1
|
Bolujoko N, Duling A, Shashvatt U, Mangalgiri K. The fate of antibiotics during phosphate recovery processes - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178829. [PMID: 39970556 DOI: 10.1016/j.scitotenv.2025.178829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/21/2025]
Abstract
The principles of circular economy encourage the recovery of phosphorus from nutrient-rich waste streams such as animal manure, domestic wastewater, and urine to supplement existing sources of raw phosphorus. However, these waste streams also contain a wide variety of contaminants of emerging concern including antibiotics, and the recovery of phosphorus from these waste streams results in the co-occurrence of antibiotics with the recovered phosphorus products. This paper provides a comprehensive overview of the fate of environmentally relevant antibiotics in three major existing and upcoming phosphorus recovery processes: precipitation-, membrane-, and adsorption-based treatment. In general, the co-occurrence of antibiotics in recovered phosphorus increases with the presence of dissolved organic matter (DOM) and cations due to π-π interaction and cationic bridge formation, respectively. Additionally, antibiotics display pH-based speciation resulting in electrostatic interactions with recovered phosphorus at pH > 7.0. Furthermore, this critical review establishes a new metric, the relative antibiotic-to‑phosphorus (RAP), defined as the ratio of the concentration of antibiotics to phosphorus in recovered phosphorus to that of the phosphorus-rich waste. Precipitation-based methods, particularly struvite, demonstrated the lowest RAP, while the RAP in carbon-based adsorbents was 1.8 × 108 times higher than in membrane-based processes. In reviewing literature on the fate of antibiotics in phosphorus recovery processes, several research needs are also highlighted: the fate of non-tetracycline antibiotics, simultaneous investigation of phosphorus and antibiotic fate in membrane- and adsorption-based methods, treatment methods to mitigate the co-occurrence of antibiotics in recovered phosphorus product, and the release of antibiotics from recovered phosphate products.
Collapse
Affiliation(s)
- Nathaniel Bolujoko
- Environmental Science Graduate Program, Oklahoma State University, 202 Whitehurst, Stillwater, OK 74078, USA
| | - Addison Duling
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, 215A Agricultural Hall, Stillwater, OK 74078, USA
| | - Utsav Shashvatt
- Department of Civil and Environmental Engineering, University of California, Berkeley, 760 Davis Hall, Berkeley, CA 94720, USA
| | - Kiranmayi Mangalgiri
- Environmental Science Graduate Program, Oklahoma State University, 202 Whitehurst, Stillwater, OK 74078, USA; Department of Biosystems and Agricultural Engineering, Oklahoma State University, 215A Agricultural Hall, Stillwater, OK 74078, USA.
| |
Collapse
|
2
|
Hamid I, Ahmadipour M, Ahmed MJ, Rizvi MA, Shalla AH, Khanday WA. Emerging antibiotic pollution and its remedy by waste based biochar adsorbents: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8643-8669. [PMID: 40085389 DOI: 10.1007/s11356-025-36253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
One of the pollutants of emerging concern, antibiotics, have been reported in soil, water, sediment, animal manure, food, and even drinking water. Their partially metabolized forms reach wastewater treatment plants (WWTPs) and natural waters wherein the development of antibiotic resistant bacteria (ARB) and dissemination of antibiotic resistance genes (ARGs) have been reported to occur. Antimicrobial resistance (AMR) is projected to cause 10 million deaths annually across the world by 2050 in case stringent measures are not taken. In this study, various methods of adsorptive removal of antibiotics with their critical analysis and emphasis on the application of biochar (BC) and modified biochar derived from waste biomass have been comprehensively reviewed. Also, the antibiotic toxicity, preparation of biomass waste-derived BC adsorbents from cost-effective precursors to ensure sustainability, the adsorption kinetics, isotherm models and thermodynamic parameters have been discussed. It was inferred that biochars are quite efficient in terms of antibiotic removal in water owing to their large surface area, excellent surface characteristics and functionality, facile synthesis and the potential to be regenerated, while being cost-effective and sustainable in nature. This review aims to guide the expansion of research in the aforementioned area of interest and to provide a progressive push towards the development of a circular economy.
Collapse
Affiliation(s)
- Insha Hamid
- PG Department of Chemistry, Sri Pratap College, Jammu & Kashmir, 190001, Srinagar, India
| | - Mohsen Ahmadipour
- Institute of Power Engineering, Universiti Tenaga Nasional, Serdang, Malaysia
| | - Muthanna J Ahmed
- Department of Chemical Engineering, College of Engineering, University of Baghdad, 10071, Baghdad, Iraq
| | - Masood Ahmad Rizvi
- Department of Chemistry, University of Kashmir, Jammu & Kashmir, 190006, Hazratbal, India
| | - Aabid H Shalla
- Soft Material Laboratory, Department of Chemistry, Islamic University of Science and Technology, Jammu & Kashmir, 192122, Awantipora, India
| | - Waheed Ahmad Khanday
- PG Department of Chemistry, Sri Pratap College, Jammu & Kashmir, 190001, Srinagar, India.
| |
Collapse
|
3
|
Padhan B, Ryoo W, Patel M, Dash JK, Patel R. Cutting-Edge Applications of Cellulose-Based Membranes in Drug and Organic Contaminant Removal: Recent Advances and Innovations. Polymers (Basel) 2024; 16:2938. [PMID: 39458766 PMCID: PMC11511415 DOI: 10.3390/polym16202938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The increasing environmental challenges caused by pharmaceutical waste, especially antibiotics and contaminants, necessitate sustainable solutions. Cellulose-based membranes are considered advanced tools and show great potential as effective materials for the removal of drugs and organic contaminants. This review introduces an environmentally friendly composite membrane for the elimination of antibiotics and dye contaminants from water and food, without the use of toxic additives. The potential of cellulose-based membranes in reducing the impact on water quality and promoting environmental sustainability is emphasized. Additionally, the benefits of using biobased cellulose membranes in membrane biological reactors for the removal of antibiotics from pharmaceutical waste and milk are explored, presenting an innovative approach to achieving a circular economy. This review provides recent and comprehensive insights into membrane bioreactor technology, making it a valuable resource for researchers seeking efficient methods to break down antibiotics in industrial wastewater, particularly in the pharmaceutical and dairy industries.
Collapse
Affiliation(s)
- Bandana Padhan
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, India;
| | - Wanki Ryoo
- Bio-Convergence, Integrated Science and Engineering Division, Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea;
| | - Jatis Kumar Dash
- Department of Physics, SRM University-AP, Amaravati 522502, India
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
4
|
Japri NF, Majid ZA, Ghoshal SK, Danial WH, See HH, Othman MZ. On the versatility of graphene-cellulose composites: An overview and bibliometric assessment. Carbohydr Polym 2024; 337:121969. [PMID: 38710542 DOI: 10.1016/j.carbpol.2024.121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 05/08/2024]
Abstract
Practical benefits of graphene-cellulose composites (GCC) are categorical. Diverse salient features like thermal and electrical conductivity, mechanical strength, and durability make GCC advantageous for widespread applications. Despite extensive studies the basic understanding of various fundamental aspects of this novel complex remains deficient. Based on this fact, a critical overview and bibliometric analysis involving the overall prospects of GCC was made wherein a total of 1245 research articles from the Scopus database published during the year 2002 to 2020 were used. For the bibliometric assessment, various criteria including the publication outputs, co-authorships, affiliated countries, and co-occurrences of the authors' keywords were explored. Environmental amiability, sustainability, economy, and energy efficiency of GCC were emphasized. In addition, the recent trends, upcoming challenges, and applied interests of GCC were highlighted. The findings revealed that the studies on GCC related to the energy storage, adsorption, sensing, and printing are ever-increasing, indicating the global research drifts on GCC. The bibliometric map analysis displayed that among the researchers from 61 countries/territories, China alone contributed about 50 % of the international publications. It is asserted that the current article may offer taxonomy to navigate into the field of GCC wherein stronger collaboration networks can be established worldwide through integrated research activities desirable for sustainable development.
Collapse
Affiliation(s)
- Nur Faraliana Japri
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Zaiton Abdul Majid
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - S K Ghoshal
- Physics Department & Laser Center, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Wan Hazman Danial
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
| | - Hong Heng See
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | | |
Collapse
|
5
|
Zubair M, Yasir M, Ponnamma D, Mazhar H, Sedlarik V, Hawari AH, Al-Harthi MA, Al-Ejji M. Recent advances in nanocellulose-based two-dimensional nanostructured membranes for sustainable water purification: A review. Carbohydr Polym 2024; 329:121775. [PMID: 38286528 DOI: 10.1016/j.carbpol.2024.121775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024]
Abstract
Nanocellulose (NC), a one-dimensional nanomaterial, is considered a sustainable material for water and wastewater purification because of its promising hydrophilic surface and mechanical characteristics. In this regard, nanostructured membranes comprising NC and two-dimensional (2D) nanomaterials emerged as advanced membranes for efficient and sustainable water purification. This article critically reviews the recent progress on NC-2D nanostructured membranes for water and wastewater treatment. The review highlights the main techniques employed to fabricate NC-2D nanostructured membranes. The physicochemical properties, including hydrophilicity, percent porosity, surface roughness, structure, and mechanical and thermal stability, are summarized. The key performance indicators such as permeability, rejection, long operation stability, antifouling, and interaction mechanisms are thoroughly discussed to evaluate the role of NC and 2D nanomaterials. Finally, summary points and future development work are highlighted to overcome the challenges for potential practical applications. This review contributes to the design and development of advanced membranes to solve growing water pollution concerns in a sustainable manner.
Collapse
Affiliation(s)
- Mukarram Zubair
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31451, Saudi Arabia.
| | - Muhammad Yasir
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| | - Deepalekshmi Ponnamma
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hassam Mazhar
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Vladimir Sedlarik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| | - Alaa H Hawari
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mamdouh Ahmed Al-Harthi
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| | - Maryam Al-Ejji
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
6
|
Gao Y, Wang G, Wang X, Dong X, Zhang X. Synchronously improved permeability, selectivity and fouling resistance of Fe-N-C functionalized ceramic catalytic membrane for effective water treatment: The critical role of Fe. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132888. [PMID: 37922578 DOI: 10.1016/j.jhazmat.2023.132888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Constructing catalytic membrane simultaneously displaying high permeability, selectivity and antifouling performance in water treatment remains challenging. Herein, the surface and pore channels of the ceramic membrane were co-functionalized with nitrogen doped carbon supported Fe catalyst (CN-F), and the Fe content was varied to investigate its effect on performance of CN-F coupled with peroxymonosulfate (PMS) activation (CN-F/PMS) for water treatment. Results confirmed the introduced Fe (in Fe-N coordination form) greatly enhanced the permeability, selectivity and fouling resistance of CN-F. Optimal CN-F3/PMS achieved 96.5% removal and 52.1% mineralization of sulfamethoxazole in short retention duration (2.7 min), whose performance was 5.4 and 6.7 times higher than that of nitrogen doped carbon functionalized ceramic catalytic membrane (CN/PMS) and CN-F3 filtration alone, respectively. CN-F3/PMS also efficiently inhibited fouling on both surface and pores with 2.8 and 2.4 times lower flux loss than that of CN/PMS and CN-F3 filtration alone, respectively. Moreover, CN-F3/PMS displayed superior performance in long-term treatment of real coking wastewater. The outstanding performance of CN-F was mainly attributed to the dual role of supported Fe, which served as hydrophilic site for enhanced water permeation and major active site for PMS adsorption and reduction into reactive species (mainly high-valent Fe(IV)=O species) towards pollutant elimination.
Collapse
Affiliation(s)
- Yi Gao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Xing Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiufang Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Afolabi MA, Xiao D, Chen Y. The Impact of Surface Chemistry and Synthesis Conditions on the Adsorption of Antibiotics onto MXene Membranes. Molecules 2023; 29:148. [PMID: 38202731 PMCID: PMC10780216 DOI: 10.3390/molecules29010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
MXene, a two-dimensional (2D) nanomaterial with diverse applications, has gained significant attention due to its 2D lamellar structure, abundance of surface groups, and conductivity. Despite various established synthesis methods since its discovery in 2011, MXenes produced through different approaches exhibit variations in structural and physicochemical characteristics, impacting their suitability for environmental application. This study delves into the effect of synthesis conditions on MXene properties and its adsorption capabilities for four commonly prescribed antibiotics. We utilized material characterization techniques to differentiate MXenes synthesized using three prevalent etchants: hydrofluoric acid (HF), mixed acids (HCl/HF), and fluoride salts (LiF/HCl). Our investigation of adsorption performance included isotherm and kinetic analysis, complemented by density functional theory calculations. The results of this research pinpointed LiF/HCl as an efficient etchant, yielding MXene with favorable morphology and surface chemistry. Electrostatic interactions and hydrogen bonding between MXene surface terminations and ionizable moieties of the antibiotic molecules emerge as pivotal factors in adsorption. Specifically, a higher presence of oxygen terminations increases the binding affinities. These findings provide valuable guidance for etchant selection in environmental applications and underscore the potential to tailor MXenes through synthesis conditions to design membranes capable of selectively removing antibiotics and other targeted substances.
Collapse
Affiliation(s)
- Moyosore A. Afolabi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, CT 06516, USA;
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| |
Collapse
|
8
|
Khan NA, López-Maldonado EA, Majumder A, Singh S, Varshney R, López JR, Méndez PF, Ramamurthy PC, Khan MA, Khan AH, Mubarak NM, Amhad W, Shamshuddin SZM, Aljundi IH. A state-of-art-review on emerging contaminants: Environmental chemistry, health effect, and modern treatment methods. CHEMOSPHERE 2023; 344:140264. [PMID: 37758081 DOI: 10.1016/j.chemosphere.2023.140264] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Pollution problems are increasingly becoming e a priority issue from both scientific and technological points of view. The dispersion and frequency of pollutants in the environment are on the rise, leading to the emergence have been increasing, including of a new class of contaminants that not only impact the environment but also pose risks to people's health. Therefore, developing new methods for identifying and quantifying these pollutants classified as emerging contaminants is imperative. These methods enable regulatory actions that effectively minimize their adverse effects to take steps to regulate and reduce their impact. On the other hand, these new contaminants represent a challenge for current technologies to be adapted to control and remove emerging contaminants and involve innovative, eco-friendly, and sustainable remediation technologies. There is a vast amount of information collected in this review on emerging pollutants, comparing the identification and quantification methods, the technologies applied for their control and remediation, and the policies and regulations necessary for their operation and application. In addition, This review will deal with different aspects of emerging contaminants, their origin, nature, detection, and treatment concerning water and wastewater.
Collapse
Affiliation(s)
- Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP 22390, Tijuana, Baja California, México.
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Radhika Varshney
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - J R López
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - P F Méndez
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering and Technology, Knowledge Park I, Greater Noida, 201310, Uttar Pradesh, India
| | - Afzal Husain Khan
- Department of Civil Engineering, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Waqas Amhad
- Institute of Fundamental and Frontier Sciences, University of Electonic Science and Technology of China, Chengdu, 610054 China
| | - S Z M Shamshuddin
- Chemistry Research Laboratory, HMS Institute of Technology, Tumakuru, 572104, Karnataka, India
| | - Isam H Aljundi
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia; Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
9
|
Chantaso M, Chaiyong K, Meesupthong R, Yingkamhaeng N, Diem LN, Torgbo S, Sukyai P, Khantayanuwong S, Puangsin B, Srichola P. Sugarcane leave-derived cellulose nanocrystal/graphene oxide filter membrane for efficient removal of particulate matter. Int J Biol Macromol 2023; 234:123676. [PMID: 36796561 DOI: 10.1016/j.ijbiomac.2023.123676] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
The goal of this study is to isolate cellulose nanocrystals (CNC) from sugarcane leaves (SCL) and fabricate filter membranes. Filter membranes consisting of the CNC and varying amount graphene oxide (GO) were fabricated using vacuum filtration technique. The α-cellulose content increased from 53.56 ± 0.49 % in untreated SCL to 78.44 ± 0.56 % and 84.99 ± 0.44 % in steam-exploded and bleached fibers, respectively. Atomic force microscopy (AFM) and transmission electron microscope (TEM) of CNC isolated from SCL indicated nanosized particles in the range of 7.3 nm and 150 nm for diameter and length, respectively. Morphologies of the fiber and CNC/GO membranes were determined by scanning electron microscopy (SEM) and crystallinity by X-ray diffraction (XRD) analysis of crystal lattice. The crystallinity index of CNC decreased with the addition of GO into the membranes. The CNC/GO-2 recorded the highest tensile index of 3.001 MPa. The removal efficiency increases with increasing GO content. The highest removal efficiency of 98.08 % was recorded for CNC/GO-2. CNC/GO-2 membrane reduced growth of Escherichia coli to 65 CFU compared to >300 CFU of control sample. SCL is a potential bioresource for isolation of cellulose nanocrystals and fabrication of high-efficiency filter membrane for particulate matter removal and inhibition of bacteria.
Collapse
Affiliation(s)
- Minthra Chantaso
- Biotechnology of Biopolymers and Bioactive Compounds Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Kriengkrai Chaiyong
- Biotechnology of Biopolymers and Bioactive Compounds Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Ratthapong Meesupthong
- Biotechnology of Biopolymers and Bioactive Compounds Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Naiyasit Yingkamhaeng
- Biotechnology of Biopolymers and Bioactive Compounds Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Luong Ngoc Diem
- Biotechnology of Biopolymers and Bioactive Compounds Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Selorm Torgbo
- Biotechnology of Biopolymers and Bioactive Compounds Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; Cellulose for Future Materials and Technologies Special Research Unit, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Prakit Sukyai
- Biotechnology of Biopolymers and Bioactive Compounds Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; Cellulose for Future Materials and Technologies Special Research Unit, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
| | - Somwang Khantayanuwong
- Department of Forest Products, Faculty of Forestry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Buapan Puangsin
- Department of Forest Products, Faculty of Forestry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Preeyanuch Srichola
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
10
|
Raza S, Ghasali E, Orooji Y, Lin H, Karaman C, Dragoi EN, Erk N. Two dimensional (2D) materials and biomaterials for water desalination; structure, properties, and recent advances. ENVIRONMENTAL RESEARCH 2023; 219:114998. [PMID: 36481367 DOI: 10.1016/j.envres.2022.114998] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND An efficient solution to the global freshwater dilemma is desalination. MXene, Molybdenum Disulfide (MoS2), Graphene Oxide, Hexagonal Boron Nitride, and Phosphorene are just a few examples of two-dimensional (2D) materials that have shown considerable promise in the development of 2D materials for water desalination. However, other promising materials for desalinating water are biomaterials. The benefits of bio-materials are their wide distribution, lack of toxicity, and superior capacity for water desalination. METHODS For the rational use of water and the advancement of sustainable development, it is of the utmost importance to research 2D-dimensional materials and biomaterials that are effective for water desalination. The scientific community has concentrated on wastewater remediation using bio-derived materials, such as nanocellulose, chitosan, bio-char, bark, and activated charcoal generated from plant sources, among the various endeavors to enhance access to clean water. Moreover, the 2D-materials and biomaterials may have ushered in a new age in the production of desalination materials and created a promising future. RESULTS The present review article focuses on and reviews the progress of 2D materials and biomaterials for water desalination. Their properties, surface, and structure, combined with water desalination applications, are highlighted. Further, the practicability and potential future directions of 2D materials and biomaterials are proposed. Thus, the current work provides information and discernments for developing novel 2D materials and biomaterials for wastewater desalination. Moreover, it aims to promote the contribution and advancement of materials for water desalination, fabrication, and industrial production.
Collapse
Affiliation(s)
- Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Ehsan Ghasali
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yasin Orooji
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China.
| | - Hongjun Lin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Ceren Karaman
- Departmen of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld. D. Mangeron No 73, 700050, Iasi, Romania.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| |
Collapse
|
11
|
Zhou H, Gong J, Li J, Song B, Fang S, Wang Y, Tang L, Peng P. Cross-Linked and Doped Graphene Oxide Membranes with Excellent Antifouling Capacity for Rejection of Antibiotics and Salts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8636-8652. [PMID: 36735585 DOI: 10.1021/acsami.2c19789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Graphene oxide (GO) membranes have suffered from the instability of water permeability and low rejection of pollutant separation. In this paper, a reasonable modification protocol for GO nanosheets at the molecular level was proposed. A molecular cross-linking strategy was adopted to regulate the interlayer spacing of GO nanosheets, and nanofiltration membranes with high water stability and excellent antifouling capacity were prepared, which could effectively reject antibiotics and salts. The GO1-MPD0.5 (the mass ratio of GO nanosheets to MPD is 1:0.5) and GO/GO1-MPD0.5-0.25 (the doping ratio of GO1-MPD0.5 is 25%) membranes had stable water permeability of 4.22 ± 0.06 and 3.65 ± 0.11 L m-2 h-1 bar-1, and the rejection rates for ciprofloxacin (CIP) and ofloxacin (OFX) were 93.35 ± 3.62 and 95.48 ± 2.97 and 85.89 ± 6.52 and 88.21 ± 3.67%, respectively. Molecular dynamics simulations well explained the high water stability of membranes, and the cross-linked hydrophobic benzene ring played a role in the rejection of pollutant molecules. Moreover, the GO1-MPD0.5 membrane showed excellent antifouling capacity and the flux recovery ratio (FRR) was more than 98%. This paper provides a new idea for the design of nanofiltration membranes with high stability and good rejection permeability at the molecular level and provides a prospect for the application of nanofiltration membranes in practical water treatment and water purification.
Collapse
Affiliation(s)
- Huaiyang Zhou
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Jilai Gong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
- Shenzhen Institute, Hunan University, Shenzhen518000, P. R. China
| | - Juan Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Siyuan Fang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Yuwen Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Liangxiu Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Ping Peng
- College of Materials Science and Engineering, Hunan University, Changsha410082, P. R. China
| |
Collapse
|
12
|
Kamran U, Rhee KY, Lee SY, Park SJ. Innovative progress in graphene derivative-based composite hybrid membranes for the removal of contaminants in wastewater: A review. CHEMOSPHERE 2022; 306:135590. [PMID: 35803370 DOI: 10.1016/j.chemosphere.2022.135590] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/04/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Graphene derivatives (graphene oxide) are proved as an innovative carbon materials that are getting more attraction in membrane separation technology because of its unique properties and capability to attain layer-to-layer stacking, existence of high oxygen-based functional groups, and generation of nanochannels that successively enhance the selective pollutants removal performance. The review focused on the recent innovations in the development of graphene derivative-based composite hybrid membranes (GDHMs) for the removal of multiple contaminants from wastewater treatment. To design GDHMs, it was observed that at first GO layers undergo chemical treatments with either different polymers, plasma, or sulfonyl. After that, the chemically treated GO layers were decorated with various active functional materials (either with nanoparticles, magnetite, or nanorods, etc.). By preparing GDHMs, properties such as permeability, porosity, hydrophilicity, water flux, stability, feasibility, mechanical strength, regeneration ability, and antifouling tendency were excessively improved as compared to pristine GO membranes. Different types of novel GDHMs were able to remove toxic dyes (77-100%), heavy metals/ions (66-100%), phenols (40-100%), and pharmaceuticals (74-100%) from wastewater with high efficiency. Some of GDHMs were capable to show dual contaminant removal efficacy and antibacterial activity. In this study, it was observed that the most involved mechanisms for pollutants removal are size exclusion, transport, electrostatic interactions, adsorption, and donnan exclusion. In addition to this, interaction mechanism during membrane separation technology has also been elaborated by density functional theory. At last, in this review the discussion related to challenges, limitations, and future outlook for the applications of GDHMs has also been provided.
Collapse
Affiliation(s)
- Urooj Kamran
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea; Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, 445-701, South Korea
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, 445-701, South Korea.
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| |
Collapse
|
13
|
Zheng H, Zhu M, Wang D, Zhou Y, Sun X, Jiang S, Li M, Xiao C, Zhang D, Zhang L. Surface modification of PVDF membrane by CNC/Cu-MOF-74 for enhancing antifouling property. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
İlyasoglu G, Kose-Mutlu B, Mutlu-Salmanli O, Koyuncu I. Removal of organic micropollutans by adsorptive membrane. CHEMOSPHERE 2022; 302:134775. [PMID: 35537632 DOI: 10.1016/j.chemosphere.2022.134775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Various emerging organic micropollutants, such as pharmaceuticals, have attracted the interest of the water industry during the last two decades due to their insufficient removal during conventional water and wastewater treatment methods and increasing demand for pharmaceuticals projected to climate change-related impacts and COVID-19, nanosorbents such as carbon nanotubes (CNTs), graphene oxides (GOs), and metallic organic frameworks (MOFs) have recently been extensively explored regarding their potential environmental applications. Due to their unique physicochemical features, the use of these nanoadsorbents for organic micropollutans in water and wastewater treatment processes has been a rapidly growing topic of research in recent literature. Adsorptive membranes, which include these nanosorbents, combine the benefits of adsorption with membrane separation, allowing for high flow rates and faster adsorption/desorption rates, and have received a lot of publicity in recent years. The most recent advances in the fabrication of adsorptive membranes (including homogeneous membranes, mixed matrix membranes, and composite membranes), as well as their basic principles and applications in water and wastewater treatment, are discussed in this review. This paper covers ten years, from 2011 to 2021, and examines over 100 published studies, highlighting that micropollutans can pose a serious threat to surface water environments and that adsorptive membranes are promising, particularly in the adsorption of trace substances with fast kinetics. Membrane fouling, on the other hand, should be given more attention in future studies due to the high costs and restricted reusability.
Collapse
Affiliation(s)
- Gülmire İlyasoglu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Borte Kose-Mutlu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Oyku Mutlu-Salmanli
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| |
Collapse
|
15
|
Zhang K, Wu HH, Huo HQ, Ji YL, Zhou Y, Gao CJ. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Xia S, Deng L, Liu X, Yang L, Yang X, Shi Z, Pei Y. Fabrication of magnetic nickel incorporated carbon nanofibers for superfast adsorption of sulfadiazine: Performance and mechanisms exploration. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127219. [PMID: 34844349 DOI: 10.1016/j.jhazmat.2021.127219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Herein, novel magnetic nickel incorporated carbon nanofibers (Ni@CNF) were successfully synthesized via electrostatic spinning method for sulfadiazine (SDZ) adsorption. We combined computational and experimental tools to clarify the distinct nature of SDZ on Ni@CNF. Extensive computations and characterizations of SDZ-Ni adsorption complexes evidenced that Ni atoms were indispensable for SDZ adsorption and increasing the number of Ni atoms in Ni@CNF significantly improved SDZ adsorption due to the lower adsorption energy (Ead). As we surmised, the adsorption capacity of Ni@CNF enhanced gradually with increasing the mass ratio of Ni in the composite. The as-prepared 9%Ni@CNF achieved removal efficiency of 98.9% for SDZ (2.5 mg/L) in 25 min, while the pure CNF hardly removed any SDZ under the identical conditions. The experimental data was better fitted by the Langmuir model with the maximum monolayer adsorption capacity of 103.21 mg/g at 318 K. Besides, the 9%Ni@CNF exhibited great applicability to various organic contaminants, and excellent stability and reusability over five consecutive cycles. Overall, for the first time, we provide the evidence that Ni atoms in the Ni@CNF plays a crucial role in SDZ adsorption, which can guide us for constructing nickle incorporated adsorbents with impressive adsorption capacity in environmental remediation.
Collapse
Affiliation(s)
- Simeng Xia
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Lin Deng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, PR China.
| | - Xia Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Lingfang Yang
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, PR China.
| | - Xiuzhen Yang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China
| | - Zhou Shi
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Yong Pei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, PR China
| |
Collapse
|
17
|
Petry R, Silvestre GH, Focassio B, Crasto de Lima F, Miwa RH, Fazzio A. Machine Learning of Microscopic Ingredients for Graphene Oxide/Cellulose Interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1124-1130. [PMID: 35026945 DOI: 10.1021/acs.langmuir.1c02780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the role of microscopic attributes in nanocomposites allows one to control and, therefore, accelerate experimental system designs. In this work, we extracted the relevant parameters controlling the graphene oxide binding strength to cellulose by combining first-principles calculations and machine learning algorithms. We were able to classify the systems among two classes with higher and lower binding energies, which are well defined based on the isolated graphene oxide features. Using theoretical X-ray photoelectron spectroscopy analysis, we show the extraction of these relevant features. In addition, we demonstrate the possibility of refined control within a machine learning regression between the binding energy values and the system's characteristics. Our work presents a guiding map to control graphene oxide/cellulose interaction.
Collapse
Affiliation(s)
- Romana Petry
- Brazilian Nanotechnology National Laboratory, CNPEM, Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, São Paulo 09210-580, Brazil
| | - Gustavo H Silvestre
- Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Bruno Focassio
- Brazilian Nanotechnology National Laboratory, CNPEM, Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, São Paulo 09210-580, Brazil
| | - Felipe Crasto de Lima
- Brazilian Nanotechnology National Laboratory, CNPEM, Campinas, São Paulo 13083-970, Brazil
- Ilum School of Science, CNPEM, Campinas, São Paulo 13083-970, Brazil
| | - Roberto H Miwa
- Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Adalberto Fazzio
- Brazilian Nanotechnology National Laboratory, CNPEM, Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, São Paulo 09210-580, Brazil
- Ilum School of Science, CNPEM, Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|