1
|
Fu H, Qi Q, Li Y, Pan J, Zhong C. Oxygen-Vacancy-Induced Enhancement of BiVO 4 Bifunctional Photoelectrochemical Activity for Overall Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1270. [PMID: 39120375 PMCID: PMC11313839 DOI: 10.3390/nano14151270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Hydrogen generation via photoelectrochemical (PEC) overall water splitting is an attractive means of renewable energy production so developing and designing the cost-effective and high-activity bifunctional PEC catalysts both for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) has been focused on. Based on first-principles calculations, we propose a feasible strategy to enhance either HER or OER performance in the monoclinic exposed BiVO4 (110) facet by the introduction of oxygen vacancies (Ovacs). Our results show that oxygen vacancies induce charge rearrangements, which enhances charge transfer between active sites and adatoms. Furthermore, the incorporation of oxygen vacancies reduces the work function of the system, which makes charge transfer from the inner to the surface more easily; thus, the charges possess stronger redox capacity. As a result, the Ovac reduces both the hydrogen adsorption-free energy (ΔGH*) for the HER and the overpotential for the OER, facilitating the PEC activity of overall water splitting. The findings provide not only a method to develop bifunctional PEC catalysts based on BiVO4 but also insight into the mechanism of enhanced catalytic performance.
Collapse
Affiliation(s)
- Huailiang Fu
- School of Physics and Technology, Nantong University, Nantong 226019, China; (Q.Q.); (Y.L.)
- Research Center for Quantum Physics and Materials, Nantong University, Nantong 226019, China
| | - Qingxiu Qi
- School of Physics and Technology, Nantong University, Nantong 226019, China; (Q.Q.); (Y.L.)
- Research Center for Quantum Physics and Materials, Nantong University, Nantong 226019, China
| | - Yushu Li
- School of Physics and Technology, Nantong University, Nantong 226019, China; (Q.Q.); (Y.L.)
- Research Center for Quantum Physics and Materials, Nantong University, Nantong 226019, China
| | - Jing Pan
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China;
| | - Chonggui Zhong
- School of Physics and Technology, Nantong University, Nantong 226019, China; (Q.Q.); (Y.L.)
- Research Center for Quantum Physics and Materials, Nantong University, Nantong 226019, China
| |
Collapse
|
2
|
Jiang N, Ghosh S, Frentrup M, Fairclough SM, Loeto K, Kusch G, Oliver RA, Joyce HJ. Complications in silane-assisted GaN nanowire growth. NANOSCALE ADVANCES 2023; 5:2610-2620. [PMID: 37143793 PMCID: PMC10153487 DOI: 10.1039/d2na00939k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/08/2023] [Indexed: 05/06/2023]
Abstract
Understanding the growth mechanisms of III-nitride nanowires is of great importance to realise their full potential. We present a systematic study of silane-assisted GaN nanowire growth on c-sapphire substrates by investigating the surface evolution of the sapphire substrates during the high temperature annealing, nitridation and nucleation steps, and the growth of GaN nanowires. The nucleation step - which transforms the AlN layer formed during the nitridation step to AlGaN - is critical for subsequent silane-assisted GaN nanowire growth. Both Ga-polar and N-polar GaN nanowires were grown with N-polar nanowires growing much faster than the Ga-polar nanowires. On the top surface of the N-polar GaN nanowires protuberance structures were found, which relates to the presence of Ga-polar domains within the nanowires. Detailed morphology studies revealed ring-like features concentric with the protuberance structures, indicating energetically favourable nucleation sites at inversion domain boundaries. Cathodoluminescence studies showed quenching of emission intensity at the protuberance structures, but the impact is limited to the protuberance structure area only and does not extend to the surrounding areas. Hence it should minimally affect the performance of devices whose functions are based on radial heterostructures, suggesting that radial heterostructures remain a promising device structure.
Collapse
Affiliation(s)
- Nian Jiang
- Department of Engineering, University of Cambridge 9 JJ Thomson Ave Cambridge CB3 0FA UK
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Rd Cambridge CB3 0FS UK
| | - Saptarsi Ghosh
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Rd Cambridge CB3 0FS UK
| | - Martin Frentrup
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Rd Cambridge CB3 0FS UK
| | - Simon M Fairclough
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Rd Cambridge CB3 0FS UK
| | - Kagiso Loeto
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Rd Cambridge CB3 0FS UK
| | - Gunnar Kusch
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Rd Cambridge CB3 0FS UK
| | - Rachel A Oliver
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Rd Cambridge CB3 0FS UK
| | - Hannah J Joyce
- Department of Engineering, University of Cambridge 9 JJ Thomson Ave Cambridge CB3 0FA UK
| |
Collapse
|
3
|
Maurya KC, Chatterjee A, Shivaprasad SM, Saha B. Morphology-Controlled Reststrahlen Band and Infrared Plasmon Polariton in GaN Nanostructures. NANO LETTERS 2022; 22:9606-9613. [PMID: 36459090 DOI: 10.1021/acs.nanolett.2c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to ultrabright and stable blue light emission, GaN has emerged as one of the most famous semiconductors of the modern era, useful for light-emitting diodes, power electronics, and optoelectronic applications. Extending GaN's optical resonance from visible to mid- and-far-infrared spectral ranges will enable novel applications in many emerging technologies. Here we show hexagonal honeycomb-shaped GaN nanowall networks and vertically standing nanorods exhibiting morphology-dependent Reststrahlen band and plasmon polaritons that could be harnessed for infrared nanophotonics. Surface-induced dipoles at the edges and asperities in molecular beam epitaxy-deposited nanostructures lead to phonon absorption inside the Reststrahlen band, altering its shape from rectangular to right-trapezoidal. Excitation of such surface polariton modes provides a novel pathway to achieve far-infrared optical resonance in GaN. Additionally, surface defects in nanostructures lead to high carrier concentrations, resulting in tunable mid-infrared plasmon polaritons with high-quality factors. Demonstration of morphology-controlled Reststrahlen band and plasmon polaritons make GaN nanostructures attractive for infrared nanophotonics.
Collapse
Affiliation(s)
- Krishna Chand Maurya
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
| | - Abhijit Chatterjee
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
| | - Sonnada Math Shivaprasad
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
| | - Bivas Saha
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
| |
Collapse
|
4
|
Liao F, Shi Y, Dang Q, Yang H, Huang H, Kang Z, Shao M. Carbon dots dominated photoelectric surface in titanium dioxide nanotube/nitrogen-doped carbon dot/gold nanocomposites for improved photoelectrochemical water splitting. J Colloid Interface Sci 2022; 606:1274-1283. [PMID: 34492465 DOI: 10.1016/j.jcis.2021.08.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/19/2022]
Abstract
The dynamic behavior of electron-hole pairs at the interface of the nanocomposites is important for photoelectrochemical catalysis, but it is difficult to characterize. Here we construct a ternary titanium dioxide/nitrogen-doped carbon dot/gold (TiO2/NCD/Au) complex as the model catalyst to investigate the kinetic indexes at their interfaces. Under irradiation (200 mW cm-2), the photocurrent density of TiO2/NCD/Au is 10.26 mA cm-2, which is higher than those of TiO2/Au (4.34 mA cm-2), TiO2/NCD (7.55 mA cm-2) and TiO2 (3.34 mA cm-2). The evolved oxygen of TiO2/NCD/Au reaches 125.8 μmol after 5000 s test. The energy bands of complexes are very similar to that of the unmodified TiO2 catalyst due to the low content modification of NCDs and Au. In addition, the transient photovoltage (TPV) tests with a series of control samples show differences about the carriers' separation and transfer process, which verify that Au can increase the separation quantity of electron-hole pairs while NCDs play a more important role on the increase of the separation quantity and separation rate simultaneously. This work quantifies the function of each component in a composite catalyst and deepens the understanding of the catalyst interface design.
Collapse
Affiliation(s)
- Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, PR China
| | - Yandi Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, PR China
| | - Qian Dang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, PR China
| | - Haiwei Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, PR China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, PR China.
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, PR China; Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau.
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
5
|
Wang L, Si W, Ye Y, Wang S, Hou F, Hou X, Cai H, Dou SX, Liang J. Cu-Ion-Implanted and Polymeric Carbon Nitride-Decorated TiO 2 Nanotube Array for Unassisted Photoelectrochemical Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44184-44194. [PMID: 34499482 DOI: 10.1021/acsami.1c09665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photoelectrochemical (PEC) water splitting over TiO2 photoanodes is a promising strategy for hydrogen production due to its eco-friendly, energy-saving, and low-cost nature. However, the intrinsic drawbacks of TiO2, i.e., the too wide band gap and rapid exciton recombination, significantly limit further enhancement of its performance. Herein, we report a TiO2 nanotube array (TNA), which is implanted by Cu ions and decorated by polymeric carbon nitride (PCN) nanosheets, as a photoanode for the high-efficiency PEC water splitting. In such designed material, Cu-ion implantation can effectively tailor the electronic structure of TiO2, thus narrowing the band gap and enhancing the electronic conductivity. Meanwhile, the PCN decoration induces TiO2/PCN heterojunctions, enhancing the visible light absorption and accelerating the exciton separation. Upon this synergistic effect, the modified TNA photoanode shows significantly improved PEC capability. Its photocurrent density, solar-to-hydrogen efficiency, and applied bias photon-to-current efficiency achieve 1.89 mA cm-2 at 1.23 VRHE (V vs reversible hydrogen electrode), 2.31%, and 1.20% at 0.46 VRHE, respectively. Importantly, this modified TNA supported on a meshlike Ti substrate can be readily integrated with a perovskite solar cell to realize unassisted PEC water splitting.
Collapse
Affiliation(s)
- Liqun Wang
- Applied Physics Department, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
| | - Wenping Si
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuhang Ye
- Applied Physics Department, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
| | - Sihui Wang
- School of Aeronautics and Astronautics, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
| | - Feng Hou
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xinggang Hou
- Applied Physics Department, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
| | - Hongkun Cai
- Department of Electronic Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Shi Xue Dou
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia
| | - Ji Liang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
6
|
Shin J, Han S, Noh S, Yu YT, Kim JS. Room-temperature operation of light-assisted NO 2gas sensor based on GaN nanowires and graphene. NANOTECHNOLOGY 2021; 32:505201. [PMID: 34490848 DOI: 10.1088/1361-6528/ac2427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
We report the successful demonstration of a light-assisted NO2gas sensor that operates at room temperature with high response. The gas sensor was fabricated with high-crystalline undoped-GaN nanowires (NWs) and graphene functioning as the light-absorbing medium and carrier channel, respectively. Exposure of the gas sensor to the NO2concentration of 100 ppm at a light intensity of 1 mW cm-2of a xenon lamp delivered a response of 16% at room temperature, which increased to 23% when the light intensity increased to 100 mW cm-2. This value is higher than those previously reported for GaN-based NO2gas sensors operating at room temperature. The room-temperature response of the gas sensor measured after six months was calculated to be 21.9%, which corresponds to 95% compared to the value obtained immediately after fabricating the devices. The response of the gas sensor after independently injecting NO2, H2S, H2, CO, and CH3CHO gases were measured to be 23, 5, 2.6, 2.2, and 1.7%, respectively. These results indicate that the gas sensor using GaN NWs and graphene provides high response, long-term stability, and good selectivity to NO2gas at room temperature. In addition, the use of undoped-GaN NWs without using additional catalysts makes it possible to fabricate gas sensors that operate at room temperature simpler and better than conventional technologies.
Collapse
Affiliation(s)
- Jaehyeok Shin
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sangmoon Han
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Siyun Noh
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yeon-Tae Yu
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jin Soo Kim
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
7
|
Han S, Noh S, Kim JW, Lee CR, Lee SK, Kim JS. Stretchable Inorganic GaN-Nanowire Photosensor with High Photocurrent and Photoresponsivity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22728-22737. [PMID: 33969979 DOI: 10.1021/acsami.1c03023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To effectively implement wearable systems, their constituent components should be made stretchable. We successfully fabricated highly efficient stretchable photosensors made of inorganic GaN nanowires (NWs) as light-absorbing media and graphene as a carrier channel on polyurethane substrates using the pre-strain method. When a GaN-NW photosensor was stretched at a strain level of 50%, the photocurrent was measured to be 0.91 mA, corresponding to 87.5% of that (1.04 mA) obtained in the released state, and the photoresponsivity was calculated to be 11.38 A/W. These photosensors showed photocurrent and photoresponsivity levels much higher than those previously reported for any stretchable semiconductor-containing photosensor. To explain the superior performances of the stretchable GaN-NW photosensor, it was approximated as an equivalent circuit with resistances and capacitances, and in this way, we analyzed the behavior of the photogenerated carriers, particularly at the NW-graphene interface. In addition, the buckling phenomenon typically observed in organic-based stretchable devices fabricated using the pre-strain method was not observed in our photosensors. After a 1000-cycle stretching test with a strain level of 50%, the photocurrent and photoresponsivity of the GaN-NW photosensor were measured to be 0.96 mA and 11.96 A/W, respectively, comparable to those measured before the stretching test. To evaluate the potential of our stretchable devices in practical applications, the GaN-NW photosensors were attached to the proximal interphalangeal joint of the index finger and to the back of the wrist. Photocurrents of these photosensors were monitored during movements made about these joints.
Collapse
Affiliation(s)
- Sangmoon Han
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Siyun Noh
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Jong-Woong Kim
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Cheul-Ro Lee
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Seoung-Ki Lee
- School of Materials Science and Engineering, Pusan National University, Busan 46241, South Korea
| | - Jin Soo Kim
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| |
Collapse
|