1
|
Liu Z, Wang S, Wang K, Tong J, Zhao Z, Liu X, Liu Y. Digital microfluidic-based fluorescence methods for the automated determination of copper ions in wine. Mikrochim Acta 2025; 192:157. [PMID: 39945961 DOI: 10.1007/s00604-025-07019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/31/2025] [Indexed: 03/15/2025]
Abstract
A novel approach is introduced by combining digital microfluidic technology with click chemistry for automated sample handling on a chip, enabling accurate detection of copper ions in wine. By developing a copper-catalyzed click chemistry reaction using azide coumarin and hexanol, we have introduced a method that offers advantages such as simplicity, minimal by-products, and enhanced resistance to interference compared with other fluorescent methods. Furthermore, optimization of the digital microfluidic chip parameters enabled processing of sub-microliter samples with a droplet coefficient of variation of 0.6%, outperforming the ~ 4.0% error typically seen with conventional pipetting methods. This method processes samples as small as 870 nL, providing cost efficiency, automated detection, reduced errors, and a detection limit of 15.4 μM (0.98 mg/L), meeting testing requirements. Our approach effectively detects copper ion contamination in wine with a recovery of 98.7 to 106%, offering robust technical support for food safety regulations.
Collapse
Affiliation(s)
- Zhihui Liu
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Si Wang
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Kemin Wang
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Jiajun Tong
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Zijun Zhao
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Xiaofeng Liu
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China.
| | - Yiwei Liu
- Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, Hunan, China.
| |
Collapse
|
2
|
Piao Y, Fang Y, Li B, Man T, Chen J, Zhu F, Wang W, Wan Y, Deng S. Bead-Based DNA Synthesis and Sequencing for Integrated Data Storage Using Digital Microfluidics. Angew Chem Int Ed Engl 2025; 64:e202416004. [PMID: 39606901 DOI: 10.1002/anie.202416004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/24/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
DNA is considered as a prospective candidate for the next-generation data storage medium, due to its high coding density, long cold-storage lifespan, and low energy consumption. Despite these advantages, challenges remain in achieving high-fidelity, fully integrated, and cost-efficient DNA storage system. In this study, a homemade digital microfluidic (DMF)-based compact DNA data storing pipeline is orchestrated to complete the entire process from the synthesis to the sequencing. The synthetic half employs phosphoramidite chemistry on 200 nm magnetic beads (MBs), where the dimethyltrityl protecting group is removed by droplet manipulation of trichloroacetic acid. The sequencing counterpart relies on pyrophosphate releasing originated from polymerase-catalyzed primer extension, which leads to photon-countable chemiluminescence (CL) signal in 2.5-μL drops of trienzyme cascading reactions. Further by DNA denaturation, repeated pyrosequencing plus plurality voting can improve the nucleobase accuracy beyond 95 %. As a proof-of-concept trial, semantic information is saved in DNA via the Huffman coding algorithm plus the Reed-Solomon error-correction, and then robustly retrieved from this streamlined platform. As a result, it took a net total of approximately 6.5 h to writing and reading 8 bytes of data, that equal to a storaging speed of 49 min/byte, much quicker than the previously reported 2.8-4.2 h/byte. This bead-based miniaturized device promises an unattended protocol for achieving high-throughput, full-packaged, and above all, neatly precision DNA storage.
Collapse
Affiliation(s)
- Yuhao Piao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yitong Fang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bin Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tiantian Man
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jie Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fulin Zhu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weiqiang Wang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shengyuan Deng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
3
|
Cai L, Lin L, Lin S, Wang X, Chen Y, Zhu H, Zhu Z, Yang L, Xu X, Yang C. Highly Multiplexing, Throughput and Efficient Single-Cell Protein Analysis with Digital Microfluidics. SMALL METHODS 2024; 8:e2400375. [PMID: 38607945 DOI: 10.1002/smtd.202400375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Proteins as crucial components of cells are responsible for the majority of cellular processes. Sensitive and efficient protein detection enables a more accurate and comprehensive investigation of cellular phenotypes and life activities. Here, a protein sequencing method with high multiplexing, high throughput, high cell utilization, and integration based on digital microfluidics (DMF-Protein-seq) is proposed, which transforms protein information into DNA sequencing readout via DNA-tagged antibodies and labels single cells with unique cell barcodes. In a 184-electrode DMF-Protein-seq system, ≈1800 cells are simultaneously detected per experimental run. The digital microfluidics device harnessing low-adsorbed hydrophobic surface and contaminants-isolated reaction space supports high cell utilization (>90%) and high mapping reads (>90%) with the input cells ranging from 140 to 2000. This system leverages split&pool strategy on the DMF chip for the first time to overcome DMF platform restriction in cell analysis throughput and replace the traditionally tedious bench-top combinatorial barcoding. With the benefits of high efficiency and sensitivity in protein analysis, the system offers great potential for cell classification and drug monitoring based on protein expression at the single-cell level.
Collapse
Affiliation(s)
- Linfeng Cai
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shiyan Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xuanqun Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yingwen Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huanghuang Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liu Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
4
|
Zhang S, Zhang Y, Ning Z, Duan M, Lin X, Duan N, Wang Z, Wu S. Design and application of microfluidics in aptamer SELEX and Aptasensors. Biotechnol Adv 2024; 77:108461. [PMID: 39374797 DOI: 10.1016/j.biotechadv.2024.108461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Aptamers are excellent recognition molecules obtained from systematic evolution of ligands by exponential enrichment (SELEX) that have been extensively researched for constructing aptasensors. However, in the process from SELEX to the construction of aptasensors, there are many disadvantages, such as tedious and repetitive operations, interference from external factors, and low efficiency, which seriously limits their application scope and development. Introducing the microfluidic technology can realize the integration and intelligence of SELEX and aptasensing, improve the efficiency of SELEX, and enhance the detection performance and convenience of aptasensing. Hence, in this review, the characteristics of various chips based on different driving forces are described firstly. And then summarizing the design of microfluidic devices based on different SELEX methods and showing the strategies of microfluidic aptasensors based on different detection modes. Finally, discussing the difficulties and challenges encountered when microfluidic is integrated with the SELEX and the aptasensors.
Collapse
Affiliation(s)
- Shikun Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yingming Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyuan Ning
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengxia Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Mao Z, Deng A, Jin X, Zhou T, Zhang S, Li M, Lv W, Huang L, Zhong H, Wang S, Shi Y, Zhang L, Liao Q, Fu R, Huang G. Highly Specific and Rapid Multiplex Identification of Candida Species Using Digital Microfluidics Integrated with a Semi-Nested Genoarray. Anal Chem 2024; 96:18797-18805. [PMID: 39548967 DOI: 10.1021/acs.analchem.4c04265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
Candida species are the most common cause of fungal infections around the world, associated with superficial and even deep-seated infections. In clinical practice, there is great significance in identifying different Candida species because of their respective characteristics. However, current technologies have difficulty in onsite species identification due to long turnover time, high cost of reagents and instruments, or limited detection performance. We developed a semi-nested recombinase polymerase amplification (RPA) genoarray as well as an integrated system for highly specific identification of four Candida species with a simple design of primers, high detection sensitivity, fast turnover time, and good cost-effectiveness. The system constructed to perform the assay consists of a rapid sample processing module for nucleic acid release from fungal samples in 15 min and a digital microfluidic platform for precise and efficient detection reactions in 35 min. Therefore, our system could automatically identify specific Candida species, with a reagent consumption of only 2.5 μL of the RPA reaction mixture per target and no cross-reaction. Its detection sensitivity for four Candida species achieved 101-102 CFU/mL, which was 10-fold better than conventional RPA and even comparable to a common polymerase chain reaction. Evaluated by using cultured samples and 24 clinical samples, our system shows great applicability to onsite multiplex nucleic acid analysis.
Collapse
Affiliation(s)
- Zeyin Mao
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Anni Deng
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiangyu Jin
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Tianqi Zhou
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Shuailong Zhang
- School of Integrated Circuits and Electronics, Zhengzhou Research Institute, Beijing Institute of Technology, Beijing 100081, China
- Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Meng Li
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Wenqi Lv
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Leyang Huang
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Hao Zhong
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Shihong Wang
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Yixuan Shi
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Qinping Liao
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Guoliang Huang
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| |
Collapse
|
6
|
Chen Z, Xie Y, Cao Y, Wang Y, Zhao M, Wu Y, Xu B, Lin G. Rapid and sensitive detection of heart-type fatty acid binding protein using aggregation-induced emission nanoparticles on digital microfluidics workstation. Biosens Bioelectron 2024; 262:116563. [PMID: 39013359 DOI: 10.1016/j.bios.2024.116563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Early and rapid diagnostic of acute myocardial infarction (AMI) during its developing stage is crucial due to its high fatality rate. Heart-type fatty acid binding protein (h-FABP) is an ideal biomarker for the quantitative diagnosis of AMI, surpassing traditional markers such as myoglobin, creatine phosphokinase-MB, and troponin in terms of sensitivity, specificity, and prognostic value. To obtain diagnostic and prognostic information, a precise and fully quantitative measurement of h-FABP is essential, typically achieved through an immunosorbent assay like the enzyme-linked immunosorbent assay. Nevertheless, this method has several limitations, including extended detection time, complex assay procedures, the necessity for skilled technicians, and challenges in implementing automated detection. This research introduces a novel biosensor, utilizing aggregation-induced emission nanoparticles (AIENPs) and integrated with a digital microfluidic (DMF) workstation, designed for the sensitive, rapid, and automated detection of h-FABP in low-volume serum samples. AIENPs and magnetic beads in nanoscale were served as the capture particles and the fluorescent probe, which were linked covalently to anti-h-FABP antibodies respectively. The approach was based on a sandwich immunoassay and performed on a fully automated DMF workstation with assay time by 15 min. We demonstrated the determination of h-FABP in serum samples with detection limit of 0.14 ng/mL using this biosensor under optimal condition. Furthermore, excellent correlations (R2 = 0.9536, n = 50) were obtained between utilizing this biosensor and commercialized ELISA kits in clinical serum detecting. These results demonstrate that our flexible and reliable biosensor is suitable for direct integration into clinical diagnostics, and it is expected to be promising diagnostic tool for early detection and screening tests as well as prognosis evaluation for AMI patients.
Collapse
Affiliation(s)
- Zhenhua Chen
- Department of Laboratory Medicine, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yang Xie
- Department of Laboratory Medicine, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yue Cao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yu Wang
- Micro-Nano Tech Center, Bioland Laboratory, Guangzhou, Guangdong, 510000, China
| | - Meng Zhao
- Micro-Nano Tech Center, Bioland Laboratory, Guangzhou, Guangdong, 510000, China
| | - Yingsong Wu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Guanfeng Lin
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China; Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510080, China.
| |
Collapse
|
7
|
Li K, Lu X, Liao J, Chen H, Lin W, Zhao Y, Tang D, Li C, Tian Z, Zhu Z, Jiang H, Sun J, Zhang H, Yang C. DNA-DISK: Automated end-to-end data storage via enzymatic single-nucleotide DNA synthesis and sequencing on digital microfluidics. Proc Natl Acad Sci U S A 2024; 121:e2410164121. [PMID: 39145927 PMCID: PMC11348301 DOI: 10.1073/pnas.2410164121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024] Open
Abstract
In the age of information explosion, the exponential growth of digital data far exceeds the capacity of current mainstream storage media. DNA is emerging as a promising alternative due to its higher storage density, longer retention time, and lower power consumption. To date, commercially mature DNA synthesis and sequencing technologies allow for writing and reading of information on DNA with customization and convenience at the research level. However, under the disconnected and nonspecialized mode, DNA data storage encounters practical challenges, including susceptibility to errors, long storage latency, resource-intensive requirements, and elevated information security risks. Herein, we introduce a platform named DNA-DISK that seamlessly streamlined DNA synthesis, storage, and sequencing on digital microfluidics coupled with a tabletop device for automated end-to-end information storage. The single-nucleotide enzymatic DNA synthesis with biocapping strategy is utilized, offering an ecofriendly and cost-effective approach for data writing. A DNA encapsulation using thermo-responsive agarose is developed for on-chip solidification, not only eliminating data clutter but also preventing DNA degradation. Pyrosequencing is employed for in situ and accurate data reading. As a proof of concept, DNA-DISK successfully stored and retrieved a musical sheet file (228 bits) with lower write-to-read latency (4.4 min of latency per bit) as well as superior automation compared to other platforms, demonstrating its potential to evolve into a DNA Hard Disk Drive in the future.
Collapse
Affiliation(s)
- Kunjie Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Xiaoyun Lu
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Jiaqi Liao
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Heng Chen
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Wei Lin
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Yuhan Zhao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Dongbao Tang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Congyu Li
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Zhenyang Tian
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Zhi Zhu
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Jun Sun
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Huimin Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Chaoyong Yang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| |
Collapse
|
8
|
Jiang S, Li C, Du J, Wang D, Ma H, Yu J, Nathan A. Thin-Film Transistor Digital Microfluidics Circuit Design with Capacitance-Based Droplet Sensing. SENSORS (BASEL, SWITZERLAND) 2024; 24:4789. [PMID: 39123839 PMCID: PMC11314903 DOI: 10.3390/s24154789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
With the continuous expansion of pixel arrays in digital microfluidics (DMF) chips, precise droplet control has emerged as a critical issue requiring detailed consideration. This paper proposes a novel capacitance-based droplet sensing system for thin-film transistor DMF. The proposed circuit features a distinctive inner and outer dual-pixel electrode structure, integrating droplet driving and sensing functionalities. Discharge occurs exclusively at the inner electrode during droplet sensing, effectively addressing droplet perturbation in existing sensing circuits. The circuit employs a novel fan-shaped structure of thin-film transistors. Simulation results show that it can provide a 48 V pixel voltage and demonstrate a sensing voltage difference of over 10 V between deionized water and silicone oil, illustrating its proficiency in droplet driving and accurate sensing. The stability of threshold voltage drift and temperature was also verified for the circuit. The design is tailored for integration into active matrix electrowetting-on-dielectric (AM-EWOD) chips, offering a novel approach to achieve precise closed-loop control of droplets.
Collapse
Affiliation(s)
- Shengzhe Jiang
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China; (S.J.); (C.L.); (J.D.); (A.N.)
| | - Chang Li
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China; (S.J.); (C.L.); (J.D.); (A.N.)
| | - Jiping Du
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China; (S.J.); (C.L.); (J.D.); (A.N.)
| | - Dongping Wang
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China; (S.J.); (C.L.); (J.D.); (A.N.)
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
- Guangdong ACXEL Micro & Nano Tech Co., Ltd., Foshan 528299, China
| | - Jun Yu
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China; (S.J.); (C.L.); (J.D.); (A.N.)
| | - Arokia Nathan
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China; (S.J.); (C.L.); (J.D.); (A.N.)
- Darwin College, University of Cambridge, Cambridge CB3 9EU, UK
| |
Collapse
|
9
|
Xie Y, Chen Z, Cai D, Huang D, Huang E, Yang X, Zhang T, Wen H, Wang Y, Zhao M, Liu D, Xu B. Rapid Detection of Uropathogens Using an Integrated Multiplex Digital Nucleic Acid Detection Assay Powered by a Digital-to-Droplet Microfluidic Device. Anal Chem 2024. [PMID: 39018349 DOI: 10.1021/acs.analchem.4c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The digital nucleic acid detection assay features the capability of absolute quantitation without the need for calibration, thereby facilitating the rapid identification of pathogens. Although several integrated digital nucleic acid detection techniques have been developed, there are still constraints in terms of automation and analysis throughput. To tackle these challenges, this study presents a digital-to-droplet microfluidic device comprising a digital microfluidics (DMF) module at the bottom and a droplet microfluidics module at the top. Following sample introduction, the extraction of nucleic acid and the dispensation of nucleic acid elution for mixing with the multiple amplification reagents are carried out in the DMF module. Subsequently, the reaction droplets are transported to the sample inlet of the droplet microfluidic module via a liquid outlet, and then droplet generation in four parallel units within the droplet microfluidics module is actuated by negative pressure generated by a syringe vacuum. The digital-to-droplet microfluidic device was employed to execute an integrated multiplex digital droplet nucleic acid detection assay (imDDNA) incorporating loop-mediated isothermal amplification (LAMP). This assay was specifically designed to enable simultaneous detection of four uropathogens, namely, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterococcus faecalis. The entire process of the imDDNA is completed within 75 min, with a detection range spanning 5 orders of magnitude (9.43 × 10-2.86 × 104 copies μL-1). The imDDNA was employed for the detection of batched clinical specimens, showing a consistency of 91.1% when compared with that of the conventional method. The imDDNA exhibits simplicity in operation and accuracy in quantification, thus offering potential advantages in achieving rapid pathogen detection.
Collapse
Affiliation(s)
- Yang Xie
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Zhenhua Chen
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| | - Dongyang Cai
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| | - Dezhi Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Enqi Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Xiao Yang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| | - Ting Zhang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| | - Hongting Wen
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yu Wang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Meng Zhao
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Dayu Liu
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| | - Banglao Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| |
Collapse
|
10
|
Liu K, He Y, Lu Z, Xu Q, Wang L, Liu Z, Khou J, Ye J, Liu C, Zhang T. Laser-induced graphene-based digital microfluidics (gDMF): a versatile platform with sub-one-dollar cost. LAB ON A CHIP 2024; 24:3125-3134. [PMID: 38770672 DOI: 10.1039/d4lc00258j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Digital microfluidics (DMF), is an emerging liquid-handling technology, that shows promising potential in various biological and biomedical applications. However, the fabrication of conventional DMF chips is usually complicated, time-consuming, and costly, which seriously limits their widespread applications, especially in the field of point-of-care testing (POCT). Although the paper- or film-based DMF devices can offer an inexpensive and convenient alternative, they still suffer from the planar addressing structure, and thus, limited electrode quantity. To address the above issues, we herein describe the development of a laser-induced graphene (LIG) based digital microfluidics chip (gDMF). It can be easily made (within 10 min, under ambient conditions, without the need of costly materials or cleanroom-based techniques) by a computer-controlled laser scribing process. Moreover, both the planar addressing DMF (pgDMF) and vertical addressing DMF (vgDMF) can be readily achieved, with the latter offering the potential of a higher electrode density. Also, both of them have an impressively low cost of below $1 ($0.85 for pgDMF, $0.59 for vgDMF). Experiments also show that both pgDMF and vgDMF have a comparable performance to conventional DMF devices, with a colorimetric assay performed on vgDMF as proof-of-concept to demonstrate their applicability. Given the simple fabrication, low cost, full function, and the ease of modifying the electrode pattern for various applications, it is reasonably expect that the proposed gDMF may offer an alternative choice as a versatile platform for POCT.
Collapse
Affiliation(s)
- Ke Liu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310023, China.
| | - Yu He
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310023, China.
- Research Center for Analytical Instrumentation and Intelligent Systems, Huzhou Institute of Zhejiang University, Huzhou 313002, China
| | - Zefan Lu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310023, China.
| | - Qiudi Xu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310023, China.
| | - Lan Wang
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310023, China.
| | - Zhongxuan Liu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310023, China.
| | - Jeremy Khou
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310023, China.
| | - Jiaming Ye
- Tinkerbio Biotechnology Co., Ltd, Hangzhou 310023, China
| | - Chong Liu
- Department of Neurobiology, Department of Neurosurgery of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310023, China
| | - Tao Zhang
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310023, China.
- Research Center for Analytical Instrumentation and Intelligent Systems, Huzhou Institute of Zhejiang University, Huzhou 313002, China
| |
Collapse
|
11
|
Ding L, Cao S, Qu C, Wu Y, Yu S. Ratiometric CRISPR/Cas12a-Triggered CHA System Coupling with the MSRE to Detect Site-Specific DNA Methylation. ACS Sens 2024; 9:1877-1885. [PMID: 38573977 DOI: 10.1021/acssensors.3c02571] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The precise determination of DNA methylation at specific sites is critical for the timely detection of cancer, as DNA methylation is closely associated with the initiation and progression of cancer. Herein, a novel ratiometric fluorescence method based on the methylation-sensitive restriction enzyme (MSRE), CRISPR/Cas12a, and catalytic hairpin assembly (CHA) amplification were developed to detect site-specific methylation with high sensitivity and specificity. In detail, AciI, one of the commonly used MSREs, was employed to distinguish the methylated target from nonmethylated targets. The CRISPR/Cas12a system was utilized to recognize the site-specific target. In this process, the protospacer adjacent motif and crRNA-dependent identification, the single-base resolution of Cas12a, can effectively ensure detection specificity. The trans-cleavage ability of Cas12a can convert one target into abundant activators and can then trigger the CHA reaction, leading to the accomplishment of cascaded signal amplification. Moreover, with the structural change of the hairpin probe during CHA, two labeled dyes can be spatially separated, generating a change of the Förster resonance energy transfer signal. In general, the proposed strategy of tandem CHA after the CRISPR/Cas12a reaction not only avoids the generation of false-positive signals caused by the target-similar nucleic acid but can also improve the sensitivity. The use of ratiometric fluorescence can eradicate environmental effects by self-calibration. Consequently, the proposed approach had a detection limit of 2.02 fM. This approach could distinguish between colorectal cancer and precancerous tissue, as well as between colorectal patients and healthy people. Therefore, the developed method can serve as an excellent site-specific methylation detection tool, which is promising for biological and disease studies.
Collapse
Affiliation(s)
- Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shengnan Cao
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Chenling Qu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Wu J, Li X, Lin T, Zhuang L, Tang B, Liu F, Zhou G. Electric-Field-Induced Selective Directed Transport of Diverse Droplets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4126-4137. [PMID: 38191293 DOI: 10.1021/acsami.3c13792] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Droplet directional transport is one of the central topics in microfluidics and lab-on-a-chip applications. Selective transport of diverse droplets, particularly in another liquid phase environment with controlled directions, is still challenging. In this work, we propose an electric-field gradient-driven droplet directional transport platform facilitated by a robust lubricant surface. On the platform, we clearly demonstrated a liquid-inherent critical frequency-dominated selective transport of diverse droplets and a driving mechanism transition from electrowetting to liquid dielectrophoresis. Enlightened by the Kelvin-Helmholtz theory, we first realize the directional droplet transport in another liquid phase whenever a permittivity difference exists. Co-transport of multiple droplets and various combinations of droplet types, as well as multifunctional droplet transport modes, are realized based on the presented powerful electric-field gradient-driven platform, overcoming the limitations of the surrounding environment, liquid conductivity, and intrinsic solid-liquid wetting property existing in traditional droplet transport strategies. This work may inspire new applications in liquid separation, multiphase microfluidic manipulation, chemical reagent selection, and so on.
Collapse
Affiliation(s)
- Junjun Wu
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Xinyu Li
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Tao Lin
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Lei Zhuang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Biao Tang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Feilong Liu
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Guofu Zhou
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Shenzhen Guohua Optoelectronics Tech. Co. Ltd., Shenzhen 518110, P. R. China
| |
Collapse
|
13
|
Yang C, Gan X, Zeng Y, Xu Z, Xu L, Hu C, Ma H, Chai B, Hu S, Chai Y. Advanced design and applications of digital microfluidics in biomedical fields: An update of recent progress. Biosens Bioelectron 2023; 242:115723. [PMID: 37832347 DOI: 10.1016/j.bios.2023.115723] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Significant breakthroughs have been made in digital microfluidic (DMF)-based technologies over the past decades. DMF technology has attracted great interest in bioassays depending on automatic microscale liquid manipulations and complicated multi-step processing. In this review, the recent advances of DMF platforms in the biomedical field were summarized, focusing on the integrated design and applications of the DMF system. Firstly, the electrowetting-on-dielectric principle, fabrication of DMF chips, and commercialization of the DMF system were elaborated. Then, the updated droplets and magnetic beads manipulation strategies with DMF were explored. DMF-based biomedical applications were comprehensively discussed, including automated sample preparation strategies, immunoassays, molecular diagnosis, blood processing/testing, and microbe analysis. Emerging applications such as enzyme activity assessment and DNA storage were also explored. The performance of each bioassay was compared and discussed, providing insight into the novel design and applications of the DMF technology. Finally, the advantages, challenges, and future trends of DMF systems were systematically summarized, demonstrating new perspectives on the extensive applications of DMF in basic research and commercialization.
Collapse
Affiliation(s)
- Chengbin Yang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Xiangyu Gan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Yuping Zeng
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Zhourui Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Longqian Xu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Chenxuan Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China; Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, China.
| | - Bao Chai
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China; Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Yujuan Chai
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
14
|
Zhang H, Wu S, Song Z, Fang L, Wang HB. Tannic acid-accelerated fenton chemical reaction amplification for fluorescent biosensing: The proof-of-concept towards ultrasensitive detection of DNA methylation. Talanta 2023; 265:124811. [PMID: 37327662 DOI: 10.1016/j.talanta.2023.124811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
As a promising biomarker, the level of methylated DNA usually changes in the early stage of the cancer. Ultrasensitive detection of the changes of methylated DNA offers possibility for early diagnosis of cancer. In this work, a tannic acid-accelerated Fenton chemical reaction amplification was firstly proposed for the construction of ultrasensitive fluorescent assay. Tannic acid was used as reductant to accelerate Fenton reaction procedure through the conversion of Fe3+/Fe2+, generating hydroxyl radicals (·OH) continuously. The produced ·OH oxidized massive non-fluorescent terephthalic acid (TA) to fluorescent-emitting hydroxy terephthalic acid (TAOH). In this way, the fluorescent signal could be greatly enhanced and the sensitivity was improved almost 116 times. The proposed signal amplification strategy was further applied to detect of DNA methylation with the assistance of liposome encapsulated with tannic-Fe3+ complexes. The methylated DNA was firstly captured through the hybridization with its complementary DNA that were pre-modified in the 96-well plate via the combination between streptavidin (SA) and biotin. Then, 5 mC antibody on the surface of liposomes specially recognized and combined with methylation sites, which brought large amount of tannic-Fe3+ complexes to participate Fenton reaction. The fluorescence of generated TAOH was depended on the concentration of methylated DNA. The assay showed good analytical performance for methylated DNA with a limit of detection (LOD) of 1.4 fM. It's believed that tannic acid-accelerated Fenton chemical reaction amplification strategy provides a promising platform for ultrasensitive fluorescent detection of low abundant biomarkers.
Collapse
Affiliation(s)
- Hongding Zhang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, PR China; State Key Laboratory of Chemo/Biosensing Ad Chemometrics, Hunan University, Changsha, 410082, PR China.
| | - Sifei Wu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, PR China
| | - Zhixiao Song
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, PR China
| | - Linxia Fang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, PR China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, PR China
| |
Collapse
|
15
|
Wang J, Chen L, Gui C, Zhu J, Zhu B, Zhu Z, Li Y, Chen D. A nanopore counter for highly sensitive evaluation of DNA methylation and its application in in vitro diagnostics. Analyst 2023; 148:1492-1499. [PMID: 36880569 DOI: 10.1039/d3an00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
DNA methylation has been considered an essential epigenetic biomarker for diagnosing various diseases, such as cancer. A simple and sensitive way for DNA methylation level detection is necessary. Inspired by the label-free and ultra-high sensitivity of solid-state nanopores to double-stranded DNA (dsDNA), we proposed a nanopore counter for evaluating DNA methylation by integrating a dual-restriction endonuclease digestion strategy coupled with polymerase chain reaction (PCR) amplification. Simultaneous application of BstUI/HhaI endonucleases can ensure the full digestion of the unmethylated target DNA but shows no effect on the methylated ones. Therefore, only the methylated DNA remains intact and can trigger the subsequent PCR reaction, producing a large quantity of fixed-length PCR amplicons, which can be directly detected through glassy nanopores. By simply counting the event rate of the translocation signals, the concentration of methylated DNA can be determined to range from 1 aM to 0.1 nM, with the detection limit as low as 0.61 aM. Moreover, a 0.01% DNA methylation level was successfully distinguished. The strategy of using the nanopore counter for highly sensitive DNA methylation evaluation would be a low-cost but reliable alternative in the analysis of DNA methylation.
Collapse
Affiliation(s)
- Jiahai Wang
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Lanfang Chen
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Cenlin Gui
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Jianji Zhu
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Baian Zhu
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Zhuobin Zhu
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Yunhui Li
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Daqi Chen
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Xu X, Cai L, Liang S, Zhang Q, Lin S, Li M, Yang Q, Li C, Han Z, Yang C. Digital microfluidics for biological analysis and applications. LAB ON A CHIP 2023; 23:1169-1191. [PMID: 36644972 DOI: 10.1039/d2lc00756h] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Digital microfluidics (DMF) is an emerging liquid-handling technology based on arrays of microelectrodes for the precise manipulation of discrete droplets. DMF offers the benefits of automation, addressability, integration and dynamic configuration ability, and provides enclosed picoliter-to-microliter reaction space, making it suitable for lab-on-a-chip biological analysis and applications that require high integration and intricate processes. A review of DMF bioassays with a special emphasis on those actuated by electrowetting on dielectric (EWOD) force is presented here. Firstly, a brief introduction is presented on both the theory of EWOD actuation and the types of droplet motion. Subsequently, a comprehensive overview of DMF-based biological analysis and applications, including nucleic acid, protein, immunoreaction and cell assays, is provided. Finally, a discussion on the strengths, challenges, and potential applications and perspectives in this field is presented.
Collapse
Affiliation(s)
- Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Linfeng Cai
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Shanshan Liang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Qiannan Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Shiyan Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Mingying Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Qizheng Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chong Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Ziyan Han
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
17
|
Tong Z, Shen C, Li Q, Yin H, Mao H. Combining sensors and actuators with electrowetting-on-dielectric (EWOD): advanced digital microfluidic systems for biomedical applications. Analyst 2023; 148:1399-1421. [PMID: 36752059 DOI: 10.1039/d2an01707e] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The concept of digital microfluidics (DMF) enables highly flexible and precise droplet manipulation at a picoliter scale, making DMF a promising approach to realize integrated, miniaturized "lab-on-a-chip" (LOC) systems for research and clinical purposes. Owing to its simplicity and effectiveness, electrowetting-on-dielectric (EWOD) is one of the most commonly studied and applied effects to implement DMF. However, complex biomedical assays usually require more sophisticated sample handling and detection capabilities than basic EWOD manipulation. Alternatively, combined systems integrating EWOD actuators and other fluidic handling techniques are essential for bringing DMF into practical use. In this paper, we briefly review the main approaches for the integration/combination of EWOD with other microfluidic manipulation methods or additional external fields for specified biomedical applications. The form of integration ranges from independently operating sub-systems to fully coupled hybrid actuators. The corresponding biomedical applications of these works are also summarized to illustrate the significance of these innovative combination attempts.
Collapse
Affiliation(s)
- Zhaoduo Tong
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanjie Shen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiushi Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Hao Yin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
18
|
Das A, Fehse S, Polack M, Panneerselvam R, Belder D. Surface-Enhanced Raman Spectroscopic Probing in Digital Microfluidics through a Microspray Hole. Anal Chem 2023; 95:1262-1272. [PMID: 36577121 DOI: 10.1021/acs.analchem.2c04053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report a novel approach for surface-enhanced Raman spectroscopy (SERS) detection in digital microfluidics (DMF). This is made possible by a microspray hole (μSH) that uses an electrostatic spray (ESTAS) for sample transfer from inside the chip to an external SERS substrate. To realize this, a new ESTAS-compatible stationary SERS substrate was developed and characterized for sensitive and reproducible SERS measurements. In a proof-of-concept study, we successfully applied the approach to detect various analyte molecules using the DMF chip and achieved micro-molar detection limits. Moreover, this technique was exemplarily employed to study an organic reaction occurring in the DMF device, providing vibrational spectroscopic data.
Collapse
Affiliation(s)
- Anish Das
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, Leipzig 04103, Germany
| | - Sebastian Fehse
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, Leipzig 04103, Germany
| | - Matthias Polack
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, Leipzig 04103, Germany
| | - Rajapandiyan Panneerselvam
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, Leipzig 04103, Germany.,Department of Chemistry, SRM University AP, Amaravati, Andhra Pradesh 522502, India
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, Leipzig 04103, Germany
| |
Collapse
|
19
|
Wen X, Pu H, Liu Q, Guo Z, Luo D. Circulating Tumor DNA-A Novel Biomarker of Tumor Progression and Its Favorable Detection Techniques. Cancers (Basel) 2022; 14:6025. [PMID: 36551512 PMCID: PMC9775401 DOI: 10.3390/cancers14246025] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death in the world and seriously affects the quality of life of patients. The diagnostic techniques for tumors mainly include tumor biomarker detection, instrumental examination, and tissue biopsy. In recent years, liquid technology represented by circulating tumor DNA (ctDNA) has gradually replaced traditional technology with its advantages of being non-invasive and accurate, its high specificity, and its high sensitivity. ctDNA may carry throughout the circulatory system through tumor cell necrosis, apoptosis, circulating exosome secretion, etc., carrying the characteristic changes in tumors, such as mutation, methylation, microsatellite instability, gene rearrangement, etc. In this paper, ctDNA mutation and methylation, as the objects to describe the preparation process before ctDNA analysis, and the detection methods of two gene-level changes, including a series of enrichment detection techniques derived from PCR, sequencing-based detection techniques, and comprehensive detection techniques, are combined with new materials. In addition, the role of ctDNA in various stages of cancer development is summarized, such as early screening, diagnosis, molecular typing, prognosis prediction, recurrence monitoring, and drug guidance. In summary, ctDNA is an ideal biomarker involved in the whole process of tumor development.
Collapse
Affiliation(s)
- Xiaosha Wen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
- Laboratory Medicine Centre, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Huijie Pu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
- Laboratory Medicine Centre, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Quan Liu
- Laboratory Medicine Centre, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Dixian Luo
- Laboratory Medicine Centre, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| |
Collapse
|
20
|
Recent progress in microfluidic biosensors with different driving forces. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Xu X, Zhang Q, Li M, Lin S, Liang S, Cai L, Zhu H, Su R, Yang C. Microfluidic single‐cell multiomics analysis. VIEW 2022. [DOI: 10.1002/viw.20220034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Xing Xu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
| | - Qiannan Zhang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
| | - Mingyin Li
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
| | - Shiyan Lin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
| | - Shanshan Liang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
| | - Linfeng Cai
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
| | - Huanghuang Zhu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
| | - Rui Su
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
| | - Chaoyong Yang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
- Institute of Molecular Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
22
|
Zhou S, Dong J, Deng L, Wang G, Yang M, Wang Y, Huo D, Hou C. Endonuclease-Assisted PAM-free Recombinase Polymerase Amplification Coupling with CRISPR/Cas12a (E-PfRPA/Cas) for Sensitive Detection of DNA Methylation. ACS Sens 2022; 7:3032-3040. [PMID: 36214815 DOI: 10.1021/acssensors.2c01330] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DNA methylation is considered as a potential cancer biomarker. The evaluation of DNA methylation level will contribute to the prognosis and diagnosis of cancer. Herein, we propose a novel assay based on endonuclease-assisted protospacer adjacent motif (PAM)-free recombinase polymerase amplification coupling with CRISPR/Cas12a (E-PfRPA/Cas) for sensitive detection of DNA methylation. The methylation-sensitive restriction enzyme (MSRE) is first used to selectively digest unmethylated DNA, while the methylated target remains structurally intact. Therefore, the methylated target can initiate the RPA reaction to generate a large amount of double-stranded DNA (dsDNA). To avoid the dependence of PAM site of CRISPR/Cas12a, one of the RPA primers is designed with 5'-phosphate terminuses. After treating with Lambda, the sequence with 5'-phosphate modification will be degraded, leaving the single-stranded DNA (ssDNA). The CRISPR/Cas12a can accurately locate ssDNA without PAM, then initiating its trans-cleavage activity for further signal amplification. Meanwhile, non-specific amplification can be also avoided under Lambda, effectively filtering the detection background. Benefiting from the specificity of MSRE, the high amplification efficiency of Lambda-assisted RPA, and the self-amplification effect of CRISPR/Cas, the E-PfRPA/Cas assay shows outstanding sensitivity and selectivity, and as low as 0.05% of methylated DNA can be distinguished. Moreover, the lateral flow assay is also introduced to exploit the point-of-care diagnostic platform. Most importantly, the proposed method shows high sensitivity for determination of genomic DNA methylation from cancer cells, indicating its great potential for tumor-specific gene analysis.
Collapse
Affiliation(s)
- Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Liyuan Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Yongzhong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.,Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.,National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
23
|
Maduraiveeran G. Nanomaterials-based portable electrochemical sensing and biosensing systems for clinical and biomedical applications. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractMiniaturized electrochemical sensing systems are employed in day-to-day uses in the several area from public health to scientific applications. A variety of electrochemical sensor and biosensor systems may not be effectively employed in real-world diagnostic laboratories and biomedical industries due to their limitation of portability, cost, analytical period, and need of skilled trainer for operating devices. The design of smart and portable sensors with high sensitivity, good selectivity, rapid measurement, and reusable platforms is the driving strength for sensing glucose, lactate, hydrogen peroxide, nitric oxide, mRNA, etc. The enhancement of sensing abilities of such sensor devices through the incorporation of both novel sensitive nanomaterials and design of sensor strategies are evidenced. Miniaturization, cost and energy efficient, online and quantitative detection and multiple sensing ability are the beneficial of the nanostructured-material-based electrochemical sensor and biosensor systems. Owing to the discriminating catalytic action, solidity and biocompatibility for designing sensing system, nanoscale materials empowered electrochemical detection systems are accomplished of being entrenched into/combined with portable or miniaturized devices for specific applications. In this review, the advance development of portable and smart sensing/biosensing systems derived from nanoscale materials for clinical and biomedical applications is described.
Graphical Abstract
Collapse
|
24
|
Song ZR, Zeng J, Zhou JL, Yan BY, Gu Z, Wang HF. Optimization of Electrode Patterns for an ITO-Based Digital Microfluidic through the Finite Element Simulation. MICROMACHINES 2022; 13:1563. [PMID: 36295916 PMCID: PMC9611684 DOI: 10.3390/mi13101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Indium tin oxide (ITO)-based digital microfluidics (DMF) with unique optical and electrical properties are promising in the development of integrated, automatic and portable analytical systems. The fabrication technique using laser direct etching (LDE) on ITO glass has the advantages of being rapid, low cost and convenient. However, the fabrication resolution of LDE limits the minimum line width for patterns on ITO glasses, leading to a related wider lead wire for the actuating electrodes of DMF compared with photolithography. Therefore, the lead wire of electrodes could affect the droplet motion on the digital microfluidic chip due to the increased contact line with the droplet. Herein, we developed a finite element model of a DMF with improved efficiency to investigate the effect of the lead wire. An optimized electrode pattern was then designed based on a theoretical analysis and validated by a simulation, which significantly decreased the deformation of the droplets down to 0.012 mm. The performance of the optimized electrode was also verified in an experiment. The proposed simulation method could be further extended to other DMF systems or applications to provide an efficient approach for the design and optimization of DMF chips.
Collapse
|
25
|
Zhang Q, Xu X, Lin L, Yang J, Na X, Chen X, Wu L, Song J, Yang C. Cilo-seq: highly sensitive cell-in-library-out single-cell transcriptome sequencing with digital microfluidics. LAB ON A CHIP 2022; 22:1971-1979. [PMID: 35439800 DOI: 10.1039/d2lc00167e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) plays a critical role in revealing genetic expression patterns at the single-cell level for cell type identification and rare transcript detection. Although there have been great advances in scRNA-seq methodologies, existing technologies still suffer from complexity and high cost, and an integrated platform for complete library construction is still lacking. Herein we describe Cilo-seq for high-performance scRNA-seq library construction in a single device with programmed and addressable droplet handling based on digital microfluidics. The platform is simultaneously accessible for convenient single-cell isolation, efficient nucleic acid amplification, low-loss nucleic acid purification and high-quality library preparation by leveraging specific interface design, tiny reaction volume, auxiliary magnetic field control and accurate droplet control. With a closed hydrophobic interface, the platform further reduces nucleic acid loss and exogenous background interference. Cilo-seq provides excellent detection sensitivity (1.4-fold improvement over tube-based methods), accuracy (R = 0.98) and cost efficiency (10-fold decrease in cost compared to tube-based methods), and holds great promise for studies of single-cell RNA biology.
Collapse
Affiliation(s)
- Qianqian Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Li Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jian Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xing Na
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xin Chen
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
26
|
All-in-One Digital Microfluidics System for Molecular Diagnosis with Loop-Mediated Isothermal Amplification. BIOSENSORS 2022; 12:bios12050324. [PMID: 35624625 PMCID: PMC9138765 DOI: 10.3390/bios12050324] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
In this study, an “all-in-one” digital microfluidics (DMF) system was developed for automatic and rapid molecular diagnosis and integrated with magnetic bead-based nucleic acid extraction, loop-mediated isothermal amplification (LAMP), and real-time optical signal monitoring. First, we performed on- and off-chip comparison experiments for the magnetic bead nucleic acid extraction module and LAMP amplification function. The extraction efficiency for the on-chip test was comparable to that of conventional off-chip methods. The processing time for the automatic on-chip workflow was only 23 min, which was less than that of the conventional methods of 28 min 45 s. Meanwhile, the number of samples used in on-chip experiments was significantly smaller than that used in off-chip experiments; only 5 µL of E. coli samples was required for nucleic acid extraction, and 1 µL of the nucleic acid template was needed for the amplification reaction. In addition, we selected SARS-CoV-2 nucleic acid reference materials for the nucleic acid detection experiment, demonstrating a limit of detection of 10 copies/µL. The proposed “all-in-one” DMF system provides an on-site “sample to answer” time of approximately 60 min, which can be a powerful tool for point-of-care molecular diagnostics.
Collapse
|
27
|
A novel methyl-dependent DNA endonuclease GlaI coupling with double cascaded strand displacement amplification and CRISPR/Cas12a for ultra-sensitive detection of DNA methylation. Anal Chim Acta 2022; 1212:339914. [DOI: 10.1016/j.aca.2022.339914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
|
28
|
Lin S, Liu Y, Zhang M, Xu X, Chen Y, Zhang H, Yang C. Microfluidic single-cell transcriptomics: moving towards multimodal and spatiotemporal omics. LAB ON A CHIP 2021; 21:3829-3849. [PMID: 34541590 DOI: 10.1039/d1lc00607j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cells are the basic units of life with vast heterogeneity. Single-cell transcriptomics unveils cell-to-cell gene expression variabilities, discovers novel cell types, and uncovers the critical roles of cellular heterogeneity in biological processes. The recent advances in microfluidic technologies have greatly accelerated the development of single-cell transcriptomics with regard to throughput, sensitivity, cost, and automation. In this article, we review state-of-the-art microfluidic single-cell transcriptomics, with a focus on the methodologies. We first summarize six typical microfluidic platforms for isolation and transcriptomic analysis of single cells. Then the on-going trend of microfluidic transcriptomics towards multimodal omics, which integrates transcriptomics with other omics to provide more comprehensive pictures of gene expression networks, is discussed. We also highlight single-cell spatial transcriptomics and single-cell temporal transcriptomics that provide unprecedented spatiotemporal resolution to reveal transcriptomic dynamics in space and time, respectively. The emerging applications of microfluidic single-cell transcriptomics are also discussed. Finally, we discuss the current challenges to be tackled and provide perspectives on the future development of microfluidic single-cell transcriptomics.
Collapse
Affiliation(s)
- Shichao Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yilong Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Mingxia Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yingwen Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Huimin Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
29
|
Escobar A, Chiu P, Qu J, Zhang Y, Xu CQ. Integrated Microfluidic-Based Platforms for On-Site Detection and Quantification of Infectious Pathogens: Towards On-Site Medical Translation of SARS-CoV-2 Diagnostic Platforms. MICROMACHINES 2021; 12:1079. [PMID: 34577722 PMCID: PMC8470930 DOI: 10.3390/mi12091079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
The rapid detection and quantification of infectious pathogens is an essential component to the control of potentially lethal outbreaks among human populations worldwide. Several of these highly infectious pathogens, such as Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been cemented in human history as causing epidemics or pandemics due to their lethality and contagiousness. SARS-CoV-2 is an example of these highly infectious pathogens that have recently become one of the leading causes of globally reported deaths, creating one of the worst economic downturns and health crises in the last century. As a result, the necessity for highly accurate and increasingly rapid on-site diagnostic platforms for highly infectious pathogens, such as SARS-CoV-2, has grown dramatically over the last two years. Current conventional non-microfluidic diagnostic techniques have limitations in their effectiveness as on-site devices due to their large turnaround times, operational costs and the need for laboratory equipment. In this review, we first present criteria, both novel and previously determined, as a foundation for the development of effective and viable on-site microfluidic diagnostic platforms for several notable pathogens, including SARS-CoV-2. This list of criteria includes standards that were set out by the WHO, as well as our own "seven pillars" for effective microfluidic integration. We then evaluate the use of microfluidic integration to improve upon currently, and previously, existing platforms for the detection of infectious pathogens. Finally, we discuss a stage-wise means to translate our findings into a fundamental framework towards the development of more effective on-site SARS-CoV-2 microfluidic-integrated platforms that may facilitate future pandemic diagnostic and research endeavors. Through microfluidic integration, many limitations in currently existing infectious pathogen diagnostic platforms can be eliminated or improved upon.
Collapse
Affiliation(s)
- Andres Escobar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.E.); (J.Q.); (Y.Z.)
| | - Phyllis Chiu
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
| | - Jianxi Qu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.E.); (J.Q.); (Y.Z.)
| | - Yushan Zhang
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.E.); (J.Q.); (Y.Z.)
| | - Chang-qing Xu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.E.); (J.Q.); (Y.Z.)
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
| |
Collapse
|