1
|
Gan C, Zhang J, Chen B, Wang A, Xiong H, Zhao J, Wang C, Liang S, Feng L. Optoelectronic Tweezers Micro-Well System for Highly Efficient Single-Cell Trapping, Dynamic Sorting, and Retrieval. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307329. [PMID: 38509856 DOI: 10.1002/smll.202307329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Indexed: 03/22/2024]
Abstract
Single-cell arrays have emerged as a versatile method for executing single-cell manipulations across an array of biological applications. In this paper, an innovative microfluidic platform is unveiled that utilizes optoelectronic tweezers (OETs) to array and sort individual cells at a flow rate of 20 µL min-1. This platform is also adept at executing dielectrophoresis (DEP)-based, light-guided single-cell retrievals from designated micro-wells. This presents a compelling non-contact method for the rapid and straightforward sorting of cells that are hard to distinguish. Within this system, cells are individually confined to micro-wells, achieving an impressive high single-cell capture rate exceeding 91.9%. The roles of illuminating patterns, flow velocities, and applied electrical voltages are delved into in enhancing the single-cell capture rate. By integrating the OET system with the micro-well arrays, the device showcases adaptability and a plethora of functions. It can concurrently trap and segregate specific cells, guided by their dielectric signatures. Experimental results, derived from a mixed sample of HepG2 and L-O2 cells, reveal a sorting accuracy for L-O2 cells surpassing 91%. Fluorescence markers allow for the identification of sequestered, fluorescence-tagged HepG2 cells, which can subsequently be selectively released within the chip. This platform's rapidity in capturing and releasing individual cells augments its potential for future biological research and applications.
Collapse
Affiliation(s)
- Chunyuan Gan
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Jiaying Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Bo Chen
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Ao Wang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Hongyi Xiong
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Jiawei Zhao
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Chutian Wang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Shuzhang Liang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical, Beihang University, Beijing, 100191, China
| |
Collapse
|
2
|
Shijo S, Tanaka D, Sekiguchi T, Ishihara JI, Takahashi H, Kobayashi M, Shoji S. Dielectrophoresis-Based Selective Droplet Extraction Microfluidic Device for Single-Cell Analysis. MICROMACHINES 2023; 14:706. [PMID: 36985113 PMCID: PMC10058699 DOI: 10.3390/mi14030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
We developed a microfluidic device that enables selective droplet extraction from multiple droplet-trapping pockets based on dielectrophoresis. The device consists of a main microchannel, five droplet-trapping pockets with side channels, and drive electrode pairs appropriately located around the trapping pockets. Agarose droplets capable of encapsulating biological samples were successfully trapped in the trapping pockets due to the difference in flow resistance between the main and side channels. Target droplets were selectively extracted from the pockets by the dielectrophoretic force generated between the electrodes under an applied voltage of 500 V. During their extraction from the trapping pockets, the droplets and their contents were exposed to an electric field for 400-800 ms. To evaluate whether the applied voltage could potentially damage the biological samples, the growth rates of Escherichia coli cells in the droplets, with and without a voltage applied, were compared. No significant difference in the growth rate was observed. The developed device enables the screening of encapsulated single cells and the selective extraction of target droplets.
Collapse
Affiliation(s)
- Seito Shijo
- Major in Nanoscience and Nanoengineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 145-0065, Japan; (M.K.)
| | - Daiki Tanaka
- Research Organization for Nano & Life Innovation, Waseda University, 513 Tsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Tetsushi Sekiguchi
- Research Organization for Nano & Life Innovation, Waseda University, 513 Tsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Jun-ichi Ishihara
- Medical Mycology Research Center, Chiba University, 181 Inohana, Chuo, Chiba 260-8673, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, 181 Inohana, Chuo, Chiba 260-8673, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Plant Molecular Science Center, Chiba University, 181 Inohana, Chuo, Chiba 260-8673, Japan
| | - Masashi Kobayashi
- Major in Nanoscience and Nanoengineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 145-0065, Japan; (M.K.)
| | - Shuichi Shoji
- Major in Nanoscience and Nanoengineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 145-0065, Japan; (M.K.)
| |
Collapse
|
3
|
Breukers J, Ven K, Struyfs C, Ampofo L, Rutten I, Imbrechts M, Pollet F, Van Lent J, Kerstens W, Noppen S, Schols D, De Munter P, Thibaut HJ, Vanhoorelbeke K, Spasic D, Declerck P, Cammue BPA, Geukens N, Thevissen K, Lammertyn J. FLUIDOT: A Modular Microfluidic Platform for Single-Cell Study and Retrieval, with Applications in Drug Tolerance Screening and Antibody Mining. SMALL METHODS 2023; 7:e2201477. [PMID: 36642827 DOI: 10.1002/smtd.202201477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Advancements in lab-on-a-chip technologies have revolutionized the single-cell analysis field. However, an accessible platform for in-depth screening and specific retrieval of single cells, which moreover enables studying diverse cell types and performing various downstream analyses, is still lacking. As a solution, FLUIDOT is introduced, a versatile microfluidic platform incorporating customizable microwells, optical tweezers and an interchangeable cell-retrieval system. Thanks to its smart microfluidic design, FLUIDOT is straightforward to fabricate and operate, rendering the technology widely accessible. The performance of FLUIDOT is validated and its versatility is subsequently demonstrated in two applications. First, drug tolerance in yeast cells is studied, resulting in the discovery of two treatment-tolerant populations. Second, B cells from convalescent COVID-19 patients are screened, leading to the discovery of highly affine, in vitro neutralizing monoclonal antibodies against SARS-CoV-2. Owing to its performance, flexibility, and accessibility, it is foreseen that FLUIDOT will enable phenotypic and genotypic analysis of diverse cell samples and thus elucidate unexplored biological questions.
Collapse
Affiliation(s)
- Jolien Breukers
- Department of Biosystems, Biosensors group, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
- LISCO, KU Leuven Institute for Single Cell Omics, ON4 Herestraat 49, Leuven, 3000, Belgium
| | - Karen Ven
- Department of Biosystems, Biosensors group, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
- LISCO, KU Leuven Institute for Single Cell Omics, ON4 Herestraat 49, Leuven, 3000, Belgium
- MabMine: KU Leuven Single B Cell Mining Platform, KU Leuven, ON2 Herestraat 49, 3000, Leuven, Belgium
| | - Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Leuven, 3001, Belgium
| | - Louanne Ampofo
- Department of Biosystems, Biosensors group, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
- MabMine: KU Leuven Single B Cell Mining Platform, KU Leuven, ON2 Herestraat 49, 3000, Leuven, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, ON 2 Herestraat 49, Leuven, 3000, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, ON2 Herestraat 49, Leuven, 3000, Belgium
| | - Iene Rutten
- Department of Biosystems, Biosensors group, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
- LISCO, KU Leuven Institute for Single Cell Omics, ON4 Herestraat 49, Leuven, 3000, Belgium
| | - Maya Imbrechts
- MabMine: KU Leuven Single B Cell Mining Platform, KU Leuven, ON2 Herestraat 49, 3000, Leuven, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, ON 2 Herestraat 49, Leuven, 3000, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, ON2 Herestraat 49, Leuven, 3000, Belgium
| | - Francesca Pollet
- Department of Biosystems, Biosensors group, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
| | - Julie Van Lent
- Department of Biosystems, Biosensors group, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
| | - Winnie Kerstens
- Translational Platform Virology and Chemotherapy, Rega Institute, KU Leuven, Rega - Herestraat 49, Leuven, 3000, Belgium
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Rega - Herestraat 49, Leuven, 3000, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Rega - Herestraat 49, Leuven, 3000, Belgium
| | - Paul De Munter
- Department of Internal Medicine, University Hospitals Leuven, UZ Herestraat 49, Leuven, 3000, Belgium
- Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, UZ Herestraat 49, Leuven, 3000, Belgium
| | - Hendrik Jan Thibaut
- Translational Platform Virology and Chemotherapy, Rega Institute, KU Leuven, Rega - Herestraat 49, Leuven, 3000, Belgium
| | - Karen Vanhoorelbeke
- MabMine: KU Leuven Single B Cell Mining Platform, KU Leuven, ON2 Herestraat 49, 3000, Leuven, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, ON 2 Herestraat 49, Leuven, 3000, Belgium
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk, 8500, Belgium
| | - Dragana Spasic
- Department of Biosystems, Biosensors group, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
| | - Paul Declerck
- MabMine: KU Leuven Single B Cell Mining Platform, KU Leuven, ON2 Herestraat 49, 3000, Leuven, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, ON 2 Herestraat 49, Leuven, 3000, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, ON2 Herestraat 49, Leuven, 3000, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Leuven, 3001, Belgium
| | - Nick Geukens
- MabMine: KU Leuven Single B Cell Mining Platform, KU Leuven, ON2 Herestraat 49, 3000, Leuven, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, ON 2 Herestraat 49, Leuven, 3000, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, ON2 Herestraat 49, Leuven, 3000, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Leuven, 3001, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors group, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
- LISCO, KU Leuven Institute for Single Cell Omics, ON4 Herestraat 49, Leuven, 3000, Belgium
- MabMine: KU Leuven Single B Cell Mining Platform, KU Leuven, ON2 Herestraat 49, 3000, Leuven, Belgium
- LIMNI, KU Leuven Institute for Micro- and Nanoscale Integration, Celestijnenlaan 200F, Leuven, 3001, Belgium
| |
Collapse
|
4
|
Biochemical analysis based on optical detection integrated microfluidic chip. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Liu Y, Fan Z, Qiao L, Liu B. Advances in microfluidic strategies for single-cell research. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Li Y, Li P, Ke Y, Yu X, Yu W, Wen K, Shen J, Wang Z. A rare monoclonal antibody discovery based on indirect competitive screening of a single hapten-specific rabbit antibody secreting cell. Analyst 2022; 147:2942-2952. [PMID: 35674177 DOI: 10.1039/d2an00678b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A rare antibody that is able to tolerate physio-chemical factors is preferred and highly demanded in diagnosis and therapy. Rabbit monoclonal antibodies (RmAbs) are distinguished owing to their high affinity and stability. However, the efficiency and availability of traditional methods for RmAb discovery are limited, particularly for small molecules. Here, we present an indirect competitive screening method in nanowells, named CSMN, for single rabbit antibody-secreting cells (ASCs) selection with 20.6 h and propose an efficient platform for RmAb production against small molecules within 5.8 days for the first time. Chloramphenicol (CAP) as an antibacterial agent poses a great threat to public health. We applied CSMN to select CAP-specific ASCs and produced one high-affinity RmAb, surprisingly showed extremely halophilic properties with an IC50 of 0.08 ng mL-1 in the saturated salt solution, which has not yet been seen for other antibodies. The molecular dynamic simulation showed that the negatively charged surface improved the stability of the RmAb structure with additional disulfide bonds compared with mouse antibodies. Moreover, the reduced solvent accessible surface area of the binding pocket increased the interactions of RmAb with CAP in a saturated salt solution. Furthermore, RmAb was used to develop an immunoassay for the detection of CAP in real biological samples with simple pretreatment, shorter assay time, and higher sensitivity. The results demonstrated that the practical and efficient CSMN is suitable for rare RmAb discovery against small molecules.
Collapse
Affiliation(s)
- Yuan Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| | - Peipei Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| | - Yuebin Ke
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, 518000 Shenzhen, China
| | - Xuezhi Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| |
Collapse
|
7
|
Off-Stoichiometry Thiol–Enes Polymers Containing Silane Groups for Advanced Packaging Technologies. Polymers (Basel) 2022; 14:polym14101988. [PMID: 35631871 PMCID: PMC9147012 DOI: 10.3390/polym14101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
New modified off-stoichiometry thiol–enes polymers, called OSTE-MS polymers, were developed by introducing mercaptosilane into the polymer mixture. This modification made it possible to introduce silane groups into the polymer frame, due to which the polymer gained the ability to bond with silicon wafers without modification of the wafer surface by any adhesive. The optimal composition for creating 3D polymer structures on a chip was selected, which consists of a volume ratio of 6:6:1 of allyl monomer, mercapto monomer, and mercaptosilane, respectively. The hardness, shift force, tensile strength, Young’s modulus, optical transparency, glass transition temperature, thermal stability, and chemical resistance of the OSTE-MS polymer, and the viscosity for the prepolymer mixture were studied. On the basis of the OSTE-MS polymer, 3D polymer structures of the well type and microfluidic system on the silicon chips were obtained.
Collapse
|
8
|
Struyfs C, Breukers J, Spasic D, Lammertyn J, Cammue BPA, Thevissen K. Multiplex Analysis to Unravel the Mode of Antifungal Activity of the Plant Defensin HsAFP1 in Single Yeast Cells. Int J Mol Sci 2022; 23:ijms23031515. [PMID: 35163438 PMCID: PMC8836000 DOI: 10.3390/ijms23031515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Single cell analyses have gained increasing interest over bulk approaches because of considerable cell-to-cell variability within isogenic populations. Herein, flow cytometry remains golden standard due to its high-throughput efficiency and versatility, although it does not allow to investigate the interdependency of cellular events over time. Starting from our microfluidic platform that enables to trap and retain individual cells on a fixed location over time, here, we focused on unraveling kinetic responses of single Saccharomyces cerevisiae yeast cells upon treatment with the antifungal plant defensin HsAFP1. We monitored the time between production of reactive oxygen species (ROS) and membrane permeabilization (MP) in single yeast cells for different HsAFP1 doses using two fluorescent dyes with non-overlapping spectra. Within a time frame of 2 min, only <0.3% cells displayed time between the induction of ROS and MP. Reducing the time frame to 30 s did not result in increased numbers of cells with time between these events, pointing to ROS and MP induction as highly dynamic and correlated processes. In conclusion, using an in-house developed continuous microfluidic platform, we investigated the mode of action of HsAFP1 at single cell level, thereby uncovering the close interdependency between ROS induction and MP in yeast.
Collapse
Affiliation(s)
- Caroline Struyfs
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems (MS), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; (C.S.); (B.P.A.C.)
| | - Jolien Breukers
- Biosensors Group, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium; (J.B.); (D.S.); (J.L.)
| | - Dragana Spasic
- Biosensors Group, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium; (J.B.); (D.S.); (J.L.)
| | - Jeroen Lammertyn
- Biosensors Group, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium; (J.B.); (D.S.); (J.L.)
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems (MS), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; (C.S.); (B.P.A.C.)
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems (MS), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; (C.S.); (B.P.A.C.)
- Correspondence: ; Tel.: +32-16-32-96-88
| |
Collapse
|
9
|
Confined electrochemiluminescence imaging microarray for high-throughput biosensing of single cell-released dopamine. Biosens Bioelectron 2022; 201:113959. [PMID: 34999521 DOI: 10.1016/j.bios.2021.113959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
The quantitative detection of single cell secretions is always limited by their accurate collection and the heterogeneity of different cells. In this work, a confined electrochemiluminescence (ECL) imaging microarray (CEIM) chip was designed to capture single or a few cells in each cylindrical microwell for high-throughput quantitation of cell-secreted dopamine (DA). The ITO surface at the bottom of microwells was functionalized with the film of DA aptamer modified coreactant-embedded polymer dots (Pdots), which endowed the chip with the abilities to both in situ recognize the target DA secreted from the cells and emit the ECL signal for responding the secreted target without need of any additional coreactant. At the applied potential of +1.4 V, the Pdots in the film emitted strong ECL signal, which could be quenched by the electrochemical oxidation product of DA in individual microwell for sensitive detection of single cell-released DA. The practicability of the proposed CEIM chip along with the ECL imaging and biosensing strategy was demonstrated by evaluating the amounts of single cell-released DA in different microwells under hypoxia stimulation. This protocol revealed the heterogeneity of cell secretion, and could be extended for quantitation of other secretions from different kinds of single cells.
Collapse
|
10
|
Wu Y, Zhao L, Chang Y, Zhao L, Guo G, Wang X. Ultra-thin temperature controllable microwell array chip for continuous real-time high-resolution imaging of living single cells. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Van Lent J, Breukers J, Ven K, Ampofo L, Horta S, Pollet F, Imbrechts M, Geukens N, Vanhoorelbeke K, Declerck P, Lammertyn J. Miniaturized single-cell technologies for monoclonal antibody discovery. LAB ON A CHIP 2021; 21:3627-3654. [PMID: 34505611 DOI: 10.1039/d1lc00243k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibodies (Abs) are among the most important class of biologicals, showcasing a high therapeutic and diagnostic value. In the global therapeutic Ab market, fully-human monoclonal Abs (FH-mAbs) are flourishing thanks to their low immunogenicity and high specificity. The rapidly emerging field of single-cell technologies has paved the way to efficiently discover mAbs by facilitating a fast screening of the antigen (Ag)-specificity and functionality of Abs expressed by B cells. This review summarizes the principles and challenges of the four key concepts to discover mAbs using these technologies, being confinement of single cells using either droplet microfluidics or microstructure arrays, identification of the cells of interest, retrieval of those cells and single-cell sequence determination required for mAb production. This review reveals the enormous potential for mix-and-matching of the above-mentioned strategies, which is illustrated by the plethora of established, highly integrated devices. Lastly, an outlook is given on the many opportunities and challenges that still lie ahead to fully exploit miniaturized single-cell technologies for mAb discovery.
Collapse
Affiliation(s)
- Julie Van Lent
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Jolien Breukers
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Karen Ven
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Louanne Ampofo
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
| | - Sara Horta
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk 8500, Belgium
| | - Francesca Pollet
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Maya Imbrechts
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk 8500, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Paul Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| |
Collapse
|