1
|
Ghaffari-Bohlouli P, Jafari H, Nie L, Kakkar A, Shavandi A. Enzymes in Addressing Hypoxia for Biomaterials Engineering. Adv Healthc Mater 2024; 13:e2401713. [PMID: 39183514 DOI: 10.1002/adhm.202401713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Oxygen is essential for normal cellular functions. Hypoxia impacts various cellular processes, such as metabolism, growth, proliferation, angiogenesis, metastasis, tumorigenesis, microbial infection, and immune response, mediated by hypoxia-inducible factors (HIFs). Hypoxia contributes to the progression and development of cancer, cardiovascular diseases, metabolic disorders, kidney diseases, and infections. The potential alleviation of hypoxia has been explored through the enzymatic in situ decomposition of hydrogen peroxide, leading to the generation of oxygen. However, challenges such as limited stability restrict the effectiveness of enzymes such as catalase in biomedical and in vivo applications. To overcome these limitations, targeted delivery of the enzymes has been proposed. This review offers a critical comparison of i) current approaches to enhance the in vivo stability of catalase; and ii) the structure, mechanism of action, and kinetics of catalase and catalase-like nanozymes.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Hafez Jafari
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| |
Collapse
|
2
|
Kim C, Kim H, Sim WS, Jung M, Hong J, Moon S, Park JH, Kim JJ, Kang M, Kwon S, Kim MJ, Ban K, Park HJ, Kim BS. Spatiotemporal control of neutrophil fate to tune inflammation and repair for myocardial infarction therapy. Nat Commun 2024; 15:8481. [PMID: 39353987 PMCID: PMC11445496 DOI: 10.1038/s41467-024-52812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Neutrophils are critical mediators of both the initiation and resolution of inflammation after myocardial infarction (MI). Overexuberant neutrophil signaling after MI exacerbates cardiomyocyte apoptosis and cardiac remodeling while neutrophil apoptosis at the injury site promotes macrophage polarization toward a pro-resolving phenotype. Here, we describe a nanoparticle that provides spatiotemporal control over neutrophil fate to both stymie MI pathogenesis and promote healing. Intravenous injection of roscovitine/catalase-loaded poly(lactic-co-glycolic acid) nanoparticles after MI leads to nanoparticle uptake by circulating neutrophils migrating to the infarcted heart. Activated neutrophils at the infarcted heart generate reactive oxygen species, triggering intracellular release of roscovitine, a cyclin-dependent kinase inhibitor, from the nanoparticles, thereby inducing neutrophil apoptosis. Timely apoptosis of activated neutrophils at the infarcted heart limits neutrophil-driven inflammation, promotes macrophage polarization toward a pro-resolving phenotype, and preserves heart function. Modulating neutrophil fate to tune both inflammatory and reparatory processes may be an effective strategy to treat MI.
Collapse
Affiliation(s)
- Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyeok Kim
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul Saint Mary's Hospital, Seoul, Republic of Korea
| | - Woo-Sup Sim
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul Saint Mary's Hospital, Seoul, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jae-Hyun Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul Saint Mary's Hospital, Seoul, Republic of Korea
| | - Jin-Ju Kim
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul Saint Mary's Hospital, Seoul, Republic of Korea
| | - Mikyung Kang
- School of Health and Environmental Science, Korea University, Seoul, Republic of Korea
| | - Sungpil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Mi-Jeong Kim
- Department of Internal Medicine, Seoul Saint Mary's Hospital, Seoul, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul Saint Mary's Hospital, Seoul, Republic of Korea.
- Cell Death Disease Research Center, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea.
- Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
- Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Tang XR, Lei SY, Zhang Q, Liu YY, Wu H, Cao A, Wang H. How big nanoparticles carry small ones into cells: Actions captured by transmission electron microscopy. Colloids Surf B Biointerfaces 2024; 245:114272. [PMID: 39366110 DOI: 10.1016/j.colsurfb.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
The mechanism of cellular uptake of nanoparticles (NPs) is critical for both bio-application and risk evaluation of NPs, but is still not fully understood due to many influencing factors, among which particle size is a major one. Recent studies show that there is an unusual interplay among differently-sized NPs when they simultaneously interact with cells, e.g., 100 nm silica NPs (SNP100) can promote the cellular uptake of 50 nm silica NPs (SNP50). However, the underlying mechanism is still unclear. Herein, we manage to capture individual endocytosis events in HeLa and A549 cells after co-exposure to SNP50 and SNP100 for 2 hours, using transmission electron microscopy (TEM). TEM images clearly show that there is a size threshold for SNPs to trigger clathrin-mediated endocytosis: One single SNP100 can efficiently trigger it, while it needs about 6 SNP50 to do so. Remarkably, TEM also captures how SNP100 triggers the endocytosis and carries nearby SNP50 into cells, and statistical data show that the average number of SNP50 carried by one SNP100 could be up to about 6. In addition, the mechanism was further verified by using mixed 60 nm SNPs (SNP60) and SNP100. This mechanism has an immediate implication for the design of drug-deliver nanocarriers, and as a proof-of-concept, more catalase functionalized SNP50 (CAT@SNP50) was delivered into HeLa cells by adding some SNP100, resulting in a more severe cell damage compared to CAT@SNP50 alone under same conditions. The findings have general impact on the nanotoxicity study of NP products that commonly have certain distributions in size, and provide new insights on designing efficient drug delivery systems by deliberately control the combinations of NPs of different sizes.
Collapse
Affiliation(s)
- Xue-Rui Tang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Shou-Yang Lei
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Qiangqiang Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Hao Wu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
4
|
Sáringer S, Terjéki G, Varga Á, Maléth J, Szilágyi I. Optimization of Interfacial Properties Improved the Stability and Activity of the Catalase Enzyme Immobilized on Plastic Nanobeads. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16338-16348. [PMID: 39066719 PMCID: PMC11308775 DOI: 10.1021/acs.langmuir.4c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The immobilization of catalase (CAT), a crucial oxidoreductase enzyme involved in quenching reactive oxygen species, on colloids and nanoparticles presents a promising strategy to improve dispersion and storage stability while maintaining its activity. Here, the immobilization of CAT onto polymeric nanoparticles (positively (AL) or negatively (SL) charged) was implemented directly (AL) or via surface functionalization (SL) with water-soluble chitosan derivatives (glycol chitosan (GC) and methyl glycol chitosan (MGC)). The interfacial properties were optimized to obtain highly stable AL-CAT, SL-GC-CAT, and SL-MGC-CAT dispersions, and confocal microscopy confirmed the presence of CAT in the composites. Assessment of hydrogen peroxide decomposition ability revealed that applying chitosan derivatives in the immobilization process not only enhanced colloidal stability but also augmented the activity and reusability of CAT. In particular, the use of MGC has led to significant advances, indicating its potential for industrial and biomedical applications. Overall, the findings highlight the advantages of using chitosan derivatives in CAT immobilization processes to maintain the stability and activity of the enzyme as well as provide important data for the development of processable enzyme-based nanoparticle systems to combat reactive oxygen species.
Collapse
Affiliation(s)
- Szilárd Sáringer
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Gergő Terjéki
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Árpád Varga
- MTA-SZTE
Lendület Epithelial Cell Signaling and Secretion Research Group,
Interdisciplinary Excellence Centre, University
of Szeged, H-6720 Szeged, Hungary
| | - József Maléth
- MTA-SZTE
Lendület Epithelial Cell Signaling and Secretion Research Group,
Interdisciplinary Excellence Centre, University
of Szeged, H-6720 Szeged, Hungary
| | - István Szilágyi
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
5
|
Lai C, Luo B, Shen J, Shao J. Biomedical engineered nanomaterials to alleviate tumor hypoxia for enhanced photodynamic therapy. Pharmacol Res 2022; 186:106551. [PMID: 36370918 DOI: 10.1016/j.phrs.2022.106551] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy (PDT), as a highly selective, widely applicable, and non-invasive therapeutic modality that is an alternative to radiotherapy and chemotherapy, is extensively applied to cancer therapy. Practically, the efficiency of PDT is severely hindered by the existence of hypoxia in tumor tissue. Hypoxia is a typical hallmark of malignant solid tumors, which remains an essential impediment to many current treatments, thereby leading to poor clinical prognosis after therapy. To address this issue, studies have been focused on modulating tumor hypoxia to augment the therapeutic efficacy. Although nanomaterials to relieve tumor hypoxia for enhanced PDT have been demonstrated in many research articles, a systematical summary of the role of nanomaterials in alleviating tumor hypoxia is scarce. In this review, we introduced the mechanism of PDT, and the involved therapeutic modality of PDT for ablation of tumor cells was specifically summarized. Moreover, current advances in nanomaterials-mediated tumor oxygenation via oxygen-carrying or oxygen-generation tactics to alleviate tumor hypoxia are emphasized. Based on these considerable summaries and analyses, we proposed some feasible perspectives on nanoparticle-based tumor oxygenation to ameliorate the therapeutic outcomes, which may provide some detailed information in designing new oxygenation nanomaterials in this burgeneous field.
Collapse
Affiliation(s)
- Chunmei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bangyue Luo
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
6
|
Hu B, Xiao X, Chen P, Qian J, Yuan G, Ye Y, Zeng L, Zhong S, Wang X, Qin X, Yang Y, Pan Y, Zhang Y. Enhancing anti-tumor effect of ultrasensitive bimetallic RuCu nanoparticles as radiosensitizers with dual enzyme-like activities. Biomaterials 2022; 290:121811. [DOI: 10.1016/j.biomaterials.2022.121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
|
7
|
Cameron SJ, Sheng J, Hosseinian F, Willmore WG. Nanoparticle Effects on Stress Response Pathways and Nanoparticle-Protein Interactions. Int J Mol Sci 2022; 23:7962. [PMID: 35887304 PMCID: PMC9323783 DOI: 10.3390/ijms23147962] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used in a wide variety of applications and products; however, NPs may affect stress response pathways and interact with proteins in biological systems. This review article will provide an overview of the beneficial and detrimental effects of NPs on stress response pathways with a focus on NP-protein interactions. Depending upon the particular NP, experimental model system, and dose and exposure conditions, the introduction of NPs may have either positive or negative effects. Cellular processes such as the development of oxidative stress, the initiation of the inflammatory response, mitochondrial function, detoxification, and alterations to signaling pathways are all affected by the introduction of NPs. In terms of tissue-specific effects, the local microenvironment can have a profound effect on whether an NP is beneficial or harmful to cells. Interactions of NPs with metal-binding proteins (zinc, copper, iron and calcium) affect both their structure and function. This review will provide insights into the current knowledge of protein-based nanotoxicology and closely examines the targets of specific NPs.
Collapse
Affiliation(s)
- Shana J. Cameron
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - Jessica Sheng
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Farah Hosseinian
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - William G. Willmore
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
8
|
Zhao L, Zhang Y, Yang Y, Yu C. Silica-based Nanoparticles for Enzyme Immobilization and Delivery. Chem Asian J 2022; 17:e202200573. [PMID: 35796745 DOI: 10.1002/asia.202200573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Indexed: 11/06/2022]
Abstract
Enzymes play an indispensable role in biosystems, catalyzing a variety of chemical and biochemical reactions with exceptionally high efficiency and selectivity. These features render them uniquely positioned in developing novel catalytic systems and therapeutics. However, their practical application is largely hindered by the vulnerability, low reusability and the inability to overcome the biological barriers of enzymes. Silica-based nanoparticles (SNPs) are a classic family of nanomaterials with tunable physicochemical properties, making them ideal candidates to address the intrinsic shortcomings of natural enzymes. SNPs not only improve the activity and durability of enzymes, but also provide precise spatiotemporal control over their intracellular as well as systemic biodistributions for boosting the catalytic outcome. Herein, the recent progress in SNPs for enzyme immobilization and delivery is summarized. The therapeutic applications, including cancer therapy and bacterial inhibition, are particularly highlighted. Our perspectives in this field, including current challenges and possible future research directions are also provided.
Collapse
Affiliation(s)
- Liang Zhao
- East China Normal University, School of Chemistry and Molecular Engineering, CHINA
| | - Yue Zhang
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, AUSTRALIA
| | - Yannan Yang
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, AUSTRALIA
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Building 75,Cnr College Rd & Cooper Rd, 4067, Brisbane, AUSTRALIA
| |
Collapse
|
9
|
Enzyme Encapsulation by Facile Self-Assembly Silica-Modified Magnetic Nanoparticles for Glucose Monitoring in Urine. Pharmaceutics 2022; 14:pharmaceutics14061154. [PMID: 35745727 PMCID: PMC9227432 DOI: 10.3390/pharmaceutics14061154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Silica nanoparticles hold tremendous potential for the encapsulation of enzymes. However, aqueous alcohol solutions and catalysts are prerequisites for the production of silica nanoparticles, which are too harsh for maintaining the enzyme activity. Herein, a procedure without any organic solvents and catalysts (acidic or alkaline) is developed for the synthesis of silica-encapsulated glucose-oxidase-coated magnetic nanoparticles by a facile self-assembly route, avoiding damage of the enzyme structure in the reaction system. The encapsulated enzyme was characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive spectrometry, and a vibrating sample magnetometer. Finally, a colorimetric sensing method was developed for the detection of glucose in urine samples based on the encapsulated glucose oxidase and a hydrogen peroxide test strip. The method exhibited a good linear performance in the concentration range of 20~160 μg mL−1 and good recoveries ranging from 94.3 to 118.0%. This work proves that the self-assembly method could be employed to encapsulate glucose oxidase into silica-coated magnetic particles. The developed colorimetric sensing method shows high sensitivity, which will provide a promising tool for the detection of glucose and the monitoring of diabetes.
Collapse
|
10
|
Wang Q, Gao Z, Zhao K, Zhang P, Zhong QZ, Yu Q, Zhai S, Cui J. Co-delivery of enzymes and photosensitizers via metal-phenolic network capsules for enhanced photodynamic therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Iwasaki M, Yoshimoto M. Confinement of Metalloenzymes in PEGylated Liposomes to Formulate Colloidal Catalysts for Antioxidant Cascade. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10624-10635. [PMID: 34431680 DOI: 10.1021/acs.langmuir.1c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antioxidant cascade reactions detoxifying reactive oxygen species are of significance to control oxidative stresses-triggered diseases. In the present work, the antioxidant catalysts were prepared through the confinement of dual metalloenzymes in liposomes. The amino groups of superoxide dismutase (SOD) were conjugated to the carboxyl groups-bearing liposomes encapsulated with the catalase (CAT) to formulate a spatially organized antioxidant reaction network. The activity of SOD and CAT in the liposomal system was evaluated in detail on the basis of the prolonged xanthine oxidase/xanthine reaction producing superoxide anion radicals (O2̇-) and hydrogen peroxide (H2O2) coupled with redox reactions of cytochrome c. The liposome-confined SOD and CAT molecules were clearly demonstrated to catalyze the sequential disproportionation of O2̇- and H2O2 at 25 °C in a potassium phosphate buffer solution (pH = 7.8) under moderate transfer resistance with respect to the intermediate product (H2O2) within the liposomes. Furthermore, the liposomal catalysts were modified with the poly(ethylene glycol) (PEG)-conjugated lipids with the molecular mass of the PEG moiety of about 5000 through the post-PEGylation approach. The mean hydrodynamic diameter of the PEGylated liposomal catalysts was 140-150 nm. The dual enzyme activity in liposomes and the thermal stability of the encapsulated CAT were practically unaffected by the PEGylation. The above liposome-based antioxidant catalysts are highly biocompatible, PEG-modifiable, and reactive, thereby making the catalysts potentially applicable to therapeutic materials exhibiting functionality similar to cellular peroxisomes.
Collapse
Affiliation(s)
- Masataka Iwasaki
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Makoto Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| |
Collapse
|