1
|
Hua Y, Li L, Zhang H, Guo GC. Advances in crystalline metal-organic photochromic materials. Chem Commun (Camb) 2025; 61:5422-5434. [PMID: 40114647 DOI: 10.1039/d4cc06570k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Metal-organic materials have undergone rapid advancements due to their unique structural properties and exceptional application potential. As a key branch, crystalline metal-organic photochromic materials (CMOPMs), have attracted significant attention for their ability to modulate physical properties in response to light stimulation, thereby expanding the research landscape of metal-organic materials in areas such as molecular switch, gas adsorption and separation, and sensing applications. Furthermore, light as a renewable and clean energy source significantly enhances its application potential. In this feature article, we review the design and synthesis strategies, classification, and applications of CMOPMs. Finally, we present the opportunities and challenges for the development of CMOPMs.
Collapse
Affiliation(s)
- Yang Hua
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Li Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Hong Zhang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Liu X, Chen C, Xiao Y, Li X, Xu K, Lian X, Zhang JZ, Luo B. Photocycloaddition of Zero-Dimensional Metal Halide Hybrids with Reversible Photochromism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31313-31321. [PMID: 38836776 DOI: 10.1021/acsami.4c04249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In this work, two zero-dimensional (0D) metal halide hybrids L2ZnBr4 [1, L = (E)-4-(2-(1H-pyrrol-3-yl)vinyl)-1-methylpyridin-1-ium] and L6Pb3Br12 (2) were prepared, which demonstrated photochromism and photoinduced cracking. Upon irradiation at 450 nm, a single crystal-to-single crystal transformation occurred as a result of the [2 + 2] photocycloaddition of L. Interestingly, compared to the complete photocycloaddition of L in 1, only two-thirds of L monomers could be photodimerized in 2 because of the difference in L orientation. 1 shows reversible photochromic behavior including rapid response time, few cracks, high conversion rate, and good reaction reversibility, while 2 exhibits no significant color change but distinct photoinduced cracking because of the large local lattice strain induced by inhomogeneous and anisotropic deformation. Moreover, the photocycloaddition of L results in the distinct shift of photoluminescence of 1 and 2, attributed to the variation in conjugation of π electrons and distortion of metal halide clusters. As a proof-of-concept, reversible optical writing is demonstrated for 1. These findings provide new insights into the design of stimuli-responsive multifunctional materials.
Collapse
Affiliation(s)
- Xiaohui Liu
- Department of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Chudong Chen
- Department of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Yonghong Xiao
- Department of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Xianli Li
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, P. R. China
| | - Ke Xu
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Xin Lian
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jin Z Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Binbin Luo
- Department of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| |
Collapse
|
3
|
Li J, Wang YH, Han SD, Wen YX, Hu JX, Li JH, Yang GY. Photochromism and Photomagnetism in Two Ni(II) Complexes Based on a Photoactive 2,4,6-Tris-2-Pyridyl-1,3,5-Triazine Ligand. Inorg Chem 2024; 63:1142-1150. [PMID: 38175800 DOI: 10.1021/acs.inorgchem.3c03499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
It is still challenging to construct novel photochromic and photomagnetic materials in the field of molecular materials. Herein, the 2,4,6-tris-2-pyridyl-1,3,5-triazine (TPTz) molecule was found to display photochromic properties under room temperature light irradiation. Two mononuclear structures, [Ni(H2O)(TPTz)(C2O4)]·2H2O (1; C2O42- = oxalate) [Ni(H2O)(TPTz)(C2O4)]·0.5H2O (2), and one chain compound [Ni(TPTz)(H2-HEDP)]·2H2O (3; HEDP = hydroxyethylidene diphosphonate) were obtained by assembling TPTz with polydentate O-ligands (oxalate and phosphonate) and the paramagnetic Ni2+ ions. The electron-transfer (ET)-dominated photochromism was observable in 1 and 2 after light irradiation with the photogeneration of relatively stable radicals, and the resultant photochromism was demonstrated via UV-vis, photoluminescence, X-ray photoelectron spectra, electron paramagnetic resonance spectra, and molecular orbital calculations. Due to the denser stacking interactions between the adjacent organic molecules, 2 exhibited a faster photochromic rate than 1. Compared with 1 and 2, compound 3 did not show photochromic behavior, which was deciphered by the theoretical calculations for all of the compounds. Importantly, the magnetic couplings appeared between photogenerated radicals and paramagnetic Ni2+ ions, resulting in a scarcely photomagnetic phenomenon of 1 and 2 in the Ni-based electron transfer photochromic materials. This work enriches the available kind of ligands for the design of ET photochromic materials, putting forward a method to tune the electron transfer photochromic efficiency in the molecular materials.
Collapse
Affiliation(s)
- Jie Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yu-Han Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yu-Xuan Wen
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jin-Hua Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Guo-Yu Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| |
Collapse
|
4
|
Chen C, Liu J, Sun Z, Yang S, Yuan S, Han H. A Zn (II)-viologen MOF material: photochromic, photoswitchable luminescent properties and UV sensing. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
5
|
Zheng Z, Lu H, Hou H, Bai Y, Qiu J, Guo X, Wang JQ, Lin J. Stepwise Crystallization of Millimeter Scale Thorium Cluster Single Crystals as a Bifunctional Platform for X-ray Detection and Shielding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206782. [PMID: 36534835 DOI: 10.1002/smll.202206782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Monitoring and shielding of X-ray radiation are of paramount importance across diverse fields. However, they are frequently realized in separate protocols and a single material integrating both functions remained elusive. Herein, a hexanuclear cluster [Th6 (µ3 -OH)4 (µ3 -O)4 (H2 O)6 ](pba)6 (HCOO)6 (Th-pba-0D) incorporating high-Z thorium cations and 3-(pyridin-4-yl)benzoate ligands that can function as a brand-new dual-module platform for visible detection and efficient shielding of ionizing radiation is demonstrated. Th-pba-0D exhibits rather unique reversible radiochromism upon alternating X-ray and UV irradiation. Moreover, the millimeter scale crystal size of Th-pba-0D renders the penetration depth of X-ray visible to naked eye and leads to the unearthing of its high X-ray attenuation efficiency. Indeed, the shielding efficacy of Th-pba-0D is comparable to that of lead glass containing 40% PbO, and a Th-pba-0D pellet with a thickness of merely 1.2 mm can shield 99.73% X-ray (16 keV). These studies portend the possible utilization of thorium-bearing materials as a bifunctional platform for radiation detection and shielding.
Collapse
Affiliation(s)
- Zhaofa Zheng
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Huiliang Hou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Yaoyao Bai
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. China
| | - Jie Qiu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. China
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Fulmer 630, Pullman, WA, 99164-4630, USA
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. China
| |
Collapse
|
6
|
Wang YW, Li MH, Zhang SQ, Fang X, Lin MJ. A Three-Component Donor-Acceptor Hybrid Framework with Low-Power X-ray-Induced Photochromism. Inorg Chem 2022; 61:8153-8159. [PMID: 35580155 DOI: 10.1021/acs.inorgchem.2c00381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Donor-acceptor (D-A) hybrid frameworks with visual X-ray photochromism at room temperature are fascinating because of their promising applications as X-ray detectors. Herein, a 3-fold interpenetrated D-A hybrid framework, [Eu(bcbp)1.5(DMF)(H2O)2][Co(CN)6]·4H2O·CH3OH (1), has been obtained by incorporating electron-rich Co(CN)63- into the electron-deficient europium viologen framework, which interestingly exhibits ultraviolet and low-power X-ray dual photochromism with a remarkable color change from brown to green. Experimental and theoretical studies revealed that the X-ray photochromic behavior of hybrid 1 could be attributed to its D-A hybrid structural feature increasing the extent of photoinduced electron transfer and thus photogenerated radical species upon X-ray irradiation. Meanwhile, due to the introduction of emissive lanthanide cations in the D-A system, hybrid 1 exhibits photomodulated luminescence properties.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Meng-Hua Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, Fuzhou 350002, China
| | - Xin Fang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Mei-Jin Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.,College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
7
|
Lu H, Zheng Z, Qiu J, Qian Y, Wang JQ, Lin J. Unveiling the new function of uranyl molecular clusters as fluorometric sensors for UV and X-ray dosimetry. Dalton Trans 2022; 51:3041-3045. [PMID: 35133375 DOI: 10.1039/d1dt04225d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Simple synthetic modulation based on uranyl acetate and phenanthroline has resulted in two uranyl clusters (1 and 2) with different topologies and nuclearities. Notably, the dimeric complex exhibits distinct luminescence quenching upon UV and X-ray irradiation with detection limits of 4.30 × 10-6 J and 0.32 Gy, respectively. To advance the practical application, 1 was further fabricated with polyvinylidene fluoride into a flexible strip as a UV and X-ray indicator.
Collapse
Affiliation(s)
- Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jie Qiu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Yuan Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
8
|
Lu H, Hou H, Hou YC, Zheng Z, Ma Y, Zhou Z, Guo X, Pan QJ, Wang Y, Qian Y, Wang JQ, Lin J. A New Concept of Radiation Detection Based on a Fluorochromic and Piezochromic Nanocluster. J Am Chem Soc 2022; 144:3449-3457. [DOI: 10.1021/jacs.1c11496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Huiliang Hou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Yu-Chang Hou
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Zhaofa Zheng
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Yingying Ma
- Center for High Pressure Science and Technology Advanced Research (HPSTAR) Beijing 100094, PR China
| | - Zhengyang Zhou
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University Pullman, Washington 99164-4630, United States
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Yonggang Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR) Beijing 100094, PR China
| | - Yuan Qian
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China
| |
Collapse
|
9
|
Zheng Z, Qiu J, Lu H, Wang JQ, Lin J. Luminometric dosimetry of X-ray radiation by a zwitterionic uranium coordination polymer. RSC Adv 2022; 12:12878-12881. [PMID: 35496343 PMCID: PMC9048573 DOI: 10.1039/d2ra00440b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
A novel X-ray dosimeter based on a uranium coordination polymer has been developed by the judicious synergy between the luminescent uranyl centres and zwitterionic tritopic ligands.
Collapse
Affiliation(s)
- Zhaofa Zheng
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jie Qiu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
10
|
Qian J, Lu H, Zheng Z, Xu M, Qian Y, Zhang ZH, Wang JQ, He MY, Lin J. Achieving colour tuneable and white-light luminescence in a large family of dual-emission lanthanide coordination polymers. Dalton Trans 2021; 50:14325-14331. [PMID: 34558579 DOI: 10.1039/d1dt01618k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Expanding the family of lanthanide terpyridine coordination polymers has yielded eighteen new complexes with two different phases, Ln(TPC)2(HCOO)(H2O) (Ln-1) and Ln(TPC)(HCOO)2 (Ln-2) (Ln = Sm-Lu, except Tm). Both structures are composed of lanthanide cations interconnected by 2,2':6',2''-terpyridine-4'-carboxylate ligands to yield one-dimensional chain topologies. However, the incorporation of an additional crystallographically unique decorative TPC ligand into Ln-1 gives rises to a distinct phase. The encapsulation of both metal- and ligand-based phosphors within single coordination polymers leads to dual-emission of the afforded materials. Furthermore, judicious lanthanide doping in heterometallic Ln-1 and Ln-2 allows for fine-tuning the photoluminescent colours over a wide range of gamut. Such a combination showcases the capability to fine-tune the emission colours from deep green, to red, and to blue. In addition, direct white-light emission upon UV excitation can be achieved in the SmxGd1-x-1 system.
Collapse
Affiliation(s)
- Junfeng Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Miaomiao Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
| | - Yuan Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Jian Lin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Zheng Z, Lu H, Guo X, Zhou Z, Wang Y, Li ZJ, Xiao GP, Qian Y, Lin J, Wang JQ. Emergence of a thorium-organic framework as a radiation attenuator for selective X-ray dosimetry. Chem Commun (Camb) 2021; 57:8131-8134. [PMID: 34286741 DOI: 10.1039/d1cc02649f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
By first applying a thorium-organic framework (Th-SINAP-2) as a radiation attenuator and by incorporating a terpyridine derivative (Htpbz) as a photo-responsive guest, selective photochromism in response to X-rays was achieved in the host-guest assembly of Htpbz@Th-SINAP-2. Such a combination endows the afforded material with the lowest detection limit of X-ray dose among all photochromic sensors and a brand-new function of X-ray dosimetry for thorium containing materials.
Collapse
Affiliation(s)
- Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li Z, Chang S, Zhang H, Hu Y, Huang Y, An L, Ren S. Cu-based metal-organic frameworks for highly sensitive X-ray detectors. Chem Commun (Camb) 2021; 57:8612-8615. [PMID: 34369527 DOI: 10.1039/d1cc03458h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we constructed Pb-free Cu-DABDT-MOFs-based (DABDT = 2,5-diamino-1,4-benzenedithiol) X-ray detectors. Combined with the advantage of high activation energy, the Cu-DABDT-MOFs-based detector can effectively generate and capture electrons under X-ray exposure and presents a high mobility-lifetime (μτ) product of 6.49 × 10-4 cm2 V-1 and promising detection sensitivity of 78.7 μC Gyair-1 cm-2. As groundbreaking work, these discoveries have provided information for exploring MOF materials toward green and high-performance high-energy radiation detectors by exploiting the designable structure and tunable properties of the MOF family.
Collapse
Affiliation(s)
- Zheng Li
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China.
| | | | | | | | | | | | | |
Collapse
|