy of SFB is constrained by its off-target distribution, rapid metabolism, and multi-drug resistance. In recent years, nanoparticles based on a variety of materials have been demonstrated to enhance the targeting and therapeutic efficacy of SFB against HCC. Concurrently, the advent of joint drug delivery systems has furnished crucial empirical evidence for reversing SFB resistance. This review will summarize the application of nanotechnology in the field of HCC treatment over the past five years. It will focus on the research progress of SFB delivery systems combined with multiple therapeutic modalities in HCC treatment.
Collapse
Affiliation(s)
- Qiang-Qiang Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, 710021, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Fei Luan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jia-Xin Qiao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Dan Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Yuan Tian
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| |
Collapse
|
15
|
Ma Y, Liao J, Cheng H, Yang Q, Yang H. Advanced gene therapy system for the treatment of solid tumour: A review. Mater Today Bio 2024; 27:101138. [PMID: 39027677 PMCID: PMC11255123 DOI: 10.1016/j.mtbio.2024.101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/20/2024] Open
Abstract
In contrast to conventional therapies that require repeated dosing, gene therapy can treat diseases by correcting defective genes after a single transfection and achieving cascade amplification, and has been widely studied in clinical settings. However, nucleic acid drugs are prone to catabolism and inactivation. A variety of nucleic acid drug vectors have been developed to protect the target gene against nuclease degradation and increase the transformation efficiency and safety of gene therapy. In addition, gene therapy is often combined with chemotherapy, phototherapy, magnetic therapy, ultrasound, and other therapeutic modalities to improve the therapeutic effect. This review systematically introduces ribonucleic acid (RNA) interference technology, antisense oligonucleotides, and clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9 (CRISPR/Cas9) genome editing. It also introduces the commonly used nucleic acid drug vectors, including viral vectors (adenovirus, retrovirus, etc.), organic vectors (lipids, polymers, etc.), and inorganic vectors (MOFs, carbon nanotubes, mesoporous silica, etc.). Then, we describe the combined gene therapy modalities and the pathways of action and report the recent applications in solid tumors of the combined gene therapy. Finally, the challenges of gene therapy in solid tumor treatment are introduced, and the prospect of application in this field is presented.
Collapse
Affiliation(s)
- Yuhan Ma
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
| | - Juan Liao
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Hongxia Cheng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
| | - Qian Yang
- Centre for Immune-oncology, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7BN, UK
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
16
|
Cuoghi S, Caraffi R, Anderlini A, Baraldi C, Enzo E, Vandelli MA, Tosi G, Ruozi B, Duskey JT, Ottonelli I. Challenges of enzyme therapy: Why two players are better than one. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1979. [PMID: 38955512 DOI: 10.1002/wnan.1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Enzyme-based therapy has garnered significant attention for its current applications in various diseases. Despite the notable advantages associated with the use of enzymes as therapeutic agents, that could have high selectivity, affinity, and specificity for the target, their application faces challenges linked to physico-chemical and pharmacological properties. These limitations can be addressed through the encapsulation of enzymes in nanoplatforms as a comprehensive solution to mitigate their degradation, loss of activity, off-target accumulation, and immunogenicity, thus enhancing bioavailability, therapeutic efficacy, and circulation time, thereby reducing the number of administrations, and ameliorating patient compliance. The exploration of novel nanomedicine-based enzyme therapeutics for the treatment of challenging diseases stands as a paramount goal in the contemporary scientific landscape, but even then it is often not enough. Combining an enzyme with another therapeutic (e.g., a small molecule, another enzyme or protein, a monoclonal antibody, or a nucleic acid) within a single nanocarrier provides innovative multidrug-integrated therapy and ensures that both the actives arrive at the target site and exert their therapeutic effect, leading to synergistic action and superior therapeutic efficacy. Moreover, this strategic approach could be extended to gene therapy, a field that nowadays has gained increasing attention, as enzymes acting at genomic level and nucleic acids may be combined for synergistic therapy. This multicomponent therapeutic approach opens opportunities for promising future developments. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Sabrina Cuoghi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Riccardo Caraffi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Anderlini
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Baraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
17
|
Palaz F, Ozsoz M, Zarrinpar A, Sahin I. CRISPR in Targeted Therapy and Adoptive T Cell Immunotherapy for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:975-995. [PMID: 38832119 PMCID: PMC11146628 DOI: 10.2147/jhc.s456683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Despite recent therapeutic advancements, outcomes for advanced hepatocellular carcinoma (HCC) remain unsatisfactory, highlighting the need for novel treatments. The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene-editing technology offers innovative treatment approaches, involving genetic manipulation of either cancer cells or adoptive T cells to combat HCC. This review comprehensively assesses the applications of CRISPR systems in HCC treatment, focusing on in vivo targeting of cancer cells and the development of chimeric antigen receptor (CAR) T cells and T cell receptor (TCR)-engineered T cells. We explore potential synergies between CRISPR-based cancer therapeutics and existing treatment options, discussing ongoing clinical trials and the role of CRISPR technology in improving HCC treatment outcomes with advanced safety measures. In summary, this review provides insights into the promising prospects and current challenges of using CRISPR technology in HCC treatment, with the ultimate goal of improving patient outcomes and revolutionizing the landscape of HCC therapeutics.
Collapse
Affiliation(s)
- Fahreddin Palaz
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, Nicosia, Turkey
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Ilyas Sahin
- University of Florida Health Cancer Center, Gainesville, FL, USA
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
18
|
Yin X, Rong J, Shao M, Zhang S, Yin L, He Z, Wang X. Aptamer-functionalized nanomaterials (AFNs) for therapeutic management of hepatocellular carcinoma. J Nanobiotechnology 2024; 22:243. [PMID: 38735927 PMCID: PMC11089756 DOI: 10.1186/s12951-024-02486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents one of the deadliest cancers globally, making the search for more effective diagnostic and therapeutic approaches particularly crucial. Aptamer-functionalized nanomaterials (AFNs), an innovative nanotechnology, have paved new pathways for the targeted diagnosis and treatment of HCC. Initially, we outline the epidemiological background of HCC and the current therapeutic challenges. Subsequently, we explore in detail how AFNs enhance diagnostic and therapeutic efficiency and reduce side effects through the specific targeting of HCC cells and the optimization of drug delivery. Furthermore, we address the challenges faced by AFNs in clinical applications and future research directions, with a particular focus on enhancing their biocompatibility and assessing long-term effects. In summary, AFNs represent an avant-garde therapeutic approach, opening new avenues and possibilities for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xiujuan Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jing Rong
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Min Shao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Saisai Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Likang Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Zhenqiang He
- Clinical Medical College, Hebei University, Baoding, 071002, Hebei, China
| | - Xiao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
19
|
Xu Z. CRISPR/Cas9-mediated silencing of CD44: unveiling the role of hyaluronic acid-mediated interactions in cancer drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2849-2876. [PMID: 37991544 DOI: 10.1007/s00210-023-02840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
A comprehensive overview of CD44 (CD44 Molecule (Indian Blood Group)), a cell surface glycoprotein, and its interaction with hyaluronic acid (HA) in drug resistance mechanisms across various types of cancer is provided, where CRISPR/Cas9 gene editing was utilized to silence CD44 expression and examine its impact on cancer cell behavior, migration, invasion, proliferation, and drug sensitivity. The significance of the HA-CD44 axis in tumor microenvironment (TME) delivery and its implications in specific cancer types, the influence of CD44 variants and the KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) gene on cancer progression and drug resistance, and the potential of targeting HA-mediated pathways using CRISPR/Cas9 gene editing technology to overcome drug resistance in cancer were also highlighted.
Collapse
Affiliation(s)
- Zhujun Xu
- Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China.
| |
Collapse
|
20
|
Li M, Chen F, Yang Q, Tang Q, Xiao Z, Tong X, Zhang Y, Lei L, Li S. Biomaterial-Based CRISPR/Cas9 Delivery Systems for Tumor Treatment. Biomater Res 2024; 28:0023. [PMID: 38694229 PMCID: PMC11062511 DOI: 10.34133/bmr.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
CRISPR/Cas9 gene editing technology is characterized by high specificity and efficiency, and has been applied to the treatment of human diseases, especially tumors involving multiple genetic modifications. However, the clinical application of CRISPR/Cas9 still faces some major challenges, the most urgent of which is the development of optimized delivery vectors. Biomaterials are currently the best choice for use in CRISPR/Cas9 delivery vectors owing to their tunability, biocompatibility, and efficiency. As research on biomaterial vectors continues to progress, hope for the application of the CRISPR/Cas9 system for clinical oncology therapy builds. In this review, we first detail the CRISPR/Cas9 system and its potential applications in tumor therapy. Then, we introduce the different delivery forms and compare the physical, viral, and non-viral vectors. In addition, we analyze the characteristics of different types of biomaterial vectors. We further review recent research progress in the use of biomaterials as vectors for CRISPR/Cas9 delivery to treat specific tumors. Finally, we summarize the shortcomings and prospects of biomaterial-based CRISPR/Cas9 delivery systems.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Fenglei Chen
- College of Veterinary Medicine, Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses,
Yangzhou University, Yangzhou 225009, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Ying Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
21
|
Yu S, Tong L, Shen J, Li C, Hu Y, Feng K, Shao J. Recent research progress based on ferroptosis-related signaling pathways and the tumor microenvironment on it effects. Eur J Med Chem 2024; 269:116290. [PMID: 38518522 DOI: 10.1016/j.ejmech.2024.116290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/24/2024]
Abstract
The existing therapies for cancer are not remote satisfactory due to drug-resistance in tumors that are malignant. There is a pressing necessity to take a step forward to develop innovative therapies that can complement current ones. Multiple investigations have demonstrated that ferroptosis therapy, a non-apoptotic modality of programmed cell death, has tremendous potential in face of multiple crucial events, such as drug resistance and toxicity in aggressive malignancies. Recently, ferroptosis at the crosswalk of chemotherapy, materials science, immunotherapy, tumor microenvironment, and bionanotechnology has been presented to elucidate its therapeutic feasibility. Given the burgeoning progression of ferroptosis-based nanomedicine, the newest advancements in this field at the confluence of ferroptosis-inducers, nanotherapeutics, along with tumor microenvironment are given an overview. Here, the signaling pathways of ferroptosis-related were first talked about briefly. The emphasis discussion was placed on the pharmacological mechanisms and the nanodrugs design of ferroptosis inducing agents based on multiple distinct metabolism pathways. Additionally, a comprehensive overview of the action mechanisms by which the tumor microenvironment influences ferroptosis was elaborately descripted. Finally, some limitations of current researches and future research directions were also deliberately discussed to provide details about therapeutic avenues for ferroptosis-related diseases along with the design of anti-drugs.
Collapse
Affiliation(s)
- Shijing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lingwu Tong
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chenglei Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yongshan Hu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Keke Feng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
22
|
Hii ARK, Qi X, Wu Z. Advanced strategies for CRISPR/Cas9 delivery and applications in gene editing, therapy, and cancer detection using nanoparticles and nanocarriers. J Mater Chem B 2024; 12:1467-1489. [PMID: 38288550 DOI: 10.1039/d3tb01850d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Cancer remains one of the deadliest diseases, and is characterised by the uncontrolled growth of modified human cells. Unlike infectious diseases, cancer does not originate from foreign agents. Though a variety of diagnostic procedures are available; their cost-effectiveness and accessibility create significant hurdles. Non-specific cancer symptoms further complicate early detection, leading to belated recognition of certain cancer. The lack of reliable biomarkers hampers effective treatment, as chemotherapy, radiation therapy, and surgery often result in poor outcomes and high recurrence rates. Genetic and epigenetic mutations play a crucial role in cancer pathogenesis, necessitating the development of alternate treatment methods. The advent of CRISPR/Cas9 technology has transformed molecular biology and exhibits potential for gene modification and therapy in various cancer types. Nonetheless, obstacles such as safe transport, off-target consequences, and potency must be overcome before widespread clinical use. Notably, this review delves into the multifaceted landscape of cancer research, highlighting the pivotal role of nanoparticles in advancing CRISPR/Cas9-based cancer interventions. By addressing the challenges associated with cancer diagnosis and treatment, this integrated approach paves the way for innovative solutions and improved patient outcomes.
Collapse
Affiliation(s)
| | - Xiaole Qi
- Industrial Technology Innovation Platform, Zhejiang Center for Safety Study of Drug Substances, China Pharmaceutical University, 210009, 310018, Nanjing, Hangzhou, P. R. China.
| | - Zhenghong Wu
- Pharmaceutical University, 210009, Nanjing, P. R. China.
| |
Collapse
|
23
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
24
|
Li Y, Zhou S, Wu Q, Gong C. CRISPR/Cas gene editing and delivery systems for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1938. [PMID: 38456346 DOI: 10.1002/wnan.1938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024]
Abstract
CRISPR/Cas systems stand out because of simplicity, efficiency, and other superiorities, thus becoming attractive and brilliant gene-editing tools in biomedical field including cancer therapy. CRISPR/Cas systems bring promises for cancer therapy through manipulating and engineering on tumor cells or immune cells. However, there have been concerns about how to overcome the numerous physiological barriers and deliver CRISPR components to target cells efficiently and accurately. In this review, we introduced the mechanisms of CRISPR/Cas systems, summarized the current delivery strategies of CRISPR/Cas systems by physical methods, viral vectors, and nonviral vectors, and presented the current application of CRISPR/Cas systems in cancer clinical treatment. Furthermore, we discussed prospects related to delivery approaches of CRISPR/Cas systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyao Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Sharma S, Choubey R, Gupta M, Singh S. Heterocyclic-Based Analogues against Sarcine-Ricin Loop RNA from Escherichia coli: In Silico Molecular Docking Study and Machine Learning Classifiers. Med Chem 2024; 20:452-465. [PMID: 38333980 DOI: 10.2174/0115734064266329231228050535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Heterocyclic-based drugs have strong bioactivities, are active pharmacophores, and are used to design several antibacterial drugs. Due to the diverse biodynamic properties of well-known heterocyclic cores, such as quinoline, indole, and its derivatives, they have a special place in the chemistry of nitrogen-containing heterocyclic molecules. OBJECTIVES The objective of this study is to analyze the interaction of several heterocyclic molecules using molecular docking and machine learning approaches to find out the possible antibacterial drugs. METHODS The molecular docking analysis of heterocyclic-based analogues against the sarcin-Ricin Loop RNA from E. coli with a C2667-2'-OCF3 modification (PDB ID: 6ZYB) is discussed. RESULTS Many heterocyclic-based derivatives show several residual interaction, affinity, and hydrogen bonding with sarcin-Ricin Loop RNA from E. coli with a C2667-2'-OCF3 alteration which are identified by the investigation of in silico molecular docking analysis of such heterocyclic derivatives. CONCLUSION The dataset from the molecular docking study was used for additional optimum analysis, and the molecular descriptors were classified using a variety of machine learning classifiers, including the GB Classifier, CB Classifier, RF Classifier, SV Classifier, KNN Classifier, and Voting Classifier. The research presented here showed that heterocyclic derivatives may operate as potent antibacterial agents when combined with other compounds to produce highly efficient antibacterial agents.
Collapse
Affiliation(s)
- Shivangi Sharma
- Department of Applied Chemistry, Amity School of Engineering & Technology, Amity University Madhya Pradesh, Maharajpura Dang, Gwalior-474 005, India
| | - Rahul Choubey
- Department of Computer Science and Engineering, Amity School of Engineering & Technology, Amity University Madhya Pradesh, Maharajpura Dang, Gwalior-474 005, India
| | - Manish Gupta
- Department of Computer Science and Engineering, Amity School of Engineering & Technology, Amity University Madhya Pradesh, Maharajpura Dang, Gwalior-474 005, India
| | - Shivendra Singh
- Department of Applied Chemistry, Amity School of Engineering & Technology, Amity University Madhya Pradesh, Maharajpura Dang, Gwalior-474 005, India
| |
Collapse
|
26
|
Wang Z, Wu C, Liu J, Hu S, Yu J, Yin Q, Tian H, Ding Z, Qi G, Wang L, Hao L. Aptamer-mediated hollow MnO 2 for targeting the delivery of sorafenib. Drug Deliv 2023; 30:28-39. [DOI: 10.1080/10717544.2022.2149897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Ziyue Wang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Cuicui Wu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Jinren Liu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Shunxin Hu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Junli Yu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Qiangqiamg Yin
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Hongda Tian
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Zhipeng Ding
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Guiqiang Qi
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Li Wang
- Department of Personnel, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Liguo Hao
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
27
|
Lin M, Wang X. Natural Biopolymer-Based Delivery of CRISPR/Cas9 for Cancer Treatment. Pharmaceutics 2023; 16:62. [PMID: 38258073 PMCID: PMC10819213 DOI: 10.3390/pharmaceutics16010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Over the last decade, the clustered, regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has become the most promising gene editing tool and is broadly utilized to manipulate the gene for disease treatment, especially for cancer, which involves multiple genetic alterations. Typically, CRISPR/Cas9 machinery is delivered in one of three forms: DNA, mRNA, or ribonucleoprotein. However, the lack of efficient delivery systems for these macromolecules confined the clinical breakthrough of this technique. Therefore, a variety of nanomaterials have been fabricated to improve the stability and delivery efficiency of the CRISPR/Cas9 system. In this context, the natural biopolymer-based carrier is a particularly promising platform for CRISPR/Cas9 delivery due to its great stability, low toxicity, excellent biocompatibility, and biodegradability. Here, we focus on the advances of natural biopolymer-based materials for CRISPR/Cas9 delivery in the cancer field and discuss the challenges for their clinical translation.
Collapse
Affiliation(s)
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Chowdhry R, Lu SZ, Lee S, Godhulayyagari S, Ebrahimi SB, Samanta D. Enhancing CRISPR/Cas systems with nanotechnology. Trends Biotechnol 2023; 41:1549-1564. [PMID: 37451945 DOI: 10.1016/j.tibtech.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
CRISPR/Cas systems have revolutionized biology and medicine, and have led to new paradigms in disease diagnostics and therapeutics. However, these complexes suffer from key limitations regarding barriers to cellular entry, stability in biological environments, and off-target effects. Integrating nanotechnology with CRISPR/Cas systems has emerged as a promising strategy to overcome these challenges and has further unlocked structures that accumulate preferentially in tissues of interest, have tunable pharmacological properties, and are activated in response to desired stimuli. Nanomaterials can also enhance CRISPR/Cas-mediated detection platforms by enabling faster, more sensitive, and convenient readouts. We highlight recent advances in this rapidly growing field. We also outline areas that need further development to fully realize the potential of CRISPR technologies.
Collapse
Affiliation(s)
- Rupali Chowdhry
- Department of Public Health, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven Z Lu
- Department of Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Seungheon Lee
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Sasha B Ebrahimi
- Drug Product Development - Steriles, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
29
|
Du Y, Liu Y, Hu J, Peng X, Liu Z. CRISPR/Cas9 systems: Delivery technologies and biomedical applications. Asian J Pharm Sci 2023; 18:100854. [PMID: 38089835 PMCID: PMC10711398 DOI: 10.1016/j.ajps.2023.100854] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2024] Open
Abstract
The emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome-editing system has brought about a significant revolution in the realm of managing human diseases, establishing animal models, and so on. To fully harness the potential of this potent gene-editing tool, ensuring efficient and secure delivery to the target site is paramount. Consequently, developing effective delivery methods for the CRISPR/Cas9 system has become a critical area of research. In this review, we present a comprehensive outline of delivery strategies and discuss their biomedical applications in the CRISPR/Cas9 system. We also provide an in-depth analysis of physical, viral vector, and non-viral vector delivery strategies, including plasmid-, mRNA- and protein-based approach. In addition, we illustrate the biomedical applications of the CRISPR/Cas9 system. This review highlights the key factors affecting the delivery process and the current challenges facing the CRISPR/Cas9 system, while also delineating future directions and prospects that could inspire innovative delivery strategies. This review aims to provide new insights and ideas for advancing CRISPR/Cas9-based delivery strategies and to facilitate breakthroughs in biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Yimin Du
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiaxin Hu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Molecular Imaging Research Center of Central South University, Changsha 410008, China
| |
Collapse
|
30
|
Lin YQ, Feng KK, Lu JY, Le JQ, Li WL, Zhang BC, Li CL, Song XH, Tong LW, Shao JW. CRISPR/Cas9-based application for cancer therapy: Challenges and solutions for non-viral delivery. J Control Release 2023; 361:727-749. [PMID: 37591461 DOI: 10.1016/j.jconrel.2023.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/04/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cancer treatment. Current researches proves that virus vectors are capable of effectively delivering the CRISPR/Cas9 system, but immunogenicity and carcinogenicity caused by virus transmission still trigger serious consequences. Therefore, the greatest challenge of CRISPR/Cas9 for cancer therapy lies on how to deliver it to the target tumor site safely and effectively. Non-viral delivery systems with specific targeting, high loading capacity, and low immune toxicity are more suitable than viral vectors, which limited by uncontrollable side effects. Their medical advances and applications have been widely concerned. Herein, we present the molecule mechanism and different construction strategies of CRISPR/Cas9 system for editing genes at the beginning of this research. Subsequently, several common CRISPR/Cas9 non-viral deliveries for cancer treatment are introduced. Lastly, based on the main factors limiting the delivery efficiency of non-viral vectors proposed in the existing researches and literature, we summarize and discuss the main methods to solve these limitations in the existing tumor treatment system, aiming to introduce further optimization and innovation of the CRISPR/Cas9 non-viral delivery system suitable for cancer treatment.
Collapse
Affiliation(s)
- Ying-Qi Lin
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ke-Ke Feng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jie-Ying Lu
- Faculty of Foreign Studies, Guangdong Baiyun University, Guangzhou 510450, China
| | - Jing-Qing Le
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wu-Lin Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bing-Chen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cheng-Lei Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xun-Huan Song
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ling-Wu Tong
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
31
|
Adlat S, Vázquez Salgado AM, Lee M, Yin D, Wangensteen KJ. Emerging and potential use of CRISPR in human liver disease. Hepatology 2023:01515467-990000000-00538. [PMID: 37607734 PMCID: PMC10881897 DOI: 10.1097/hep.0000000000000578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023]
Abstract
CRISPR is a gene editing tool adapted from naturally occurring defense systems from bacteria. It is a technology that is revolutionizing the interrogation of gene functions in driving liver disease, especially through genetic screens and by facilitating animal knockout and knockin models. It is being used in models of liver disease to identify which genes are critical for liver pathology, especially in genetic liver disease, hepatitis, and in cancer initiation and progression. It holds tremendous promise in treating human diseases directly by editing DNA. It could disable gene function in the case of expression of a maladaptive protein, such as blocking transthyretin as a therapy for amyloidosis, or to correct gene defects, such as restoring the normal functions of liver enzymes fumarylacetoacetate hydrolase or alpha-1 antitrypsin. It is also being studied for treatment of hepatitis B infection. CRISPR is an exciting, evolving technology that is facilitating gene characterization and discovery in liver disease and holds the potential to treat liver diseases safely and permanently.
Collapse
Affiliation(s)
- Salah Adlat
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
32
|
Li K, Cai X, Fan Y, Jin M, Xie Y, Jing Z, Zang X, Han Y. Codelivery of Que and BCL-2 siRNA with Lipid-Copolymer Hybrid Nanocomplexes for Efficient Tumor Regression. ACS Biomater Sci Eng 2023; 9:4805-4820. [PMID: 37463126 DOI: 10.1021/acsbiomaterials.3c00489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The efficacy of chemotherapy is often reduced due to the chemotherapy resistance of tumor cells, which is usually caused by abnormal gene overexpression. Herein, multifunctional nanocomplexes (Que/siBCL2@BioMICs) were developed to deliver quercetin (Que) and BCL-2 siRNA (siBCL2) to synergistically inhibit tumor growth. The nanocomplexes were composed of an amphiphilic triblock copolymer of poly(ethylene glycol) methyl ether methacrylate-poly[2-(dimethylamino) ethyl acrylate]-polycaprolactone (PEGMA-PDMAEA-PCL) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-biotin (DSPE-PEG-biotin). Que was encapsulated into the cores through hydrophobic interactions, while negatively charged siBCL2 was loaded through electrostatic interactions. The nanocomplexes could effectively facilitate cellular uptake via biotin-mediated active targeting and cytosolic release of cargos by the "proton sponge effect" of PDMAEA. Que/siBCL2@BioMICs achieved enhanced cytotoxicity and anti-metastasis activity due to a synergistic effect of Que and siBCL2 in vitro. More importantly, superior anti-tumor efficacy was observed in orthotopic 4T1 tumor-bearing mice with reduced primary tumor burden and lung metastatic nodules, while no obvious side effects to major organs were observed. In conclusion, the biotin-targeted nanocomplexes with chemotherapeutic and nucleotide agent entrapment provide a promising strategy for efficient triple-negative breast cancer (TNBC) therapy.
Collapse
Affiliation(s)
- Kangkang Li
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| | - Xiaohua Cai
- Department of Pharmacy, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, China
| | - Yong Fan
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao 266032, China
| | - Meng Jin
- Department of Positron Emission Tomography-Computed Tomography (PET-CT) Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yi Xie
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| | - Zhenghui Jing
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| | - Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| | - Yantao Han
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| |
Collapse
|
33
|
Zheng Q, Wang W, Zhou Y, Mo J, Chang X, Zha Z, Zha L. Synthetic nanoparticles for the delivery of CRISPR/Cas9 gene editing system: classification and biomedical applications. Biomater Sci 2023; 11:5361-5389. [PMID: 37381725 DOI: 10.1039/d3bm00788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Gene editing has great potential in biomedical research including disease diagnosis and treatment. Clustered regularly interspaced short palindromic repeats (CRISPR) is the most straightforward and cost-effective method. The efficient and precise delivery of CRISPR can impact the specificity and efficacy of gene editing. In recent years, synthetic nanoparticles have been discovered as effective CRISPR/Cas9 delivery vehicles. We categorized synthetic nanoparticles for CRISPR/Cas9 delivery and discribed their advantages and disadvantages. Further, the building blocks of different kinds of nanoparticles and their applications in cells/tissues, cancer and other diseases were described in detail. Finally, the challenges encountered in the clinical application of CRISPR/Cas9 delivery materials were discussed, and potential solutions were provided regarding efficiency and biosafety issues.
Collapse
Affiliation(s)
- Qi Zheng
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Weitao Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Yuhang Zhou
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Jiayin Mo
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Xinyue Chang
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Lisha Zha
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| |
Collapse
|
34
|
Sahel DK, Vora LK, Saraswat A, Sharma S, Monpara J, D'Souza AA, Mishra D, Tryphena KP, Kawakita S, Khan S, Azhar M, Khatri DK, Patel K, Singh Thakur RR. CRISPR/Cas9 Genome Editing for Tissue-Specific In Vivo Targeting: Nanomaterials and Translational Perspective. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207512. [PMID: 37166046 PMCID: PMC10323670 DOI: 10.1002/advs.202207512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/15/2023] [Indexed: 05/12/2023]
Abstract
Clustered randomly interspaced short palindromic repeats (CRISPRs) and its associated endonuclease protein, i.e., Cas9, have been discovered as an immune system in bacteria and archaea; nevertheless, they are now being adopted as mainstream biotechnological/molecular scissors that can modulate ample genetic and nongenetic diseases via insertion/deletion, epigenome editing, messenger RNA editing, CRISPR interference, etc. Many Food and Drug Administration-approved and ongoing clinical trials on CRISPR adopt ex vivo strategies, wherein the gene editing is performed ex vivo, followed by reimplantation to the patients. However, the in vivo delivery of the CRISPR components is still under preclinical surveillance. This review has summarized the nonviral nanodelivery strategies for gene editing using CRISPR/Cas9 and its recent advancements, strategic points of view, challenges, and future aspects for tissue-specific in vivo delivery of CRISPR/Cas9 components using nanomaterials.
Collapse
Affiliation(s)
- Deepak Kumar Sahel
- Department of PharmacyBirla Institute of Technology and Science‐PilaniBITS‐Pilani, Vidya ViharPilaniRajasthan333031India
| | - Lalitkumar K. Vora
- School of PharmacyQueen's University Belfast97 Lisburn RoadBelfastBT9 7BLUK
| | - Aishwarya Saraswat
- College of Pharmacy & Health SciencesSt. John's UniversityQueensNY11439USA
| | - Saurabh Sharma
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| | - Jasmin Monpara
- Department of Pharmaceutical SciencesUniversity of SciencesPhiladelphiaPA19104USA
| | - Anisha A. D'Souza
- Graduate School of Pharmaceutical Sciences and School of PharmacyDuquesne UniversityPittsburghPA15282USA
| | - Deepakkumar Mishra
- School of PharmacyQueen's University Belfast97 Lisburn RoadBelfastBT9 7BLUK
| | - Kamatham Pushpa Tryphena
- Molecular and Cellular Neuroscience LabDepartment of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)‐HyderabadTelangana500037India
| | - Satoru Kawakita
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCA95616USA
| | - Shahid Khan
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| | - Mohd Azhar
- Research and Development Tata Medical and Diagnostics LimitedMumbaiMaharashtra400001India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience LabDepartment of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)‐HyderabadTelangana500037India
| | - Ketan Patel
- College of Pharmacy & Health SciencesSt. John's UniversityQueensNY11439USA
| | | |
Collapse
|
35
|
Yu S, Zhao R, Zhang B, Lai C, Li L, Shen J, Tan X, Shao J. Research progress and application of the CRISPR/Cas9 gene-editing technology based on hepatocellular carcinoma. Asian J Pharm Sci 2023; 18:100828. [PMID: 37583709 PMCID: PMC10424087 DOI: 10.1016/j.ajps.2023.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is now a common cause of cancer death, with no obvious change in patient survival over the past few years. Although the traditional therapeutic modalities for HCC patients mainly involved in surgery, chemotherapy, and radiotherapy, which have achieved admirable achievements, challenges are still existed, such as drug resistance and toxicity. The emerging gene therapy of clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9-based (CRISPR/Cas9), as an alternative to traditional treatment methods, has attracted considerable attention for eradicating resistant malignant tumors and regulating multiple crucial events of target gene-editing. Recently, advances in CRISPR/Cas9-based anti-drugs are presented at the intersection of science, such as chemistry, materials science, tumor biology, and genetics. In this review, the principle as well as statues of CRISPR/Cas9 technique were introduced first to show its feasibility. Additionally, the emphasis was placed on the applications of CRISPR/Cas9 technology in therapeutic HCC. Further, a broad overview of non-viral delivery systems for the CRISPR/Cas9-based anti-drugs in HCC treatment was summarized to delineate their design, action mechanisms, and anticancer applications. Finally, the limitations and prospects of current studies were also discussed, and we hope to provide comprehensively theoretical basis for the designing of anti-drugs.
Collapse
Affiliation(s)
- Shijing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ruirui Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bingchen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chunmei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Linyan Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiarong Tan
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
36
|
Li W, Sun L, Zheng X, Li F, Zhang W, Li T, Guo Y, Tang D. Multifunctional Nanoprobe Based on Fluorescence Resonance Energy Transfer for Furin Detection and Drug Delivery. Anal Chem 2023. [PMID: 37307415 DOI: 10.1021/acs.analchem.3c01416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Triple-negative breast cancer is particularly difficult to treat because of its high degree of malignancy and poor prognosis. A fluorescence resonance energy transfer (FRET) nanoplatform plays a very important role in disease diagnosis and treatment due to its unique detection performance. Combining the properties of agglomeration-induced emission fluorophore and FRET pair, a FRET nanoprobe (HMSN/DOX/RVRR/PAMAM/TPE) induced by specific cleavage was designed. First, hollow mesoporous silica nanoparticles (HMSNs) were used as drug carriers to load doxorubicin (DOX). HMSN nanopores were coated with the RVRR peptide. Then, polyamylamine/phenylethane (PAMAM/TPE) was combined in the outermost layer. When Furin cut off the RVRR peptide, DOX was released and adhered to PAMAM/TPE. Finally, the TPE/DOX FRET pair was constituted. The overexpression of Furin in the triple-negative breast cancer cell line (MDA-MB-468 cell) can be quantitatively detected by FRET signal generation, so as to monitor cell physiology. In conclusion, the HMSN/DOX/RVRR/PAMAM/TPE nanoprobes were designed to provide a new idea for the quantitative detection of Furin and drug delivery, which is conducive to the early diagnosis and treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Wenxin Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Li Sun
- Linyi University, Linyi 276000, China
| | | | - Fen Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wenyue Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Tao Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
37
|
Wang L, Chen M, Ran X, Tang H, Cao D. Sorafenib-Based Drug Delivery Systems: Applications and Perspectives. Polymers (Basel) 2023; 15:2638. [PMID: 37376284 DOI: 10.3390/polym15122638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
As a Food and Drug Administration (FDA)-approved molecular-targeted chemotherapeutic drug, sorafenib (SF) can inhibit angiogenesis and tumor cell proliferation, leading to improved patient overall survival of hepatocellular carcinoma (HCC). In addition, SF is an oral multikinase inhibitor as a single-agent therapy in renal cell carcinoma. However, the poor aqueous solubility, low bioavailability, unfavorable pharmacokinetic properties and undesirable side effects (anorexia, gastrointestinal bleeding, and severe skin toxicity, etc.) seriously limit its clinical application. To overcome these drawbacks, the entrapment of SF into nanocarriers by nanoformulations is an effective strategy, which delivers SF in a target tumor with decreased adverse effects and improved treatment efficacy. In this review, significant advances and design strategies of SF nanodelivery systems from 2012 to 2023 are summarized. The review is organized by type of carriers including natural biomacromolecule (lipid, chitosan, cyclodextrin, etc.); synthetic polymer (poly(lactic-co-glycolic acid), polyethyleneimine, brush copolymer, etc.); mesoporous silica; gold nanoparticles; and others. Co-delivery of SF and other active agents (glypican-3, hyaluronic acid, apolipoprotein peptide, folate, and superparamagnetic iron oxide nanoparticles) for targeted SF nanosystems and synergistic drug combinations are also highlighted. All these studies showed promising results for targeted treatment of HCC and other cancers by SF-based nanomedicines. The outlook, challenges and future opportunities for the development of SF-based drug delivery are presented.
Collapse
Affiliation(s)
- Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Meihuan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510641, China
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| |
Collapse
|
38
|
Li Y, Zou H, Zheng Z, Liu Z, Hu H, Wu W, Wang T. Advances in the Study of Bioactive Nanoparticles for the Treatment of HCC and Its Postoperative Residual Cancer. Int J Nanomedicine 2023; 18:2721-2735. [PMID: 37250475 PMCID: PMC10216871 DOI: 10.2147/ijn.s399146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Primary hepatocellular carcinoma (HCC, hepatocellular carcinoma) is the third leading cause of tumor death in the world and the second leading cause in China. The high recurrence rate at 5 years after surgery also seriously affects the long-term survival of HCC patients. For reasons such as poor liver function, large tumors, or vascular invasion, only relatively limited palliative treatment is available. Therefore, effective diagnostic and therapeutic strategies are needed to improve the complex microenvironment and block the mechanism of tumor development in order to treat the tumor and prevent recurrence. A variety of bioactive nanoparticles have been shown to have therapeutic effects on hepatocellular carcinoma and have the advantages of improving drug solubility, reducing drug side effects, preventing degradation in the blood, increasing drug exposure time, and reducing drug resistance. The development of bioactive nanoparticles is expected to complete the current clinical therapeutic approach. In this review, we discuss the therapeutic advances of different nanoparticles for hepatocellular carcinoma and discuss their potential for postoperative applications with respect to possible mechanisms of hepatocellular carcinoma recurrence. We further discuss the limitations regarding the application of NPs and the safety of NPs.
Collapse
Affiliation(s)
- Yanxu Li
- Medical College of Yangzhou University, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Hao Zou
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Zekun Zheng
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Zhuoheng Liu
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Huiyuan Hu
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Wei Wu
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| |
Collapse
|
39
|
Sanjanwala D, Patravale V. Aptamers and nanobodies as alternatives to antibodies for ligand-targeted drug delivery in cancer. Drug Discov Today 2023; 28:103550. [PMID: 36906220 DOI: 10.1016/j.drudis.2023.103550] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Targeted drug delivery (TDD) is the selective delivery of a therapeutic agent specifically to the site of action to avoid adverse effects and systemic toxicity and to reduce the dose required. Ligand TDD or active TDD involves using a ligand-drug conjugate comprising a targeting ligand linked to an active drug moiety that can either be free or encapsulated within a nanocarrier (NC). Aptamers are single-stranded oligonucleotides that bind to specific biomacromolecules because of their 3D conformation. Nanobodies are the variable domains of unique heavy chain-only antibodies (HcAbs) produced by animals of the Camelidae family. Both these types of ligand are smaller than antibodies and have been used to efficiently target drugs to particular tissues or cells. In this review, we describe the applications of aptamers and nanobodies as ligands for TDD, their advantages and disadvantages compared with antibodies, and the various modalities for targeting cancers using these ligands. Teaser: Aptamers and nanobodies are macromolecular ligands that can actively chaperone drug molecules to particular cancerous cells or tissues in the body to target their pharmacological effects and improve their therapeutic index and safety.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400 019, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
40
|
Li Z, Xu K, Qin L, Zhao D, Yang N, Wang D, Yang Y. Hollow Nanomaterials in Advanced Drug Delivery Systems: From Single- to Multiple Shells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203890. [PMID: 35998336 DOI: 10.1002/adma.202203890] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Hollow-structured nanomaterials (HSNMs) have attracted increased interest in biomedical fields, owing to their excellent potential as drug delivery systems (DDSs) for clinical applications. Among HSNMs, hollow multi-shelled structures (HoMSs) exhibit properties such as high loading capacity, sequential drug release, and multi-functionalized modification and represent a new class of nanoplatforms for clinical applications. The remarkable properties of HoMS-based DDS can simultaneously satisfy and enhance DDSs for delivering small molecular drugs (e.g., antibiotics, chemotherapy drugs, and imaging agents) and macromolecular drugs (e.g., protein/peptide- and nucleic acid-based drugs). First, the latest research advances in delivering small molecular drugs are summarized and highlight the inherent advantages of HoMS-based DDSs for small molecular drug targeting, combining continuous therapeutic drug delivery and theranostics to optimize the clinical benefit. Meanwhile, the macromolecular drugs DDSs are in the initial development stage and currently offer limited delivery modes. There is a growing need to analyze the deficiency of other HSNMs and integrate the advantages of HSNMs, providing solutions for the safe, stable, and cascade delivery of macromolecular drugs to meet vast treatment requirements. Therefore, the latest advances in HoMS-based DDSs are comprehensively reviewed, mainly focusing on the characteristics, research progress by drug category, and future research prospects.
Collapse
Affiliation(s)
- Zhao Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ke Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Linlin Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| |
Collapse
|
41
|
Genome editing in cancer: Challenges and potential opportunities. Bioact Mater 2023; 21:394-402. [PMID: 36185740 PMCID: PMC9483578 DOI: 10.1016/j.bioactmat.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Ever since its mechanism was discovered back in 2012, the CRISPR/Cas9 system have revolutionized the field of genome editing. While at first it was seen as a therapeutic tool mostly relevant for curing genetic diseases, it has been recently shown to also hold the potential to become a clinically relevant therapy for cancer. However, there are multiple challenges that must be addressed prior to clinical testing. Predominantly, the safety of the system when used for in-vivo therapies, including off-target activity and the effects of the double strand break induction on genomic stability. Here, we will focus on the inherent challenges in the CRISPR/Cas9 system and discuss various opportunities to overcoming these challenges. In recent years, several works have shown that knocking down key genes by CRISPR/Cas9 based could potentially be a new type of cancer therapy. This has been made possible due to advances in the fields of In-vivo delivery, such as lentiviral vectors and lipid nanoparticles. Limiting CRISPR/Cas9 activity to the tumor and minimizing off-target activity are challenges that must be overcome before proceeding to the clinic. We review approaches arising from multiple disciplines that could overcome these challenges. The combination of these multi-disciplinary approaches should be able to overcome the different challenges and open the way to the clinic.
Collapse
|
42
|
Le JQ, Yang F, Song XH, Feng KK, Tong LW, Yin MD, Zhang WZ, Lin YQ, Wu H, Shao JW. A hemoglobin-based oxygen-carrying biomimetic nanosystem for enhanced chemo-phototherapy and hypoxia alleviation of hepatocellular carcinoma. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
43
|
Ren XH, Han D, He XY, Guo T, Chen XS, Pang X, Cheng SX. Multi-Targeting Nano-Systems Targeting Heterogeneous Cancer Cells for Therapeutics and Biomarker Detection. Adv Healthc Mater 2023; 12:e2202155. [PMID: 36333906 DOI: 10.1002/adhm.202202155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Cancer heterogeneity plays a vital part in cancer resistance and metastasis. To provide a reliable approach to exert a therapy action and evaluate its efficiency in heterogeneous cancer cells, a multiple targeting delivery vector composed of histone encapsulating the therapeutic or diagnostic agent, hyaluronic acid targeting CD44 overexpressed in stem tumor cells, SYL3C aptamer targeting epithelial cell adhesion molecule (EpCAM) overexpressed in epithelial cancer cells, and CL4 aptamer targeting epidermal growth factor receptor (EGFR) overexpressed in mesenchymal cancer cells, is developed. The vector can efficiently target different cancer cells and circulating tumor cells (CTCs) in the peripheral blood of patients for mucin 1 (MUC1) knockout. Furthermore, the multiple targeting vector can be used to co-encapsulate three types of molecular beacons for probing various mRNA biomarkers at single-cell resolution after genome editing. This study provides an efficient approach for exerting therapeutic actions in heterogeneous cancer cells and assessing the therapeutic efficacy by detection of cancer biomarkers via liquid biopsy.
Collapse
Affiliation(s)
- Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei, 430072, China
| | - Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao-Yan He
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230011, China
| | - Tao Guo
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, Anhui, 230011, China
| | - Xue-Si Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
44
|
Recent advances in targeted gene silencing and cancer therapy by nanoparticle-based delivery systems. Biomed Pharmacother 2023; 157:114065. [PMID: 36481408 DOI: 10.1016/j.biopha.2022.114065] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nanomedicine has emerged as a promising platform for disease treatment and much progress has been achieved in the clinical translation for cancer treatment. Several types of nanomedicines have been approved for therapeutic application. However, many nanoparticles still suffer from challenges in the translation from bench to bedside. Currently, nanoparticle-based delivery systems have been developed to explore their functions in targeted gene silencing and cancer therapy. This review describes the research progress of different nano-carriers in targeted gene editing, and the recent progress in co-delivery of anticancer drugs and small ribonucleic acid. We also summarize the strategies for improving the specificity of carrier systems. Finally, we discuss the functions of targeted nano-carriers in overcoming chemotherapeutic drug resistance in cancer therapy. As research continues to advance, a better understanding of the safety including long-term toxicity, immunogenicity, and body metabolism may impel nanoparticle translation.
Collapse
|
45
|
Yin X, He Z, Ge W, Zhao Z. Application of aptamer functionalized nanomaterials in targeting therapeutics of typical tumors. Front Bioeng Biotechnol 2023; 11:1092901. [PMID: 36873354 PMCID: PMC9978196 DOI: 10.3389/fbioe.2023.1092901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Cancer is a major cause of human death all over the world. Traditional cancer treatments include surgery, radiotherapy, chemotherapy, immunotherapy, and hormone therapy. Although these conventional treatment methods improve the overall survival rate, there are some problems, such as easy recurrence, poor treatment, and great side effects. Targeted therapy of tumors is a hot research topic at present. Nanomaterials are essential carriers of targeted drug delivery, and nucleic acid aptamers have become one of the most important targets for targeted tumor therapy because of their high stability, high affinity, and high selectivity. At present, aptamer-functionalized nanomaterials (AFNs), which combine the unique selective recognition characteristics of aptamers with the high-loading performance of nanomaterials, have been widely studied in the field of targeted tumor therapy. Based on the reported application of AFNs in the biomedical field, we introduce the characteristics of aptamer and nanomaterials, and the advantages of AFNs first. Then introduce the conventional treatment methods for glioma, oral cancer, lung cancer, breast cancer, liver cancer, colon cancer, pancreatic cancer, ovarian cancer, and prostate cancer, and the application of AFNs in targeted therapy of these tumors. Finally, we discuss the progress and challenges of AFNs in this field.
Collapse
Affiliation(s)
- Xiujuan Yin
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China
| | - Zhenqiang He
- Clinical Medical College of Hebei University, Baoding, China.,Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Weiying Ge
- Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China.,Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Jiang Y, Fan M, Yang Z, Liu X, Xu Z, Liu S, Feng G, Tang S, Li Z, Zhang Y, Chen S, Yang C, Law WC, Dong B, Xu G, Yong KT. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci 2022; 10:6862-6892. [PMID: 36222758 DOI: 10.1039/d2bm01001a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy has shown great potential in the treatment of many diseases by downregulating the expression of certain genes. The development of gene vectors as a vehicle for gene therapy has greatly facilitated the widespread clinical application of nucleic acid materials (DNA, mRNA, siRNA, and miRNA). Currently, both viral and non-viral vectors are used as delivery systems of nucleic acid materials for gene therapy. However, viral vector-based gene therapy has several limitations, including immunogenicity and carcinogenesis caused by the exogenous viral vectors. To address these issues, non-viral nanocarrier-based gene therapy has been explored for superior performance with enhanced gene stability, high treatment efficiency, improved tumor-targeting, and better biocompatibility. In this review, we discuss various non-viral vector-mediated gene therapy approaches using multifunctional biodegradable or non-biodegradable nanocarriers, including polymer-based nanoparticles, lipid-based nanoparticles, carbon nanotubes, gold nanoparticles (AuNPs), quantum dots (QDs), silica nanoparticles, metal-based nanoparticles and two-dimensional nanocarriers. Various strategies to construct non-viral nanocarriers based on their delivery efficiency of targeted genes will be introduced. Subsequently, we discuss the cellular uptake pathways of non-viral nanocarriers. In addition, multifunctional gene therapy based on non-viral nanocarriers is summarized, in which the gene therapy can be combined with other treatments, such as photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy and chemotherapy. We also provide a comprehensive discussion of the biological toxicity and safety of non-viral vector-based gene therapy. Finally, the present limitations and challenges of non-viral nanocarriers for gene therapy in future clinical research are discussed, to promote wider clinical applications of non-viral vector-based gene therapy.
Collapse
Affiliation(s)
- Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhenxu Yang
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shikang Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shuo Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhengzheng Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Yibin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shilin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
47
|
Yadav DN, Ali MS, Thanekar AM, Pogu SV, Rengan AK. Recent Advancements in the Design of Nanodelivery Systems of siRNA for Cancer Therapy. Mol Pharm 2022; 19:4506-4526. [PMID: 36409653 DOI: 10.1021/acs.molpharmaceut.2c00811] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA interference (RNAi) has increased the possibility of restoring RNA drug targets for cancer treatment. Small interfering RNA (siRNA) is a promising therapeutic RNAi tool that targets the defective gene by inhibiting its mRNA expression and stopping its translation. However, siRNAs have flaws like poor intracellular trafficking, RNase degradation, rapid kidney filtration, off-targeting, and toxicity, which limit their therapeutic efficiency. Nanocarriers (NCs) have been designed to overcome such flaws and increase antitumor activity. Combining siRNA and anticancer drugs can give synergistic effects in cancer cells, making them a significant gene-modification tool in cancer therapy. Our discussion of NCs-mediated siRNA delivery in this review includes their mechanism, limitations, and advantages in comparison with naked siRNA delivery. We will also discuss organic NCs (polymers and lipids) and inorganic NCs (quantum dots, carbon nanotubes, and gold) that have been reported for extensive delivery of therapeutic siRNA to tumor sites. Finally, we will conclude by discussing the studies based on organic and inorganic NCs-mediated siRNA drug delivery systems conducted in the years 2020 and 2021.
Collapse
Affiliation(s)
- Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| | | | - Sunil Venkanna Pogu
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| |
Collapse
|
48
|
Intelligent nanotherapeutic strategies for the delivery of CRISPR system. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
49
|
Xu W, Ye C, Qing X, Liu S, Lv X, Wang W, Dong X, Zhang Y. Multi-target tyrosine kinase inhibitor nanoparticle delivery systems for cancer therapy. Mater Today Bio 2022; 16:100358. [PMID: 35880099 PMCID: PMC9307458 DOI: 10.1016/j.mtbio.2022.100358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
Multi-target Tyrosine Kinase Inhibitors (MTKIs) have drawn substantial attention in tumor therapy. MTKIs could inhibit tumor cell proliferation and induce apoptosis by blocking the activity of tyrosine kinase. However, the toxicity and drug resistance of MTKIs severely restrict their further clinical application. The nano pharmaceutical technology based on MTKIs has attracted ever-increasing attention in recent years. Researchers deliver MTKIs through various types of nanocarriers to overcome drug resistance and improve considerably therapeutic efficiency. This review intends to summarize comprehensive applications of MTKIs nanoparticles in malignant tumor treatment. Firstly, the mechanism and toxicity were introduced. Secondly, various nanocarriers for MTKIs delivery were outlined. Thirdly, the combination treatment schemes and drug resistance reversal strategies were emphasized to improve the outcomes of cancer therapy. Finally, conclusions and perspectives were summarized to guide future research.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chunping Ye
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Qing
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shengli Liu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| |
Collapse
|
50
|
Xiao M, Shi Y, Jiang S, Cao M, Chen W, Xu Y, Xu Z, Wang K. Recent advances of nanomaterial-based anti-angiogenic therapy in tumor vascular normalization and immunotherapy. Front Oncol 2022; 12:1039378. [PMID: 36523993 PMCID: PMC9745116 DOI: 10.3389/fonc.2022.1039378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/14/2022] [Indexed: 01/04/2025] Open
Abstract
Anti-angiogenesis therapy and immunotherapy are the first-line therapeutic strategies for various tumor treatments in the clinic, bringing significant advantages for tumor patients. Recent studies have shown that anti-angiogenic therapy can potentiate immunotherapy, with many clinical trials conducted based on the combination of anti-angiogenic agents and immune checkpoint inhibitors (ICIs). However, currently available clinical dosing strategies and tools are limited, emphasizing the need for more improvements. Although significant progress has been achieved, several big questions remained, such as how to achieve cell-specific targeting in the tumor microenvironment? How to improve drug delivery efficiency in tumors? Can nanotechnology be used to potentiate existing clinical drugs and achieve synergistic sensitization effects? Over the recent few years, nanomedicines have shown unique advantages in antitumor research, including cell-specific targeting, improved delivery potentiation, and photothermal effects. Given that the applications of nanomaterials in tumor immunotherapy have been widely reported, this review provides a comprehensive overview of research advances on nanomaterials in anti-angiogenesis therapy, mainly focusing on the immunosuppressive effects of abnormal tumor vessels in the tumor immune microenvironment, the targets and strategies of anti-angiogenesis nanomedicines, and the potential synergistic effects and molecular mechanisms of anti-angiogenic nanomedicines in combination with immunotherapy, ultimately providing new perspectives on the nanomedicine-based synergy between anti-angiogenic and immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|