1
|
Wang M, Sun W, Li M, Wu X, Chen C, Cai T, Zeng Q, Hua Y, Wang L, Xie H. π-electron injection activated dormant ligands in graphitic carbon nitride for efficient and stable uranium extraction. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135445. [PMID: 39116743 DOI: 10.1016/j.jhazmat.2024.135445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Graphitic carbon nitride (CN) as an adsorbent exhibit promising potential for the removal of uranium in water. However, the lack of active sites seriously restricts its practical application. In contrast to the traditional method of introducing new ligands, we propose a strategy to activate original ligands on CN by injecting π electrons, which can be realized by grafting 4-phenoxyphenol (PP) on CN (PCN). Compared with CN, the maximum adsorption capacity of PCN for uranium increased from 150.9 mg/g to 380.6 mg/g. Furthermore, PCN maintains good adsorption properties over a wide range of uranium concentrations (1 ∼ 60 mg/L) and pH (4 ∼ 8). After 5 consecutive cycles, PCN exhibited sustained uranium removal performance with a little of losses. The experimental and theoretical results show that the enhancement of adsorption performance is mainly due to the ligands activation of CN by delocalization of π electrons from PP. Furthermore, this activation can be enhanced by irradiation, as the CN can be photoexcited to provide additional photoelectrons for PP. As a result, dormant ligands such as N-CN, C-O-C, C-N-H and N-(C)3 can be activated to participate in coordination with uranium. This work provides theoretical guidance for the design and preparation of high efficiency uranium adsorbent.
Collapse
Affiliation(s)
- Minjie Wang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Wenxiu Sun
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Mi Li
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiaoyan Wu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Chaomeng Chen
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China; Boke Environmental Engineering Co., Ltd. of Hunan Province, Hengyang, Hunan 421001, PR China
| | - Tao Cai
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China.
| | - Qingyi Zeng
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China.
| | - Yilong Hua
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Wenyuan Road, Nanjing 210023, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, PR China
| |
Collapse
|
2
|
Du M, Xu Z, Xue Y, Li F, Bi J, Liu J, Wang S, Guo X, Zhang P, Yuan J. Application Prospect of Ion-Imprinted Polymers in Harmless Treatment of Heavy Metal Wastewater. Molecules 2024; 29:3160. [PMID: 38999112 PMCID: PMC11243660 DOI: 10.3390/molecules29133160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
With the rapid development of industry, the discharge of heavy metal-containing wastewater poses a significant threat to aquatic and terrestrial environments as well as human health. This paper provides a brief introduction to the basic principles of ion-imprinted polymer preparation and focuses on the interaction between template ions and functional monomers. We summarized the current research status on typical heavy metal ions, such as Cu(II), Ni(II), Cd(II), Hg(II), Pb(II), and Cr(VI), as well as metalloid metal ions of the As and Sb classes. Furthermore, it discusses recent advances in multi-ion-imprinted polymers. Finally, the paper addresses the challenges faced by ion-imprinted technology and explores its prospects for application.
Collapse
Affiliation(s)
- Mengzhen Du
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Zihao Xu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Yingru Xue
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Fei Li
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jingtao Bi
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jie Liu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Shizhao Wang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Xiaofu Guo
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Panpan Zhang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Junsheng Yuan
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| |
Collapse
|
3
|
Xu J, Chen P. Selective biosorption of Li + in aqueous solution by lithium ion-imprinted material on the surface of chitosan/attapulgite. Int J Biol Macromol 2024; 273:133150. [PMID: 38878930 DOI: 10.1016/j.ijbiomac.2024.133150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
The extraction of Li+ from liquid lithium resources is a pivotal focus of current research endeavors. Attapulgite (ATP), characterized by its distinctive layered structure and inherent ion exchange properties, emerges as an exceptional material for fabricating lithium-ion sieve. Ion-imprinted chitosan/ATP composite materials are successfully synthesized, demonstrating efficacy in selectively absorbing Li+. The results emphasize the rich functional groups present in H-CTP-2, enhancing its absorbability and selectivity, with an adsorption capacity of 37.56 mg•g-1. The adsorption conforms to the Langmuir and pseudo-second-order kinetic model. Li+ coordination involves amino and hydroxyl group, indicating a chemisorption process. Furthermore, the substantial pore structure and significant specific surface area of ATP significantly promote Li+ adsorption, suggesting its participation not only in chemisorption but also in physical adsorption. The fabricated ion-imprinted materials boast substantial adsorption capacity, exceptional selectivity, and rapid kinetics, highlighting their potential for effectively separating Li+ from aqueous solution.
Collapse
Affiliation(s)
- Jiaqi Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410000, China.
| | - Pan Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
4
|
Wang H, Zhou L, Ao X, Huang G, Liu Y, Ouyang J, Adesina AA. Ion-imprinted macroporous polyethyleneimine incorporated chitosan/layered hydrotalcite foams for the selective biosorption of U(VI) ions. Int J Biol Macromol 2024; 266:131113. [PMID: 38531524 DOI: 10.1016/j.ijbiomac.2024.131113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
In order to prevent uranium pollution and recovery uranium resources, it was necessary to find a highly efficient adsorbent for radioactive wastewater treatment. Herein, U(VI) imprinted polyethyleneimine (PEI) incorporated chitosan/layered hydrotalcite composite foam (IPCL) was synthesized by combining ion-imprinting and freeze-drying techniques. IPCL has a high amino/imino content and an ultralight macroporous structure, making it capable of efficiently adsorbing U(VI) and easy to separate; Especially after ion-imprinting, vacancies matching the size of uranyl ions were formed, significantly improving U(VI) selectivity. The adsorption isotherms and adsorption kinetics were in accordance with the Freundlich model and PSO model respectively, indicating that heterogeneous adsorption of U(VI) by the adsorbents. The adsorption capacity of IPCL-2 for U(VI) reached 278.8. mg/g (under the conditions of optimal pH 5.0, temperature of 298 K, contact time of 2 h, and adsorbent dosage of 0.2 g/L), which is almost double of that for the non-imprinted foam (PCL-2, 138.2 mg/g), indicating that IPCL-2 can intelligently recognize U(VI). The heterogeneous adsorption mechanism of U(VI) by IPCL-2 involves complexation, ion-exchange and isomorphic substitution. The adsorption of U(VI) by IPCL-2 is spontaneous and endothermic. IPCL-2 has excellent adsorption performance for U(VI), and is a promising adsorbent for radioactive pollution control.
Collapse
Affiliation(s)
- Huamin Wang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, 330013 Nanchang, China
| | - Limin Zhou
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, 330013 Nanchang, China; State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China.
| | - Xianqian Ao
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, 330013 Nanchang, China
| | - Guolin Huang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, 330013 Nanchang, China.
| | - Yanlin Liu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, 330013 Nanchang, China
| | - Jinbo Ouyang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, 330013 Nanchang, China
| | | |
Collapse
|
5
|
Ding K, You Y, Tang L, Zhang X, Qin Z, Yin X. "One-pot" preparation and adsorption performance of chitosan-based La 3+/Y 3+ dual-ion-imprinted thermosensitive hydrogel. Carbohydr Polym 2023; 316:121071. [PMID: 37321747 DOI: 10.1016/j.carbpol.2023.121071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
Temperature-sensitive materials are increasingly of deep interest to researchers. Ion imprinting technology is widely used in the field of metal recovery. In order to solve the problem of rare earth metal recovery, we designed a temperature-sensitive dual-imprinted hydrogel adsorption product (CDIH) with chitosan as the matrix, N-isopropylacrylamide as a thermally responsive monomer, and La3+ and Y3+ as the co-templates. The reversible thermal sensitivity and ion-imprinted structure were determined by differential scanning calorimetry, Fourier transform infrared spectrometer, Raman spectra, Thermogravimetric analysis, X-ray photoelectron spectroscopy, Scanning electron microscopy and X-ray energy spectroscopy various characterizations and analyses. The simultaneous adsorption amount of CDIH for La3+ and Y3+ was 87.04 mg/g and 90.70 mg/g, respectively. The quasi-secondary kinetic model and Freundlich isotherms model well described the adsorption mechanism of CDIH. It's worthy to mention that CDIH could be well regenerated through washing with deionized water at 20 °C, with a desorption rate of 95.29 % for La3+ and 96.03 % for Y3+. And after 10 cycles of reuse, 70 % of the adsorption amount could be maintained, revealing excellent reusability. Furthermore, CDIH expressed better adsorption selectivity to La3+ and Y3+ than its non-imprinted counterparts in a solution containing six metal ions.
Collapse
Affiliation(s)
- Kaiqi Ding
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China
| | - Ying You
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China
| | - Liweng Tang
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China
| | - Xinyue Zhang
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China
| | - Ziyu Qin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|
6
|
Lu W, Xu M, Chen F, Liu P, Hua D. Polyphosphonate-segmented macroporous organosilicon frameworks for efficient dynamic enrichment of uranium with in-situ regeneration. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131912. [PMID: 37356173 DOI: 10.1016/j.jhazmat.2023.131912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Efficient separation and enrichment of uranium from radioactive effluents is of strategic significance for sustainable development of nuclear energy and environmental protection. Macropore structure of adsorbent is conducive to accessibility of the pore and transport of the adsorbate during dynamic adsorption. However, the low specific surface area results in fewer ligand sites and subsequently reduces the adsorption capacity. Herein, we present a novel strategy for efficient dynamic uranium enrichment using polyphosphonate-segmented macroporous organosilicon frameworks (PMOFs). PMOFs are constructed through the copolymerization of diethyl vinylphosphonate and triethoxyvinylsilane, followed by hydrolysis and condensation of the oligomers. The introduction of polyphosphonate segments into the frameworks endows PMOFs with a macroporous structure (31 µm) and a high ligand content (up to 72 wt%). Consequently, the optimized PMOF-3 demonstrated an ultrahigh dynamic adsorption capacity of 114.8 mg/g among covalently conjugated silicon-based materials. Additionally, PMOF-3 achieves a high enrichment factor (120) in the dynamic enrichment of uranium on a fixed bed column, which can be in-situ regenerated with 1 M NaHCO3 as the eluent. This work presents a new strategy for efficient dynamic enrichment of nuclides, which can be extended to the separation of other specific pollutants, shedding new light on adsorbent design and technical innovation.
Collapse
Affiliation(s)
- Weihong Lu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Meiyun Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Fulong Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Peng Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Poly(styrene-co-4-hydroxystyrene) nanofiber membrane for highly selective and efficient Rb+ capture from high salinity solution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Convenient Sorption of Uranium by Amidoxime-functionalized Mesoporous Silica with Magnetic Core from Aqueous Solution. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Zhou Z, Ren H, Zhou L, Wang P, Lou X, Zou H, Cao Y. Recent Development on Determination of Low-Level 90Sr in Environmental and Biological Samples: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010090. [PMID: 36615288 PMCID: PMC9821828 DOI: 10.3390/molecules28010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
In the context of the rapid development of the world's nuclear power industry, it is vital to establish reliable and efficient radioanalytical methods to support sound environment and food radioactivity monitoring programs and a cost-effective waste management strategy. As one of the most import fission products generated during human nuclear activities, 90Sr has been widely determined based on different analytical techniques for routine radioactivity monitoring, emergency preparedness and radioactive waste management. Herein, we summarize and critically review analytical methods developed over the last few decades for the determination of 90Sr in environmental and biological samples. Approaches applied in different steps of the analysis including sample preparation, chemical separation and detection are systematically discussed. The recent development of modern materials for 90Sr concentration and advanced instruments for rapid 90Sr measurement are also addressed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yiyao Cao
- Correspondence: ; Tel.: +86-(0571)-87115089
| |
Collapse
|
10
|
In situ chemical oxidation-grafted amidoxime-based collagen fibers for rapid uranium extraction from radioactive wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Su Y, Wenzel M, Seifert M, Weigand JJ. Surface ion-imprinted brewer's spent grain with low template loading for selective uranyl ions adsorption from simulated wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129682. [PMID: 35939905 DOI: 10.1016/j.jhazmat.2022.129682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Efficient removal of uranyl ions from wastewater requires excellent selectivity of the adsorbents. Herein, we report a new strategy using a high monomer/template molar ratio of 500:1 to prepare surface ion-imprinted brewer's spent grain (IIP-BSG) for selective U(VI) removal using binary functional monomers (2-hydroxyethyl methacrylate and diethyl vinylphosphonate) with high site accessibility and easy template removal. IIP-BSG exhibits a maximum U(VI) adsorption capacity of 165.7 mg/g, a high selectivity toward U(VI) in the presence of an excess amount of Eu(III) (Eu/U molar ratio = 20), a good tolerance of salinity, and a high reusability. In addition, mechanism studies have revealed electrostatic interaction and a coordination of uranyl ions by carboxyl and phosphoryl groups, the predominant contribution of high-energy (specific) sites during selective adsorption, and internal mass transfer as the rate-controlling step of U(VI) adsorption. Furthermore, IIP-BSG shows great potentials to separate U(VI) from lanthanides in simulated nuclear wastewater (pH0 = 3.5) and selectively concentrate U(VI) from simulated mine water (pH0 = 7.1). This study proves that the ion-imprinting effect can be achieved using a very low template amount with reduced production cost and secondary pollution, which benefits large-scale promotion of the ion-imprinted materials for selective uranyl ions removal.
Collapse
Affiliation(s)
- Yi Su
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Marco Wenzel
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Markus Seifert
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Jan J Weigand
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
12
|
Xiong T, Jia L, Li Q, Zhang Y, Zhu W. Highly efficient adsorptive extraction of uranium from wastewater by novel kaolin aerogel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156916. [PMID: 35753449 DOI: 10.1016/j.scitotenv.2022.156916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
An environment-friendly, low-cost and efficient kaolin aerogel adsorbent (named as KLA) was synthesized via a freeze-drying-calcination method to solve the defect of low uranium removal rate for kaolin (KL). The removal rate of uranium on KLA reached 90.6 %, which was much higher than that of KL (69.2 %) (C0 = 10 mg L-1, t = 24 h, pH = 5.0, T = 298 K and m/V = 1.0 g L-1). The uranium removal behavior on KLA was satisfied with Pseudo-second-order and Langmuir model, which meant that the uranium ions were immobilized on the surface of KLA via chemical reaction. Meanwhile, high temperature was in favor of the removal of uranium on KLA, indicating that the removal process was a spontaneous endothermic reaction. Compared with KL, KLA also presented better cycle ability and its removal rate of uranium was up to 80.5 % after three cycles, which was still higher than that of KL at the first cycle (74.5 %). On basis of the results of SEM, XRD, FT-IR and XPS, it could be concluded that uranium ions were adsorbed by KLA via complexation. Hence, KLA could be regarded as a feasible candidate for the removal of uranium from aqueous solution.
Collapse
Affiliation(s)
- Ting Xiong
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qichen Li
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong Zhang
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
13
|
Wang Q, Yang L, Yao H, Wu Z, Liu R, Ma S. Layered double hydroxide intercalated with dimethylglyoxime for highly selective and ultrafast uptake of uranium from seawater. Dalton Trans 2022; 51:13046-13054. [PMID: 35971915 DOI: 10.1039/d2dt02381d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we demonstrate the first example of a MgAl layered double hydroxide intercalated by a ketoxime compound (dimethylglyoxime, DMG), that is, MgAl-DMG-LDH (abbr. DMG-LDH), which exhibits excellent capture of uranium (U(VI)) both at high (ppm) and low (ppb) concentrations. The as-formed DMG-LDH shows an enormous maximum U(VI) sorption capacity (qUm) of 380 mg g-1 and an exceptionally rapid sorption rate (k2 = 2.97 g mg-1 min-1), reaching a high uptake of 99.14% within 5 min. For natural and contaminated seawater with high concentrations of Na+, Ca2+, Mg2+ and K+ concomitant cations, the DMG-LDH still can trap ∼85% U, displaying highly effective sorption toward U. The interaction mechanism between UO22+ and DMG2- provides an important reference for the development of highly effective capture of U(VI) by ketoxime materials. The DMG-LDH is currently the best ketoxime material for uranium extraction from nuclear waste and seawater.
Collapse
Affiliation(s)
- Qian Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Lixiao Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Zhenglong Wu
- Analytical and Testing Center, Beijing Normal University, Beijing 100875, China.
| | - Rong Liu
- Analytical and Testing Center, Beijing Normal University, Beijing 100875, China.
| | - Shulan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
14
|
Cao Y, Zhou L, Ren H, Zou H. Determination, Separation and Application of 137Cs: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191610183. [PMID: 36011815 PMCID: PMC9408292 DOI: 10.3390/ijerph191610183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 05/21/2023]
Abstract
In the context of the rapid development of the world's nuclear power industry, it is necessary to establish background data on radionuclides of different samples from different regions, and the premise of obtaining such basic data is to have a series of good sample processing and detection methods. The radiochemical analysis methods of low-level radionuclides 137Cs (Cesium) in environmental and biological samples are introduced and reviewed in detail. The latest research progress is reviewed from the five aspects of sample pretreatment, determination, separation, calculation, application of radioactive cesium and the future is proposed.
Collapse
|
15
|
Gao Y, Zhou RY, Yao L, Wang Y, Yue Q, Yu L, Yu JX, Yin W. Selective capture of Pd(II) from aqueous media by ion-imprinted dendritic mesoporous silica nanoparticles and re-utilization of the spent adsorbent for Suzuki reaction in water. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129249. [PMID: 35739768 DOI: 10.1016/j.jhazmat.2022.129249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The development of highly efficient adsorptive material for the selective capture of Pd(II), and re-utilization of spent Pd(II)-loaded adsorbent as an efficient catalyst for organic synthesis are of great significance, but challenging. Particularly, the heterogeneous palladium-catalyzed Suzuki reaction in aqueous media is much more challenging than that of homogeneous. Herein, several novel Pd(II) ion-imprinted polymers (PIIPs) based on dendritic fibrous silica particles are constructed by surface ion imprinting technology (SIIT), using Schiff base and pyridine groups functionalized organosilicon as functional monomer. The PIIP-3 prepared by 3 g of functional monomer exhibits the best adsorption performance, and shows ultrafast (10 min) and selective capture of Pd(II) with high uptake capacity (382.5 mg/g). Moreover, the waste Pd(II) loaded PIIP-3 (PIIP-3-Pd) can serve as a catalyst towards the Suzuki reaction in water, affording 94.2 % yield of the desired product. Interestingly, the PIIP-3-Pd can be reused 12 times without an appreciable decrease in catalytic activity, which is probably due to the imprinted cavity and specific recognition site of PIIP-3 can match and recapture Pd active species in a complex catalytic environment. Thus, this work demonstrates huge potentials of SIIT to enhance the selectivity of adsorption process and increase the lifetime of catalysts.
Collapse
Affiliation(s)
- Yue Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, China
| | - Ru-Yi Zhou
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China; Hubei key Laboratory of Novel Reactor & Green Chemical Technology, National Engineering Research Center of Phosphorus Resource Exploitation, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
| | - Lifeng Yao
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yi Wang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China; Hubei key Laboratory of Novel Reactor & Green Chemical Technology, National Engineering Research Center of Phosphorus Resource Exploitation, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, China
| | - Lan Yu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Jun-Xia Yu
- Hubei key Laboratory of Novel Reactor & Green Chemical Technology, National Engineering Research Center of Phosphorus Resource Exploitation, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China.
| | - Weiyan Yin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|
16
|
Zhang F, Liu Y, Ma KQ, Yan H, Luo Y, Wu FC, Yang CT, Hu S, Peng SM. Highly selective extraction of uranium from wastewater using amine-bridged diacetamide-functionalized silica. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129022. [PMID: 35500348 DOI: 10.1016/j.jhazmat.2022.129022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
A major environmental concern related to nuclear energy is wastewater contaminated with uranium, thus necessitating the development of pollutant-reducing materials with efficiency and effectiveness. Herein, highly selective mesoporous silicas functionalized with amine-bridged diacetamide ligands SBA-15-ABDMA were prepared. Different spectroscopy techniques were used to probe the chemical environment and reactivity of the chelating ligands before and after sorption. The results showed that the functionalized SBA-15-ABDMA had a strong affinity for uranium at low pH (pH = 3) with desirable sorption capacity (68.82 mg/g) and good reusability (> 5). It showed excellent separation performance with a high distribution coefficient (Kd,U > 105 mL/g) and separation factors SFU/Ln > 1000 at a pH of 3.5 in the presence of lanthanide nuclides, alkaline earth metal and transition metal ions. In particular, SiO2spheres-ABDMA was used as a column material, which achieved excellent recovery of U(VI) (> 98%) and good reusability for samples of simulated mining and nuclear industries wastewater. XPS and crystallography studies clearly illustrated the tridentate coordination mode of U(VI)/PEABDMA and the mechanism and origin behind the high selectivity for U.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China
| | - Yi Liu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China
| | - Kai-Qiang Ma
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China
| | - Heng Yan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China
| | - Yue Luo
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China
| | - Feng-Cheng Wu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China
| | - Chu-Ting Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China.
| | - Sheng Hu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China
| | - Shu-Ming Peng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China.
| |
Collapse
|
17
|
Yang C, Suh YJ, Cho K. Highly selective cesium removal under acidic and alkaline conditions using a novel potassium aluminum thiostannate. CHEMOSPHERE 2022; 301:134610. [PMID: 35436462 DOI: 10.1016/j.chemosphere.2022.134610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The pH values of nuclear wastewater are extremely low or high, which make the efficient removal of 137Cs a major concern among the issues for safety management and environmental remediation. Existing metal sulfides for Cs+ adsorption have shown poor performance at acidic and alkaline conditions, and the reason has not been revealed yet. Herein, a novel potassium aluminum thiostannate (KAlSnS-3) adsorbent was designed and its Cs+ adsorption mechanism over a wide pH range was investigated. We hypothesized that Al3+ dopant on Sn4+ sites would allow stable adsorption for Cs+ upon its partial release at acidic and alkaline conditions. As a result, KAlSnS-3 demonstrated excellent adsorption performance across a broad pH range (1-13), and high selectivity toward Cs+, even under high salinity conditions (in tap water Kd = 3.12 × 104 mL/g; and in artificial seawater Kd = 3.42 × 103 mL/g). KAlSnS-3 also exhibited rapid adsorption kinetics (R = 97.6% in the first minute), a remarkable adsorption capacity (259.31 mg/g), and a high distribution coefficient (2.09 × 105 mL/g) toward Cs+. In addition, the high reusability of KAlSnS-3 was observed, suggesting its potential for real-world applications. The mechanism for enhancing performance at low and high pH values was discussed with the evidence of crystallinity, elemental concentrations, and binding energy of electrons based on the concept of electrostatic interactions and chemical affinity. In summary, this work provides insights into the mechanism of Cs+ removal under a wide pH range, and the impressive Cs+ adsorption performance indicates the application potential of KAlSnS-3 in wastewater treatment.
Collapse
Affiliation(s)
- Chenyang Yang
- Department of Environmental Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Yong Jae Suh
- Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon, 34132, Republic of Korea; Department of Resources Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Kuk Cho
- Department of Environmental Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
18
|
Cen S, Yang L, Li R, Gong S, Tan J, Zeng L. An ion-imprinted imidazole-functionalized ordered mesoporous silica for selective removal of chromium(VI) from electroplating effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47516-47526. [PMID: 35182346 DOI: 10.1007/s11356-022-19209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
In this work, ion imprinted technology incorporated with mesoporous silica materials (MCM-41) to obtain the novel specific adsorbent, ion imprinted mesoporous silica. Cr(VI) imprinted mesoporous silica (Cr(VI)IMS) was synthesized and used for adsorption studies and waste water application. A synthesized imidazolyl silane agent act as the functional monomer in the imprinted process to build up highly ordered functionalized imprinted materials. The chemical composition, porosity, and highly ordered morphology were characterized by Fourier transform infrared spectroscopy (FTIR), solid state nuclear magnetic resonance (NMR), Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM), respectively. The Brunauer-Emmett-Teller (BET) surface area was 1054.51 m2 g-1 in this study. The Cr(VI)IMS showed great adsorption capacity to hexavalent chromium ions in acidic solution up to 45.6 mg g-1. Cr(VI)IMS reached the adsorption equilibrium in a short time (10 min) at acid and weak acid conditions, while most of adsorbents need more than 30 min to achieve adsorption equilibrium. Cr(VI)IMS displayed much higher adsorption capacity to Cr(VI) ions than other negative ions. The relative selectivity coefficient was 2.56, higher than those of other anions (below 1.5). After eight adsorption-regeneration cycles, the adsorption efficiency of Cr(VI)IMS still reached 92.5%. The Cr(VI)IMS was found to exhibit equivalent property after multiple cycles of experiments, indicating good repeatability and reproducibility.
Collapse
Affiliation(s)
- Shuibin Cen
- School of Chemical Engineering and Technology, Guangdong Engineering Technical Research Center for Green Household Chemicals, Guangdong Industry Polytechnic, Guangzhou, 510300, China
| | - Lan Yang
- School of Chemical Engineering and Technology, Guangdong Engineering Technical Research Center for Green Household Chemicals, Guangdong Industry Polytechnic, Guangzhou, 510300, China
| | - Ruimin Li
- School of Chemical Engineering and Technology, Guangdong Engineering Technical Research Center for Green Household Chemicals, Guangdong Industry Polytechnic, Guangzhou, 510300, China
| | - Shengzhao Gong
- School of Chemical Engineering and Technology, Guangdong Engineering Technical Research Center for Green Household Chemicals, Guangdong Industry Polytechnic, Guangzhou, 510300, China
| | - Jiean Tan
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China.
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
19
|
Chi Y, Xu Y, Xu C, Tian J, Li Y, Gu B, Song H, Zhang H. Adsorptive Removal of Radioactive Cesium from Model Nuclear Wastewater over Hydroxyl-Functionalized Mxene Ti 3C 2T x. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yujing Chi
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yuan Xu
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chenxiang Xu
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jiming Tian
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Ying Li
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Boxiang Gu
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Haiyan Song
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Han Zhang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| |
Collapse
|
20
|
Yin F, Liu X, Wu M, Yang H, Wu X, Hao L, Yu J, Wang P, Xu F. “One-pot” synthesis of mesoporous ion imprinted polymer for selective adsorption and detection of As(V) in aqueous phase via cooperative extraction mechanism. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Wang Y, Lin Z, Zhu J, Liu J, Yu J, Chen R, Liu P, Liu Q, Wang J. Ultra-high flexibility amidoximated ethylene acrylic acid copolymer film synthesized by the mixed melting method for uranium adsorption from simulated seawater. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127808. [PMID: 34839978 DOI: 10.1016/j.jhazmat.2021.127808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
If U(VI) in seawater (unconventional uranium resource) can be extracted efficiently, it can provide important supplies and guarantees for the stable development of nuclear power. In this study, a mixing melting method without condensation agent was proposed to prepare ultra-high flexibility and different proportions DAMN modified EAA resin film (EAA-DAMN) through the condensation reaction between -COOH and -NH2 and the uniform mixing of liquid EAA and DAMN. In addition, the dense film structure and -CN of EAA-DAMN were transformed into multiple pores structure and amidoxime groups of the amidoximated EAA (AO-EAA) by amidoxime reaction. The AO-EAA-3 showed the most excellent adsorption performance (qe=146.40 mg g-1) at pH = 5, which was 2.33 times that of EAA. Moreover, a hypothesis was proposed for the first time that -NH2 in the material could combine with H+ ionized by water to form -NH3+, and then adsorbed NO3- in the solution through electrostatic attraction, and O element from NO3- adsorbed on the surface and N-O from amidoxime groups of material as the adsorption active sites performed coordination with U(VI), thereby improving the adsorption performance of AO-EAA.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Zaiwen Lin
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Institute of Advanced Marine Materials, Harbin Engineering University, 150001, China
| | - Peili Liu
- Institute of Advanced Marine Materials, Harbin Engineering University, 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China.
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Institute of Advanced Marine Materials, Harbin Engineering University, 150001, China
| |
Collapse
|
22
|
Yu H, Dai Y, Zhou L, Ouyang J, Tang X, Liu Z, Adesina AA. Selective biosorption of U(VI) from aqueous solution by ion-imprinted honeycomb-like chitosan/kaolin clay composite foams. Int J Biol Macromol 2022; 206:409-421. [PMID: 35245572 DOI: 10.1016/j.ijbiomac.2022.02.168] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 01/10/2023]
Abstract
The radioactive pollution caused by the discharge of radioactive wastewater poses a serious threat to public health and ecosystem stability owing to its long-term detriments. Herein, the ion-imprinted honeycomb-like chitosan/kaolin clay (ICK) composite foams were successfully fabricated and applied to the selective biosorption of U(VI) from aqueous solution. It was found that the ICK-2 was the best among various ICK foams owing to its well-developed honeycomb-like structure and the presence of abundant functional groups. As compared to the non-imprinted sorbent (NICK-2), the ion-imprinted sorbent (ICK-2) presents higher sorption and better selectivity since it can smartly recognize the target ions. The sorption isotherms was well-fitted with Langmuir model, and the maximum sorption capacity of ICK-2 was evaluated as 286.85 mg/g for U(VI) at 298 K and pH 5.0. The kinetic data could be described by pseudo-second order model. The FTIR and XPS results suggest that both amine and hydroxyl groups are responsible for U(VI) coordination. The ICK-2 presents high sorption capacity, good selectivity and fast kinetic rate, and thus it has potential application for U(VI) separation from radioactive wastewater.
Collapse
Affiliation(s)
- Hailan Yu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Material Science, East China University of Technology, 330013 Nanchang, China
| | - Yiming Dai
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Material Science, East China University of Technology, 330013 Nanchang, China
| | - Limin Zhou
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Material Science, East China University of Technology, 330013 Nanchang, China; School of Chemical Sciences and Engineering, University of New South Wales, 2035 Sydney, Australia.
| | - Jinbo Ouyang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Material Science, East China University of Technology, 330013 Nanchang, China; State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | - Xiaohuan Tang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Material Science, East China University of Technology, 330013 Nanchang, China
| | - Zhirong Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Material Science, East China University of Technology, 330013 Nanchang, China
| | - Adesoji A Adesina
- School of Chemical Sciences and Engineering, University of New South Wales, 2035 Sydney, Australia
| |
Collapse
|
23
|
Xu M, Zhou L, Zhang L, Zhang S, Chen F, Zhou R, Hua D. Two-Dimensional Imprinting Strategy to Create Specific Nanotrap for Selective Uranium Adsorption with Ultrahigh Capacity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9408-9417. [PMID: 35147033 DOI: 10.1021/acsami.1c20543] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Uranium extraction is highly challenging because of low uranium concentration, high salinity, and a large number of competing ions in different environments. The template strategy is developed to address the defect of poor selectivity, but the adsorption capacity is limited by cavity blocking during the preparation of materials. Herein, a two-dimensional (2D) imprinting strategy is adopted to design 2D imprinted networks with specific nanotraps for effective uranium capture. The imprinted networks are established through the condensation polymerization of uranyl complexes, which are formed by aromatic building units coordinating with uranyl ions on the equatorial plane. Different from traditional imprinting materials that contain many invalid cavities (buried cavities or unreleased cavities), the as-prepared adsorbents possess tailored 2D nanotraps, which are open and specific to uranyl. Thus, the optimized networks not only show excellent selectivity for uranium (Kd = 964,500 mL/g in multi-ion solution) and slight disturbance of high salinity but also possess an ultrahigh adsorption capacity of 1365.7 mg/g. In addition, this adsorbent shows a high extraction efficiency for uranium under a wide range of pH conditions and exhibits good regeneration performance. This work proposes a pioneering strategy of 2D imprinting networks to capture uranium specifically with high capacity and can be applied to material design in many other fields.
Collapse
Affiliation(s)
- Meiyun Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lei Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shitong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Fulong Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
24
|
Yang HR, Yang C, Li SS, Shan XC, Song GL, An QD, Zhai SR, Xiao ZY. Site-imprinted hollow composites with integrated functions for ultra-efficient capture of hexavalent chromium from water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Guo D, Sun Y, Hu Z, Liu S, Yu Q, Li Z. Formation of boronate-based macroporous copolymer via emulsion-assisted interface self-assembly method for specific enrichment of Naringin. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Li J, Zhang Y, Zhou Y, Fang F, Li X. Tailored metal-organic frameworks facilitate the simultaneously high-efficient sorption of UO 22+ and ReO 4- in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149468. [PMID: 34371410 DOI: 10.1016/j.scitotenv.2021.149468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The simultaneously efficient extraction of radioactive metal cations and anions from radioactive waste is of great interest for the proper disposal of spent fuel and environmental protection. Modifying metal-organic frameworks (MOFs) into multifunctional materials with controllable and desired properties is an efficient strategy for broadening their practical applications. Herein, poly(ethyleneimine) (PEI) tailored MIL-101(Cr) (MILP) was obtained through an easy operation and low-cost strategy and was utilized to simultaneously extract uranium (UO22+) and rhenium (ReO4-) from water. The effects of PEI coating amounts, system pH, contact time, initial UO22+/ReO4- concentrations, ionic strength, as well as interfering ions were studied to evaluate the sorption performance of MILP composites. The maximum sorption capacity was 416.67 mg/g for UO22+ at pH 5.5 and 434.78 mg/g for ReO4- at pH 3.5, levels that are superior to those of most adsorbents. The sorption of UO22+/ReO4- occurred in a pH-dependent, spontaneous and endothermic manner, which showed preferable modeling by the pseudo-second-order (PSO) kinetic equation and Freundlich isotherm equation. The adsorption of ReO4- was inhibited by the coexistence of UO22+ and high ion strength. Batch experiments and X-ray photoelectron spectroscopy (XPS) results indicate that UO22+/ReO4- sorption was driven by the abundant amino groups and unsaturated metal sites in the MILP-3 composites. MILP-3 also showed excellent recycling performance and maintained high sorption capacities for UO22+/ReO4- in different simulated water samples. This study shows that MILP composites can effectively extract radioactive metal cations and anions from water, and lays a foundation for designing an excellent new category of candidates with versatile functions for wastewater management.
Collapse
Affiliation(s)
- Jie Li
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Yan Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Yi Zhou
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Fei Fang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Xuede Li
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China.
| |
Collapse
|