1
|
Dong J, Gao X, Ni C, Yang H, He X, Li Z, Tian L. Interfacial effects on metal-organic frameworks for boosting electrocatalytic reactions. Chem Commun (Camb) 2025. [PMID: 40400419 DOI: 10.1039/d5cc02077h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Metal-organic framework (MOF) materials exhibit great potential in the field of electrocatalysis due to their high specific surface area, tunable pore structures, and abundant active sites. However, further enhancement of their electrocatalytic performance is often limited by factors such as electron transport efficiency, accessibility of active sites, and interfacial reaction kinetics. Interface engineering strategies have been proposed as a promising strategy for modifying MOF-based catalysts for optimizing their catalytic performance. Significant progress has been made in recent years. Based on this, this review summarizes recent developments in interface modification to enhance MOF materials, focusing on the unique effects induced by the interfacial modification of MOF materials, such as optimizing electron transport and conductivity, increasing the exposure of active sites, improving mass transfer of reactants/products, and stabilizing interfacial structures. Additionally, the applications of various types of MOF-based composite materials for promoting electrocatalytic performance that induced by interfacial effects are also manifested. Finally, the challenges and perspectives of this interesting field are also discussed to offer guidance for the future design of more advanced MOF-based electrocatalysts.
Collapse
Affiliation(s)
- Jianguo Dong
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
| | - Xuena Gao
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
| | - Chunmei Ni
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Huimin Yang
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
| | - Xiaoyan He
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
| | - Lin Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| |
Collapse
|
2
|
Ma X, Zhang Y, Zhou A, Jia Y, Xie Z, Ding L, Li JR. Modulation of interface structure on titanium-based metal-organic frameworks heterojunctions for boosting photocatalytic carbon dioxide reduction. J Colloid Interface Sci 2025; 685:696-705. [PMID: 39862848 DOI: 10.1016/j.jcis.2025.01.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO2) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions. A series of core-shell UiO-66 (Zr-MOF)-loaded MIL-125 (Ti-MOF) heterojunctions with exposed specific facets were prepared to enhance the separation efficiency of photogenerated electrons-holes in CO2 photoreduction. Impressively, MIL-125to@UiO-66 with exposed {1 1 1} facet exhibits an excellent CO production rate (56.4 μmol g-1 h-1) and selectivity (99 %) under visible light irradiation without any photosensitizers/sacrificial agents, being 1.4 and 11.3 times higher than individual MIL-125to and UiO-66, respectively. The type-II heterojunction significantly enhances the separation of photogenerated electrons-holes in physical space. The photogenerated electrons migrate from Zr in UiO-66 to Ti in MIL-125to, promoting a spatial synergy between CO2 reduction on MIL-125to and H2O oxidation on UiO-66. Compared with MIL-125rd@UiO-66 with exposed {1 1 0} facet and MIL-125ds@UiO-66 with exposed {0 0 1} facet, MIL-125to@UiO-66 with exposed {1 1 1} facet improves the exposure of surface-active Ti sites, thereby enhancing the adsorption/activation of CO2 to generate the *COOH intermediate. This work provides an effective strategy for designing MOF-based heterojunction photocatalysts to improve photocatalytic performance.
Collapse
Affiliation(s)
- Xiaoyu Ma
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yan Zhang
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Awu Zhou
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yutong Jia
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhenghe Xie
- Beijing Energy Holding Co., Ltd., Beijing 100124, China
| | - Lifeng Ding
- Beijing Energy Holding Co., Ltd., Beijing 100124, China
| | - Jian-Rong Li
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
Huang QP, Yang C, Yin Q, Zhang AA, Liu HX, Li L, Liu MM, Fang ZB, Liu TF. Building Ultrathin MOL/MOL S-Scheme Heterostructures toward Boosted Photocatalytic Charge Kinetics for Efficient H 2 Evolution. Angew Chem Int Ed Engl 2025:e202502009. [PMID: 40243123 DOI: 10.1002/anie.202502009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 04/15/2025] [Indexed: 04/18/2025]
Abstract
Photocatalytic efficiencies highly depend on the kinetic behaviors of photogenerated electrons in catalysts. Herein, based on the promising metal-organic frameworks (MOFs), we design and build an advantageous architecture of ultrathin MOF-layer (metal-organic layers [MOL]) heterojunctions by a facile pH-adjusted electrostatic assembling of pre-exfoliated porphyrinic and pyrene-based MOLs. Such an architecture constitutes an S-scheme junction to drive interfacial charge separation, features ultrathin structures to shorten charge transfer distances, and maximizes accessible metal sites to facilitate terminal charge reaction, thoroughly promoting the charge kinetics in materials. The resulting MOL/MOL composites perform a significantly enhanced catalytic activity for visible-light-driven H2 evolution, 8.5 and 106 times that of individual MOLs. Further fine-tuning into more reactive metal nodes achieves an optimal H2 production (2027 µmol h-1 g-1) with a high apparent quantum yield of 2.75% without additional cocatalysts, ranking among state-of-the-art activities from all-MOF photocatalysts. This work demonstrates an accessible and universal methodology to realize a superior ultrathin MOL/MOL heterojunction architecture toward accelerated charge kinetics, providing valuable insights for the development of efficient photocatalyst systems for solar-to-chemical energy conversions.
Collapse
Affiliation(s)
- Qing-Ping Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.8, Gaoxindadao Road, Fuzhou, 350108, P.R. China
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China
| | - Chao Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.8, Gaoxindadao Road, Fuzhou, 350108, P.R. China
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China
| | - Qi Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.8, Gaoxindadao Road, Fuzhou, 350108, P.R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - An-An Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.8, Gaoxindadao Road, Fuzhou, 350108, P.R. China
| | - Hai-Xiong Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.8, Gaoxindadao Road, Fuzhou, 350108, P.R. China
| | - Lan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.8, Gaoxindadao Road, Fuzhou, 350108, P.R. China
| | - Mei-Mei Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.8, Gaoxindadao Road, Fuzhou, 350108, P.R. China
| | - Zhi-Bin Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.8, Gaoxindadao Road, Fuzhou, 350108, P.R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Tian-Fu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No.8, Gaoxindadao Road, Fuzhou, 350108, P.R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| |
Collapse
|
4
|
Musa EN, Yadav AK, Srichareonkul M, Thampetraruk D, Frechette E, Thiele HC, Stylianou KC. What Up with MOFs in Photocatalysis (?): Exploring the Influence of Experimental Conditions on the Reproducibility of Hydrogen Evolution Rates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70675-70684. [PMID: 39661567 DOI: 10.1021/acsami.4c16851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Metal-organic frameworks (MOFs) are regarded as promising materials for energy applications, particularly in photocatalytic hydrogen (H2) production. This is due to their structural architectures that facilitate charge transfer, and tunable porous and light absorption properties. However, the many characteristics of MOFs including crystal morphology and sizes, surface facets, porosity, light absorption properties, and optical band gaps, can significantly influence their photocatalytic activity, presenting challenges in achieving reproducibility. In this study, we describe the synthesis of five distinct batches of the photoactive MOF, MIL-125-NH2, utilizing different synthetic conditions. Solid-state characterization confirmed the purity, porosity, and light absorption properties of each MOF batch. Each material was then combined with nano sized Ni2P as a cocatalyst, and their photocatalytic activity for H2 evolution was evaluated. We observed variations in their photocatalytic H2 evolution rates, which depended on the batch of MIL-125-NH2 utilized, ranging from the lowest rate of 2980 μmol·h-1·g-1 to the highest of 4327 μmol·h-1·g-1. Notably, different H2 evolution rates were also observed even when MIL-125-NH2 was synthesized under identical synthetic conditions but by different students. Our research highlights the critical relationship between MOF synthesis parameters─such as reaction time, temperature, and precursor concentration─and resulting properties, including particle size, morphology, surface facets, and light absorption characteristics. These factors significantly influence their photocatalytic activity, as evidenced by varying H2 evolution rates. This underscores the importance of optimizing materials synthesis conditions to improve reproducibility and efficiency in photocatalytic applications.
Collapse
Affiliation(s)
- Emmanuel N Musa
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Ankit K Yadav
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Massakorn Srichareonkul
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Dissarin Thampetraruk
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Emily Frechette
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Heidi C Thiele
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kyriakos C Stylianou
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
5
|
Sompalli NK, Li Y, Li J, Kuppusamy S. An innovative triple interface reinforced photocatalytic system based on BiOCl/BaTiO 3@Co-BDC-MOF composite for the simultaneous detoxification of Cr(VI) and sulfamethoxazole. ENVIRONMENTAL RESEARCH 2024; 259:119532. [PMID: 38960360 DOI: 10.1016/j.envres.2024.119532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The development of effective photocatalysts for the reduction of Cr(VI) and the degradation of antibiotics remains a challenge. The present work reports the development of a novel heterojunction composite material, BiOCl/BaTiO3@Co-BDC-MOF (BOC/BTO@Co-MOF), based on solvothermal techniques. To characterize the surface and bulk features of the material, techniques such as FE-SEM, HR-TEM, BET/BJH, XPS, FT-IR, p-XRD, and UV-Vis-DRS were used. Based on the results, the BiOCl/BaTiO3 nanocomposites are uniformly dispersed on the rod-shaped Co-BDC MOF, resulting in a layered texture on the surface. A further advantage of the composite structure is the strong interfacial enhancement facilitating the separation of photoexcited electron-hole pairs. Also, compared to its pristine counterparts, the heterostructure material exhibited excellent surface area and pore properties. The photocatalytic efficiency towards reduction and degradation of Cr(VI)/SMX pollutants were evaluated by optimizing various analytical parameters, such as pH, catalytic loading concentrations, analyte concentration, and scavenger role. The specially designed BOC/BTO@Co-MOF composite achieved a 96.5% Cr(VI) reduction and 98.2% SMX degradation under 60.0-90.0 min of visible light illumination at pH 3.0. This material is highly reusable and has a six-time recycling potential. The findings of this study contribute to a better understanding of the efficient decontamination of inorganic and organic pollutants in water purification systems.
Collapse
Affiliation(s)
- Naveen Kumar Sompalli
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Jie Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Sathishkumar Kuppusamy
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
6
|
Musa EN, Yadav AK, Smith KT, Jung MS, Stickle WF, Eschbach P, Ji X, Stylianou KC. Boosting Photocatalytic Hydrogen Production by MOF-Derived Metal Oxide Heterojunctions with a 10.0 % Apparent Quantum Yield. Angew Chem Int Ed Engl 2024; 63:e202405681. [PMID: 38985847 DOI: 10.1002/anie.202405681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Photocatalytic hydrogen production offers an alternative pathway to establish a sustainable energy economy, utilizing the Earth's natural sunlight and water resources to address environmental concerns associated with fossil fuel combustion. While numerous photoactive materials exhibit high potential for generating hydrogen from water, the synergy achieved by combining two different materials with complementary properties in the form of heterojunctions can significantly enhance the rate of hydrogen production and quantum efficiency. Our study describes the design and generation of the metal-organic framework-derived (MOF) metal oxide heterojunction herein referred to as RTTA, composed of RuO2/N,S-TiO2. The RuO2/N,S-TiO2 is generated through the pyrolysis of MOFs, Ru-HKUST-1, and the amino-functionalized MIL-125-NH2 in the presence of thiourea. Among the various RTTA materials tested, RTTA-1, characterized by the lowest RuO2 content, exhibited the highest hydrogen evolution rate, producing 10,761 μmol ⋅ hr-1 ⋅ g-1 of hydrogen with an apparent quantum yield of 10.0 % in pure water containing glycerol. In addition to RTTA-1, we generated two other MOF-derived metal oxide heterojunctions, namely ZTTA-1 (ZnO/N,S-TiO2) and ITTA-1 (In2O3/N,S-TiO2). These heterojunctions were tested for their photocatalytic activity, leading to apparent quantum yields of 0.7 % and 0.3 %, respectively. The remarkable photocatalytic activity observed in RTTA-1 is thought to be attributed to the synergistic effects arising from the combination of metallic properties inherent in the metal oxides, complemented by the presence of suitable band alignment, porosity, and surface properties inherited from the parent MOFs. These properties enhance electron transfer and restrict hole movement. The photocatalytic efficiency of RTTA-1 was further demonstrated in actual water samples, producing hydrogen with a rate of 8,190 μmol ⋅ hr-1 ⋅ g-1 in tap water, and 6,390 μmol ⋅ hr-1 ⋅ g-1 in river water.
Collapse
Affiliation(s)
- Emmanuel N Musa
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Ankit K Yadav
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Kyle T Smith
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Min Soo Jung
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| | - William F Stickle
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR-97331-4003, USA
| | - Peter Eschbach
- Electron Microscopy Facility, Linus Pauling Science Center, Corvallis, Oregon, 97331, United States
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Kyriakos C Stylianou
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| |
Collapse
|
7
|
Le Huec T, López-Francés A, Abánades Lázaro I, Navalón S, Baldoví HG, Giménez-Marqués M. Heteroepitaxial MOF-on-MOF Photocatalyst for Solar-Driven Water Splitting. ACS NANO 2024; 18:20201-20212. [PMID: 39075870 PMCID: PMC11308772 DOI: 10.1021/acsnano.4c03442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Assembly of different metal-organic frameworks (MOFs) into hybrid MOF-on-MOF heterostructures has been established as a promising approach to develop synergistic performances for a variety of applications. Here, we explore the performance of a MOF-on-MOF heterostructure by epitaxial growth of MIL-88B(Fe) onto UiO-66(Zr)-NH2 nanoparticles. The face-selective design and appropriate energy band structure alignment of the selected MOF constituents have permitted its application as an active heterogeneous photocatalyst for solar-driven water splitting. The composite achieves apparent quantum yields for photocatalytic overall water splitting at 400 and 450 nm of about 0.9%, values that compare much favorably with previous analogous reports. Understanding of this high activity has been gained by spectroscopic and electrochemical characterization together with scanning transmission and transmission electron microscopy (STEM, TEM) measurements. This study exemplifies the possibility of developing a MOF-on-MOF heterostructure that operates under a Z-scheme mechanism and exhibits outstanding activity toward photocatalytic water splitting under solar light.
Collapse
Affiliation(s)
- Thibaut Le Huec
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, C/Catedrático José Beltrán Martínez,
2, 46980 Paterna, Valencia, Spain
| | - Antón López-Francés
- Departamento
de Química, Universitat Politècnica
de València, C/Camino
de Vera, s/n, 46022 Valencia, Spain
| | - Isabel Abánades Lázaro
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, C/Catedrático José Beltrán Martínez,
2, 46980 Paterna, Valencia, Spain
| | - Sergio Navalón
- Departamento
de Química, Universitat Politècnica
de València, C/Camino
de Vera, s/n, 46022 Valencia, Spain
| | - Herme G. Baldoví
- Departamento
de Química, Universitat Politècnica
de València, C/Camino
de Vera, s/n, 46022 Valencia, Spain
| | - Mónica Giménez-Marqués
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, C/Catedrático José Beltrán Martínez,
2, 46980 Paterna, Valencia, Spain
| |
Collapse
|
8
|
Zhao C, Tang X, Chen X, Jiang Z. Multifaceted Carbonized Metal-Organic Frameworks Synergize with Immune Checkpoint Inhibitors for Precision and Augmented Cuproptosis Cancer Therapy. ACS NANO 2024; 18:17852-17868. [PMID: 38939981 DOI: 10.1021/acsnano.4c04022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The discovery of cuproptosis, a copper-dependent mechanism of programmed cell death, has provided a way for cancer treatment. However, cuproptosis has inherent limitations, including potential cellular harm, the lack of targeting, and insufficient efficacy as a standalone treatment. Therefore, exogenously controlled combination treatments have emerged as key strategies for cuproptosis-based oncotherapy. In this study, a Cu2-xSe@cMOF nanoplatform was constructed for combined sonodynamic/cuproptosis/gas therapy. This platform enabled precise cancer cotreatment, with external control allowing the selective induction of cuproptosis in cancer cells. This approach effectively prevented cancer metastasis and recurrence. Furthermore, Cu2-xSe@cMOF was combined with the antiprogrammed cell death protein ligand-1 antibody (aPD-L1), and this combination maximized the advantages of cuproptosis and immune checkpoint therapy. Additionally, under ultrasound irradiation, the H2Se gas generated from Cu2-xSe@cMOF induced cytotoxicity in cancer cells. Further, it generated reactive oxygen species, which hindered cell survival and proliferation. This study reports an externally controlled system for cuproptosis induction that combines a carbonized metal-organic framework with aPD-L1 to enhance cancer treatment. This precision and reinforced cuproptosis cancer therapy platform could be valuable as an effective therapeutic agent to reduce cancer mortality and morbidity in the future.
Collapse
Affiliation(s)
- Chen Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Zhenqi Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
9
|
Zango ZU, Khoo KS, Garba A, Garba ZN, Danmallam UN, Aldaghri O, Ibnaouf KH, Ahmad NM, Binzowaimil AM, Lim JW, Bhattu M, Ramesh MD. A review on titanium oxide nanoparticles modified metal-organic frameworks for effective CO 2 conversion and efficient wastewater remediation. ENVIRONMENTAL RESEARCH 2024; 252:119024. [PMID: 38692419 DOI: 10.1016/j.envres.2024.119024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Environmental pollution has been increasing since last decade due to increasing industrialisation and urbanisation. Various kinds ofenvironmental pollutants including carbon dioxide (CO2), dyes, pharmaceuticals, phenols, heavy metals along with many organic and inorganic species have been discovered in the various environmental compartments which possess harmful impacts tox human health, wildlife, and ecosystems. Thus, various efforts have been made through regulations, technological advancements, and public awareness campaigns to reduce the impact of the pollution. However, finding suitable alternatives to mitigate their impacts remained a challenge. Metal-organic frameworks (MOFs) are one of the advanced materials with unique features such as high porosity and stability which exhibit versatile applications in environmental remediation. Their composites with titanium oxide nanoparticles (TiO2) have been discovered to offer potential feature such as light harvesting capacity and catalytic activity. The composite integration and properties have been confirmed through characterization using surface area analysis, scanning electron/transmission electron microscopy, atomic force microscopy, fourier transformed infrared spectroscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, and others. Thus, this work rigorously discussed potential applications of the MOF@TiO2 nanomaterials for the CO2 capture and effective utilization in methanol, ethanol, acetone, acetaldehyde, and other useful products that served as fuel to various industrial processes. Additionally, the work highlights the effective performance of the materials towards photocatalytic degradation of both organic and inorganic pollutants with indepth mechanistic insights. The article will offer significant contribution for the development of sustainable and efficient technologies for the environmental monitoring and pollution mitigation.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, Katsina City 2137, Katsina, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Abdurrahman Garba
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City 2137, Katsina, Nigeria
| | - Zaharaddeen N Garba
- Department of Chemistry, Ahmadu Bello University, 810107, Zaria. Nigeria, India
| | | | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Riyadh, Saudi Arabia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Riyadh, Saudi Arabia.
| | - Nasir M Ahmad
- School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia; Laser and Optoelectronics Engineering Department, Dijlah University College, Baghdad, Iraq
| | - Ayed M Binzowaimil
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Riyadh, Saudi Arabia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Mohali-140413, Punjab, India
| | - M D Ramesh
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica-1000000, Chile
| |
Collapse
|
10
|
Zhao R, Lu W, Chai X, Dong C, Shuang S, Guo Y. Design of a dual-mode ratiometric fluorescent probe via MOF-on-MOF strategy for Al (III) and pH detection. Anal Chim Acta 2024; 1298:342403. [PMID: 38462341 DOI: 10.1016/j.aca.2024.342403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The construction of ratiometric fluorescent MOF sensors with integrated self-calibration and dual-channel detection can efficiently overcome the deficiencies of single-signal sensing. In this regard, the rational design of structurally functionalized MOFs is paramount for enhancing their performance in ratiometric fluorescent sensors. Lately, the concept of MOF-on-MOF design has garnered notable interest as a potential strategy for regulating the structural parameters of MOFs by integrating two or more distinct MOF types. Great efforts have been dedicated to exploring new MOF-on-MOF hybrids and developing their applications in diverse fields. Even so, these materials are still in the stage of advancement in the sensing field. RESULTS Herein, a Zr-based metal-organic framework anchored on a rare-earth metal-organic framework (UiO-66(OH)2@Y-TCPP) was prepared for the ratiometric fluorescence detection toward Al (III) and pH. In this probe, the UiO-66(OH)2 featured hydroxyl active sites for Al (III), leading to a significant enhancement in fluorescence intensity upon the addition of Al (III), while the signal emitted by the red-emitting Y-TCPP, serving as the reference, remained constant. UiO-66(OH)2@Y-TCPP exhibited excellent selectivity for Al (III) sensing with a wider linear range of 0.1-1000 μM, and a lower detection limit of 0.06 μM. This probe has also been utilized for the quantitative determination of Al (III) in hydrotalcite chewable tablets with satisfactory results. In addition, the probe realized ratiometric pH sensing in the range of 7-13 using UiO-66(OH)2 as an interior reference. The paper-based probe strip was developed for visual pH sensing. By installing color recognition and processing software on a smartphone, real-time and convenient pH sensing could be achieved. SIGNIFICANCE This is the first ratiometric fluorescent sensor for Al (III) and pH detection based on a MOF-on-MOF composite probe, which yields two different response modes. The detection results of Al (III) in hydrotalcite chewable tables and smartphone imaging for pH test paper demonstrate the practicability of the probe. This work opens up a new outlook on constructing a multi-functional application platform with substantial potential for employment in environmental and biological analysis tasks.
Collapse
Affiliation(s)
- Ruirui Zhao
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Wenjing Lu
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaojing Chai
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| | - Yujing Guo
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
11
|
Liu Y, Huang S, Huang X, Ma D. Enhanced photocatalysis of metal/covalent organic frameworks by plasmonic nanoparticles and homo/hetero-junctions. MATERIALS HORIZONS 2024; 11:1611-1637. [PMID: 38294286 DOI: 10.1039/d3mh01645e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have garnered attention in photocatalysis due to their unique features including extensive surface area, adjustable pores, and the ability to incorporate various functional groups. However, challenges such as limited visible light absorption and rapid electron-hole recombination often hinder their photocatalytic efficiency. Recent developments have introduced plasmonic nanoparticles (NPs) and junctions to enhance the photocatalytic performance of MOFs/COFs. This paper provides a comprehensive review of recent advancements in MOF/COF-based photocatalysts improved by integration of plasmonic NPs and junctions. We begin by examining the utilization of plasmonic NPs, known for absorbing longer-wavelength light compared to typical MOFs/COFs. These NPs exhibit localized surface plasmon resonance (LSPR) when excited, effectively enhancing the photocatalytic performance of MOFs/COFs. Moreover, we discuss the role of homo/hetero-junctions in facilitating charge separation, further boosting the photocatalytic performance of MOFs/COFs. The mechanisms behind the improved photocatalytic performance of these composites are discussed, along with an assessment of challenges and opportunities in the field, guiding future research directions.
Collapse
Affiliation(s)
- Yannan Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
- Énergie Matériauxet Télécommunications, Institut National de la Recherche Scientifque (INRS), 1650 Bd Lionel-Boulet, Varennes, QC J3X 1P7, Canada.
| | - Shengyun Huang
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou 341000, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Xing Huang
- Department of Synthetic Materials and Functional Devices, Max-Planck Institute of Microstructure Physics, 06120, Halle, Germany
| | - Dongling Ma
- Énergie Matériauxet Télécommunications, Institut National de la Recherche Scientifque (INRS), 1650 Bd Lionel-Boulet, Varennes, QC J3X 1P7, Canada.
| |
Collapse
|
12
|
Dhakshinamoorthy A, Li Z, Yang S, Garcia H. Metal-organic framework heterojunctions for photocatalysis. Chem Soc Rev 2024; 53:3002-3035. [PMID: 38353930 DOI: 10.1039/d3cs00205e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Heterojunctions combining two photocatalysts of staggered conduction and valence band energy levels can increase the photocatalytic efficiency compared to their individual components. This activity enhancement is due to the minimization of undesirable charge recombination by the occurrence of carrier migration through the heterojunction interface with separated electrons and holes on the reducing and oxidizing junction component, respectively. Metal-organic frameworks (MOFs) are currently among the most researched photocatalysts due to their tunable light absorption, facile charge separation, large surface area and porosity. The present review summarizes the current state-of-the-art in MOF-based heterojunctions, providing critical comments on the construction of these heterostructures. Besides including examples showing the better performance of MOF heterojunctions for three important photocatalytic processes, such as hydrogen evolution reaction, CO2 photoreduction and dye decolorization, the focus of this review is on describing synthetic procedures to form heterojunctions with MOFs and on discussing the experimental techniques that provide evidence for the operation of charge migration between the MOF and the other component. Special attention has been paid to the design of rational MOF heterojunctions with small particle size and controlled morphology for an appropriate interfacial contact. The final section summarizes the achievements of the field and provides our views on future developments.
Collapse
Affiliation(s)
- Amarajothi Dhakshinamoorthy
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
- School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Zhaohui Li
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Sihai Yang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Hermenegildo Garcia
- Departamento de Química/Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Avda. de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
13
|
Wang CY, Chang HE, Wang CY, Kurioka T, Chen CY, Mark Chang TF, Sone M, Hsu YJ. Manipulation of interfacial charge dynamics for metal-organic frameworks toward advanced photocatalytic applications. NANOSCALE ADVANCES 2024; 6:1039-1058. [PMID: 38356624 PMCID: PMC10866133 DOI: 10.1039/d3na00837a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/15/2023] [Indexed: 02/16/2024]
Abstract
Compared to other known materials, metal-organic frameworks (MOFs) have the highest surface area and the lowest densities; as a result, MOFs are advantageous in numerous technological applications, especially in the area of photocatalysis. Photocatalysis shows tantalizing potential to fulfill global energy demands, reduce greenhouse effects, and resolve environmental contamination problems. To exploit highly active photocatalysts, it is important to determine the fate of photoexcited charge carriers and identify the most decisive charge transfer pathway. Methods to modulate charge dynamics and manipulate carrier behaviors may pave a new avenue for the intelligent design of MOF-based photocatalysts for widespread applications. By summarizing the recent developments in the modulation of interfacial charge dynamics for MOF-based photocatalysts, this minireview can deliver inspiring insights to help researchers harness the merits of MOFs and create versatile photocatalytic systems.
Collapse
Affiliation(s)
- Chien-Yi Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Huai-En Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Cheng-Yu Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Tomoyuki Kurioka
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Chun-Yi Chen
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Tso-Fu Mark Chang
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Masato Sone
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- International Research Frontiers Initiative, Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| |
Collapse
|
14
|
Peng Y, Lin J, Niu JL, Guo X, Chen Y, Hu T, Cheng J, Hu Y. Synergistic Effect of Ion Doping and Type-II Heterojunction Construction and Ciprofloxacin Degradation by MIL-68(In,Bi)-NH 2@BiOBr under Visible Light. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2351-2364. [PMID: 38175742 DOI: 10.1021/acsami.3c16037] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Heterojunction structure and ion doping techniques are viable tactics in facilitating the generation and separation of photogenerated electrons and holes in photocatalysis. In the current study, a novel Bi ion-doped MIL-68(In,Bi)-NH2@BiOBr (MIBN@BOB) type-II heterojunction was first synthesized in a one-step solvothermal reaction. Doping of Bi ions not only broadened the light-sensing range but also provided reliable anchor sites for the in situ growth of BiOBr. Meanwhile, the heterostructure supplied new channels for photogenerated carriers, accelerating the transfer and inhibiting the recombination of photogenerated electron-hole. The obtained MIBN@BOB exhibited enhanced photocatalytic performance (91.1%) than MIL-68(In)-NH2 (40.8%) and BiOBr (57.5%) in ciprofloxacin (CIP) degradation under visible light, with excellent reusability. Photocatalysts were characterized in detail, and a series of photoelectrochemical tests were utilized to analyze the photoelectric properties. MIBN@BOB were deduced to conform the electron conduction mechanism of conventional type-II heterojunctions. More importantly, based on the above experiments and density functional theory (DFT) calculation, BiOBr-Bi in MIBN@BOB can serve as the major active sites of CIP enrichment, and •O2- and 1O2 generated at the BiOBr interface can react with the adsorbed CIP directly. Lastly, the possible degradation products and pathways of CIP were analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS). This study provides a reference for the construction of ion-doping-modified metal-organic framework (MOF)-based heterojunction photocatalysts and their application in antibiotic removal.
Collapse
Affiliation(s)
- Yongjun Peng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jialiang Lin
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ji-Liang Niu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaolan Guo
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yazhen Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tongke Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Cheng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- South China Institute of Collaborative Innovation, Dongguan 523808, China
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
15
|
Wang L, Zhang K, Qian J, Qiu M, Li N, Du H, Hu X, Fu Y, Tan M, Hao D, Wang Q. S-scheme MOF-on-MOF heterojunctions for enhanced photo-Fenton Cr(VI) reduction and antibacterial effects. CHEMOSPHERE 2023; 344:140277. [PMID: 37769912 DOI: 10.1016/j.chemosphere.2023.140277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/03/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
The photocatalytic efficiency is commonly restrained by inferior charge separation rate. Herein, the S-scheme MIL-100(Fe)/NH2-MIL-125(Ti) (MN) photo-Fenton catalyst with the built-in electric field (BEF) was successfully constructed by a simple ball-milling technique. As a result, the MN-3 (the mass ratio of MIL-100(Fe) to NH2-MIL-125(Ti) was 3) composite presented the best visible-light-induced photocatalytic ability, in contrast to pure MIL-100(Fe) and NH2-MIL-125(Ti). The reduction efficiency of Cr(VI) almost reached 100% within 35 min of illumination. Moreover, the MN-3 heterojunction also exhibited the highest antibacterial activity, and about 100% E. coli and more than 90% S. aureus were killed within 60 min of illumination. In photo-Fenton system, In the photo-Fenton system, e-, O2•- and Fe2+ played vital roles for Cr(VI) reduction, and •OH, h+ and O2•- and 1O2 were responsible for sterilization. Additionally, 5 cyclic tests and relevant characterizations confirmed the excellent repeatability and stability of the composite. Also, the S-scheme charge transfer process was put forward. This work offers a novel idea for establishing the MOF-on-MOF photo-Fenton catalyst for high-efficiency environmental mitigation.
Collapse
Affiliation(s)
- Longyang Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Kejie Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jianying Qian
- CCTEG Hangzhou Research Institute Co., Ltd., Hangzhou, Zhejiang, 310018, China
| | - Mengyi Qiu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Ningyi Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Xiao Hu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yangjie Fu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Meng Tan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Derek Hao
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
16
|
Khan MS, Li Y, Li DS, Qiu J, Xu X, Yang HY. A review of metal-organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants. NANOSCALE ADVANCES 2023; 5:6318-6348. [PMID: 38045530 PMCID: PMC10690739 DOI: 10.1039/d3na00627a] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/30/2023] [Indexed: 12/05/2023]
Abstract
Water plays a vital role in all aspects of life. Recently, water pollution has increased exponentially due to various organic and inorganic pollutants. Organic pollutants are hard to degrade; therefore, cost-effective and sustainable approaches are needed to degrade these pollutants. Organic dyes are the major source of organic pollutants from coloring industries. The photoactive metal-organic frameworks (MOFs) offer an ultimate strategy for constructing photocatalysts to degrade pollutants present in wastewater. Therefore, tuning the metal ions/clusters and organic ligands for the better photocatalytic activity of MOFs is a tremendous approach for wastewater treatment. This review comprehensively reports various MOFs and their composites, especially POM-based MOF composites, for the enhanced photocatalytic degradation of organic pollutants in the aqueous phase. A brief discussion on various theoretical aspects such as density functional theory (DFT) and machine learning (ML) related to MOF and MOF composite-based photocatalysts has been presented. Thus, this article may eventually pave the way for applying different structural features to modulate novel porous materials for enhanced photodegradation properties toward organic pollutants.
Collapse
Affiliation(s)
- M Shahnawaz Khan
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Yixiang Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University Yichang 443002 P. R. China
| | - Jianbei Qiu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology Kunming Yunnan 650093 China
| | - Xuhui Xu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology Kunming Yunnan 650093 China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| |
Collapse
|
17
|
Shanmugam M, Agamendran N, Sekar K, Natarajan TS. Metal-organic frameworks (MOFs) for energy production and gaseous fuel and electrochemical energy storage applications. Phys Chem Chem Phys 2023; 25:30116-30144. [PMID: 37909363 DOI: 10.1039/d3cp04297a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The increasing energy demands in society and industrial sectors have inspired the search for alternative energy sources that are renewable and sustainable, also driving the development of clean energy storage and delivery systems. Various solid-state materials (e.g., oxides, sulphides, polymer and conductive nanomaterials, activated carbon and their composites) have been developed for energy production (water splitting-H2 production), gaseous fuel (H2 and CH4) storage and electrochemical energy storage (batteries and supercapacitors) applications. Nevertheless, the low surface area, pore volume and conductivity, and poor physical and chemical stability of the reported materials have resulted in higher requirements and challenges in the development of energy production and energy storage technologies. Thus, to overcome these issues, the development of metal-organic frameworks (MOFs) has attracted significant attention. MOFs are a class of porous materials with extremely high porosity and surface area, structural diversity, multifunctionality, and chemical and structural stability, and thus they can be used in a wide range of applications. In the present review, we precisely discuss the interesting properties of MOFs and the various methodologies for their synthesis, and also the future dependence on the valorization of solid waste for the recovery of metals and organic ligands for the synthesis of new classes of MOFs. Subsequently, the utilization of these interesting characteristics for energy production (water splitting), storage of gaseous fuels (H2 and CH4), and electrochemical storage (batteries and supercapacitors) applications are described. However, although MOFs are efficient materials with versatile uses, they still have many challenges, limiting their practical applications. Therefore, finally, we highlight the challenges associated with MOFs and show the way forward in overcoming them for the development of these highly porous materials with large-scale practical utility.
Collapse
Affiliation(s)
- Mariyappan Shanmugam
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| | - Nithish Agamendran
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| | - Karthikeyan Sekar
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Thillai Sivakumar Natarajan
- Environmental Science Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Chennai, Tamil Nadu 600 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
18
|
Lin LY, Liu C, Dien Dang V, Fu HT. Atomically dispersed Ti-O clusters anchored on NH 2-UiO-66(Zr) as efficient and deactivation-resistant photocatalyst for abatement of gaseous toluene under visible light. J Colloid Interface Sci 2023; 635:323-335. [PMID: 36599234 DOI: 10.1016/j.jcis.2022.12.147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
Photocatalytic oxidation (PCO) of volatile organic compounds (VOCs) over MOF-based photocatalysts is considerably impeded by the weak activation of reactant molecules on the catalyst surface and low charge carrier mobility. In this study, we demonstrate that atomically dispersed Ti species anchored on NH2-UiO-66(Zr) (AUiO-66(Zr/Ti)) exhibit high visible-light-responsive photocatalytic activity toward toluene vapor with an 83 % removal efficiency and 89 % CO2 selectivity. These results are markedly superior to those reported in the literature. More importantly, AUiO-66(Zr/Ti) exhibited excellent catalytic stability during a prolonged reaction, while its pristine AUiO-66(Zr) counterpart underwent rapid catalytic deactivation after a few hours. The optimized sample, AUiO-66(Zr/Ti)-4h, provided extended visible light absorption and enhanced charge carrier mobility due to ligand-to-linker metal charge transfer. Meanwhile, the defect-rich surface of AUiO-66(Zr/Ti)-4h facilitated the activation of H2O/toluene molecules into the critical intermediates of hydroxyl, benzoic acid, and maleic anhydride, which were effectively converted under visible light illumination. On the basis of the combined results of the PCO of toluene and material characterization, the structure - activity relationship and the related catalytic mechanism are discussed comprehensively.
Collapse
Affiliation(s)
- Liang-Yi Lin
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| | - Chieh Liu
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Van Dien Dang
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Ho Chi Minh 700000, Viet Nam
| | - Hsuan-Ting Fu
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
19
|
Shao LH, Huang AX, Yan XC, Liu YH, Wang Y, Jin X, Zhang FM. Constructing tightly integrated conductive metal-organic framework/covalent triazine framework heterostructure by coordination bonds for photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 633:233-242. [PMID: 36446216 DOI: 10.1016/j.jcis.2022.11.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
The construction of tightly integrated heterostructures with metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) has been confirmed to be an effective way for improved hydrogen evolution. However, the reported tightly integrated MOF/COF hybrids were usually limited to the covalent connection of COFs with aldehyde groups and NH2-MOF via Schiff base reaction, restricting the development of MOF/COF hybrids. Herein, a covalent triazine framework (CTF-1), a subtype of crystalline COFs, was integrated with a conductive two-dimensional (2D) MOF (Ni-CAT-1) by a novel coordinating connection mode for significantly enhanced visible-light-driven hydrogen evolution. The terminal amidine groups in the CTF-1 layers offer dual N sites for the coordination of metal ions, which provides the potential of coordinating connection between CTF-1 and Ni-CAT-1. The conductive 2D Ni-CAT-1 in Ni-CAT-1/CTF-1 hybrids effectively facilitates the separation of photogenerated carriers of CTF-1 component, and the resultant hybrid materials show significantly enhanced photocatalytic hydrogen evolution activity. In particular, the Ni-CAT-1/CTF-1 (1:19) sample exhibits the maximum hydrogen evolution rate of 8.03 mmol g-1h-1, which is about four times higher than that of the parent CTF-1 (1.96 mmol g-1h-1). The enhanced photocatalytic activity of Ni-CAT-1/CTF-1 is mainly attributed to the incorporation of conductive MOF which leads to the formation of a Z-Scheme heterostructure, promoting the electron transfer in hybrid materials. The coordinating combination mode of Ni-CAT-1 and CTF-1 in this work provides a novel strategy for constructing tightly integrated MOF/COF hybrid materials.
Collapse
Affiliation(s)
- Lu-Hua Shao
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No.4, Linyuan Road, Harbin 150040, PR China
| | - Ao-Xiang Huang
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No.4, Linyuan Road, Harbin 150040, PR China
| | - Xiao-Chun Yan
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No.4, Linyuan Road, Harbin 150040, PR China
| | - Yu-Han Liu
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No.4, Linyuan Road, Harbin 150040, PR China
| | - Ya Wang
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No.4, Linyuan Road, Harbin 150040, PR China
| | - Xin Jin
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No.4, Linyuan Road, Harbin 150040, PR China
| | - Feng-Ming Zhang
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No.4, Linyuan Road, Harbin 150040, PR China.
| |
Collapse
|
20
|
Lin M, Jiang W, Zhang T, Yang B, Zhuang Z, Yu Y. Ordered Co
III
‐MOF@Co
II
‐MOF Heterojunction for Highly Efficient Photocatalytic Syngas Production. SMALL SCIENCE 2023. [DOI: 10.1002/smsc.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Affiliation(s)
- Mingxiong Lin
- College of Materials Science and Engineering Fuzhou University New Campus Minhou Fujian 350108 China
- Key Laboratory of Advanced Materials Technologies Fuzhou University Fuzhou 350108 China
| | - Weishan Jiang
- College of Materials Science and Engineering Fuzhou University New Campus Minhou Fujian 350108 China
- Key Laboratory of Advanced Materials Technologies Fuzhou University Fuzhou 350108 China
| | - Tingshi Zhang
- College of Materials Science and Engineering Fuzhou University New Campus Minhou Fujian 350108 China
- Key Laboratory of Advanced Materials Technologies Fuzhou University Fuzhou 350108 China
| | - Bixia Yang
- College of Materials Science and Engineering Fuzhou University New Campus Minhou Fujian 350108 China
- Key Laboratory of Advanced Materials Technologies Fuzhou University Fuzhou 350108 China
| | - Zanyong Zhuang
- College of Materials Science and Engineering Fuzhou University New Campus Minhou Fujian 350108 China
- Key Laboratory of Advanced Materials Technologies Fuzhou University Fuzhou 350108 China
| | - Yan Yu
- College of Materials Science and Engineering Fuzhou University New Campus Minhou Fujian 350108 China
- Key Laboratory of Advanced Materials Technologies Fuzhou University Fuzhou 350108 China
| |
Collapse
|
21
|
Zhao Z, Liu M, Zhou K, Guo L, Shen Y, Lu D, Hong X, Bao Z, Yang Q, Ren Q, Schreiner PR, Zhang Z. Visible-Light-Induced Phenoxyl Radical-based Metal-Organic Framework for Selective Photooxidation of Sulfides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6982-6989. [PMID: 36715584 DOI: 10.1021/acsami.2c21304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phenoxyl radicals originating from phenols through oxidation or photoinduction are relatively stable and exhibit mild oxidative activity, which endows them with the potential for photocatalysis. Herein, a stable and recyclable metal-organic framework Zr-MOF-OH constructed of a binaphthol derivative ligand has been synthesized and functions as an efficient heterogeneous photocatalyst. Zr-MOF-OH shows fairly good catalytic activity and substrate compatibility toward the selective oxidation of sulfides to sulfoxides under visible light irradiation. Such irradiation of Zr-MOF-OH converts the phenolic hydroxyl groups of the binaphthol derivative ligand to phenoxyl radicals through excited state intramolecular proton transfer, and the excited state photocatalyst triggers the single-electron oxidation of the sulfide. No reactive oxygen species are produced in the photocatalytic process, and triplet O2 directly participates in the reaction, endowing Zr-MOF-OH with wide substrate compatibility and high selectivity, which also proposes a promising pathway for the direct activation of substrates via phenoxyl radicals.
Collapse
Affiliation(s)
- Zhenghua Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Kai Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Lidong Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Yajing Shen
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Dan Lu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| |
Collapse
|
22
|
Construction of BiOCl/Ti-MOFs type-II heterojunction photocatalyst for enhanced photocatalytic performance for multiple antibiotics removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42140-42151. [PMID: 36645593 DOI: 10.1007/s11356-022-24987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023]
Abstract
The increased threats to environmental and human health caused by the widespread use of antibiotics have increased the need for efficient technologies for removing antibiotic remnants from wastewater after production. Photocatalysis, which is non-toxic, highly efficient, and low energy consumption, has played a vital role in wastewater treatment among the aforementioned technologies. Therefore, a MIL-125(Ti)/BiOCl type-II heterojunction photocatalyst was fabricated using solvothermal method. Investigations remarkably revealed that the enhanced photocatalytic performance of the photocatalyst for multiple antibiotics degradation (tetracycline and ofloxacin) was attributed to the construction of a heterojunction, which inhibits carrier recombination and enhances visible-light absorption. Furthermore, the radical trapping experiments and electron spin resonance determined superoxide radicals and holes to be the main species in the photocatalytic process. Finally, we presented a potential photocatalytic mechanism that could account for the observations. Overall, this study offered guidelines for developing more photocatalysts with visible-light responses and removing multiple antibiotics from water more efficiently.
Collapse
|
23
|
Xiao JD, Li R, Jiang HL. Metal-Organic Framework-Based Photocatalysis for Solar Fuel Production. SMALL METHODS 2023; 7:e2201258. [PMID: 36456462 DOI: 10.1002/smtd.202201258] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) represent a novel class of crystalline inorganic-organic hybrid materials with tunable semiconducting behavior. MOFs have potential for application in photocatalysis to produce sustainable solar fuels, owing to their unique structural advantages (such as clarity and modifiability) that can facilitate a deeper understanding of the structure-activity relationship in photocatalysis. This review takes the photocatalytic active sites as a particular perspective, summarizing the progress of MOF-based photocatalysis for solar fuel production; mainly including three categories of solar-chemical conversions, photocatalytic water splitting to hydrogen fuel, photocatalytic carbon dioxide reduction to hydrocarbon fuels, and photocatalytic nitrogen fixation to high-energy fuel carriers such as ammonia. This review focuses on the types of active sites in MOF-based photocatalysts and discusses their enhanced activity based on the well-defined structure of MOFs, offering deep insights into MOF-based photocatalysis.
Collapse
Affiliation(s)
- Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Rui Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
24
|
Hang T, Meng X, Wu Y, Zhu XD, Li C. Ion-Exchange Reaction-Mediated Hierarchical Dual Z-Scheme Heterojunction for Split-Type Photoelectrochemical Immunoassays. Anal Chem 2022; 94:17295-17302. [PMID: 36451079 DOI: 10.1021/acs.analchem.2c04302] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Photoelectrochemical (PEC) immunoassays with ultrasensitive detection abilities are highly desirable for in vitro PEC diagnosis and biological detection. In this paper, dual Z-scheme PEC immunoassays with hierarchical nanostructures (TiO2@NH2-MIL-125@CdS) are synthesized through epitaxial growth of MOF-on-MOF and further in situ derivatization. The dual Z-scheme configuration not only extends the light absorption range but also increases the redox ability due to the interface structure nanoengineering, which synergistically suppresses bulk carrier recombination and promotes the charge transfer efficiency at the electron level. Furthermore, a smart MOF-derived labeling probe (CuO@ZnO nanocube) is designed to develop a split-type PEC biosensor by using prostate-specific antigen (PSA) as a target biomarker. In the presence of PSA, the Ab2-labeled CuO@ZnO would specifically bond to the dual Z-scheme electrode. Then, the MOF-derived CuO@ZnO is dissolved by hydrochloric acid to release Cu2+, which could replace Cd2+ via an ion-exchange reaction, thus leading to the decrease of the photocurrent due to the destruction of the dual Z-scheme configuration. In typical applications, the split-type PEC immunoassay exhibits an excellent detection performance for PSA with a LOD as low as 0.025 pg·mL-1.
Collapse
Affiliation(s)
- Tianxiang Hang
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China
| | - Xingxing Meng
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China
| | - Yueyue Wu
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China
| | - Xian-Dong Zhu
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China
| | - Chuanping Li
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu241000, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun130022, P. R. China
| |
Collapse
|
25
|
Navalón S, Dhakshinamoorthy A, Álvaro M, Ferrer B, García H. Metal-Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chem Rev 2022; 123:445-490. [PMID: 36503233 PMCID: PMC9837824 DOI: 10.1021/acs.chemrev.2c00460] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) have been frequently used as photocatalysts for the hydrogen evolution reaction (HER) using sacrificial agents with UV-vis or visible light irradiation. The aim of the present review is to summarize the use of MOFs as solar-driven photocatalysts targeting to overcome the current efficiency limitations in overall water splitting (OWS). Initially, the fundamentals of the photocatalytic OWS under solar irradiation are presented. Then, the different strategies that can be implemented on MOFs to adapt them for solar photocatalysis for OWS are discussed in detail. Later, the most active MOFs reported until now for the solar-driven HER and/or oxygen evolution reaction (OER) are critically commented. These studies are taken as precedents for the discussion of the existing studies on the use of MOFs as photocatalysts for the OWS under visible or sunlight irradiation. The requirements to be met to use MOFs at large scale for the solar-driven OWS are also discussed. The last section of this review provides a summary of the current state of the field and comments on future prospects that could bring MOFs closer to commercial application.
Collapse
Affiliation(s)
- Sergio Navalón
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,S.N.: email,
| | - Amarajothi Dhakshinamoorthy
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,School
of Chemistry, Madurai Kamaraj University, Palkalai Nagar, Madurai625021, Tamil
NaduIndia,A.D.: email,
| | - Mercedes Álvaro
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain
| | - Belén Ferrer
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain
| | - Hermenegildo García
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,Instituto
Universitario de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Avenida de los Naranjos, Valencia46022, Spain,H.G.:
email,
| |
Collapse
|
26
|
Chen J, Abazari R, Adegoke KA, Maxakato NW, Bello OS, Tahir M, Tasleem S, Sanati S, Kirillov AM, Zhou Y. Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214664] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Baum Z, Diaz LL, Konovalova T, Zhou QA. Materials Research Directions Toward a Green Hydrogen Economy: A Review. ACS OMEGA 2022; 7:32908-32935. [PMID: 36157740 PMCID: PMC9494439 DOI: 10.1021/acsomega.2c03996] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 05/06/2023]
Abstract
A constellation of technologies has been researched with an eye toward enabling a hydrogen economy. Within the research fields of hydrogen production, storage, and utilization in fuel cells, various classes of materials have been developed that target higher efficiencies and utility. This Review examines recent progress in these research fields from the years 2011-2021, exploring the most commonly occurring concepts and the materials directions important to each field. Particular attention has been given to catalyst materials that enable the green production of hydrogen from water, chemical and physical storage systems, and materials used in technical capacities within fuel cells. The quantification of publication and materials trends provides a picture of the current state of development within each node of the hydrogen economy.
Collapse
|
28
|
Deng Y, Wang Y, Xiao X, Saucedo BJ, Zhu Z, Xie M, Xu X, Yao K, Zhai Y, Zhang Z, Chen J. Progress in Hybridization of Covalent Organic Frameworks and Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202928. [PMID: 35986438 DOI: 10.1002/smll.202202928] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) hybrid materials are a class of porous crystalline materials that integrate MOFs and COFs with hierarchical pore structures. As an emerging porous frame material platform, MOF/COF hybrid materials have attracted tremendous attention, and the field is advancing rapidly and extending into more diverse fields. Extensive studies have shown that a broad variety of MOF/COF hybrid materials with different structures and specific properties can be synthesized from diverse building blocks via different chemical reactions, driving the rapid growth of the field. The allowed complementary utilization of π-conjugated skeletons and nanopores for functional exploration has endowed these hybrid materials with great potential in challenging energy and environmental issues. It is necessary to prepare a "family tree" to accurately trace the developments in the study of MOF/COF hybrid materials. This review comprehensively summarizes the latest achievements and advancements in the design and synthesis of MOF/COF hybrid materials, including COFs covalently bonded to the surface functional groups of MOFs (MOF@COF), MOFs grown on the surface of COFs (COF@MOF), bridge reaction between COF and MOF (MOF+COF), and their various applications in catalysis, energy storage, pollutant adsorption, gas separation, chemical sensing, and biomedicine. It concludes with remarks concerning the trend from the structural design to functional exploration and potential applications of MOF/COF hybrid materials.
Collapse
Affiliation(s)
- Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yue Wang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Brett Jacob Saucedo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhijun Zhu
- Institute of Molecular Metrics, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Mingsen Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xinru Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Kun Yao
- Shenzhen Zhongxing New Material Technology Company Ltd., Shenzhen, 518000, P. R. China
| | - Yanling Zhai
- Institute of Molecular Metrics, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
29
|
Siddig LA, Alzard RH, Nguyen HL, Alzamly A. Cyclic carbonate formation from cycloaddition of CO2 to epoxides over bismuth subgallate photocatalyst. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Li X, Li Q, Zhang T, Lou Y, Chen J. Ni 2P NPs loaded on methylthio-functionalized UiO-66 for boosting visible-light-driven photocatalytic H 2 production. Dalton Trans 2022; 51:12282-12289. [PMID: 35899810 DOI: 10.1039/d2dt01205g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The UiO-66 family shows promising photocatalytic prospects in water splitting for hydrogen evolution under visible light irradiation due to its suitable band gap and adequate active sites. In this work, novel Ni2P/UiO-66-(SCH3)2 composites were prepared by a simple solvothermal method. These as-synthesized samples were fully characterized by XRD, SEM, TEM, HRTEM, EDS, and XPS methods. The effectiveness of visible light driven photocatalytic water-splitting to produce hydrogen was investigated in the presence of sacrificial agents. The results showed that the optimal hydrogen yield of 5 wt% Ni2P/UiO-66-(SCH3)2 is 3724.22 μmol g-1 h-1, reaching almost 187 times that of pristine UiO-66-(SCH3)2 (19.93 μmol g-1 h-1). Meanwhile, long term cycling stability tests also showed that Ni2P/UiO-66-(SCH3)2 composites present an excellent photocatalytic H2 production stability. Photoelectrochemical performance analysis revealed that the high catalytic activity of the composite materials could be associated with the synergistic effect of UiO-66-(SCH3)2 and Ni2P. Light stimulates UiO-66-(SCH3)2 to generate electrons and holes, and Ni2P as a cocatalyst could effectively transmit electrons and boost photogenerated charge separation. This work provides a reference for exploring UiO-66 family catalysts with good catalytic activity.
Collapse
Affiliation(s)
- Xiang Li
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Qiulin Li
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Tiantian Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| | - Jinxi Chen
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
31
|
Schukraft GM, Moss B, Kafizas AG, Petit C. Effect of Band Bending in Photoactive MOF-Based Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19342-19352. [PMID: 35442614 PMCID: PMC9073837 DOI: 10.1021/acsami.2c00335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/12/2022] [Indexed: 06/01/2023]
Abstract
Semiconductor/metal-organic framework (MOF) heterojunctions have demonstrated promising performance for the photoconversion of CO2 into value-added chemicals. To further improve performance, we must understand better the factors which govern charge transfer across the heterojunction interface. However, the effects of interfacial electric fields, which can drive or hinder electron flow, are not commonly investigated in MOF-based heterojunctions. In this study, we highlight the importance of interfacial band bending using two carbon nitride/MOF heterojunctions with either Co-ZIF-L or Ti-MIL-125-NH2. Direct measurement of the electronic structures using X-ray photoelectron spectroscopy (XPS), work function, valence band, and band gap measurements led to the construction of a simple band model at the heterojunction interface. This model, based on the heterojunction components and band bending, enabled us to rationalize the photocatalytic enhancements and losses observed in MOF-based heterojunctions. Using the insight gained from a promising band bending diagram, we developed a Type II carbon nitride/MOF heterojunction with a 2-fold enhanced CO2 photoreduction activity compared to the physical mixture.
Collapse
Affiliation(s)
- Giulia
E. M. Schukraft
- Barrer
Centre, Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, U.K.
- Department
of Materials, South Kensington Campus, Imperial
College London, London SW7 2AZ, U.K.
| | - Benjamin Moss
- Department
of Chemistry, Molecular Science Research Hub, White City Campus, Imperial College London, London W12 0BZ, U.K.
| | - Andreas G. Kafizas
- Department
of Chemistry, Molecular Science Research Hub, White City Campus, Imperial College London, London W12 0BZ, U.K.
- The
Grantham Institute, Imperial College London, London SW7 2AZ, U.K.
| | - Camille Petit
- Barrer
Centre, Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, U.K.
| |
Collapse
|
32
|
Zhang Y, Xu J, Zhou J, Wang L. Metal-organic framework-derived multifunctional photocatalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63934-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Wu MX, Wei C, Wang XH, Xia QQ, Wang H, Liu X. Construction and Sensing Amplification of Raspberry-Shaped MOF@MOF. Inorg Chem 2022; 61:4705-4713. [PMID: 35271263 DOI: 10.1021/acs.inorgchem.1c04027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MOFs@MOFs (metal-organic frameworks, MOFs) possess precise customized functionalities and predesigned structures that enable the implementation of structure and property regulation for specific functions in comparison to traditional single MOFs. However, the synthesis and fluorescence properties of multilayer MOFs@MOFs are still worth improving. Herein, a fluorescent raspberry-shaped MOF@MOF was constructed via optimized seed-mediated synthesis by tuning the reaction time, reaction mode, and reaction concentration, involving the initial synthesis of the UiO-66-NH2 core and then the coating of the UiO-67-bpy shell. The raspberry-shaped UiO-66@67-bpy showed stable fluorescence and desirable sensing selectivity for the Hg2+ ion under the interference of other ions; meanwhile, the raspberry-shaped UiO-66@67-bpy indicated amplified sensing performance than pure UiO-66-NH2, mechanically mixed UiO-66-NH2 + UiO-67-bpy, and UiO-66@UiO-67 counterpart due to the accumulation effect of outer UiO-67-bpy toward Hg2+. Density functional theory (DFT) calculations including adsorption energy calculations and electronic density difference analysis further showed that the enhanced fluorescence quenching was possibly attributed to the outer UiO-67-bpy enrichment promoting the charge transfer between Hg2+ and the ligands of fluorescent UiO-66@67-bpy. The synergistic effect of MOFs@MOFs unlocks more possibilities for the construction of enhanced sensors and other applications.
Collapse
Affiliation(s)
- Ming-Xue Wu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Chunlei Wei
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.,College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Xing-Huo Wang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Qing-Qing Xia
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Huiqi Wang
- Instrumental Analysis Center, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Xiaomin Liu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| |
Collapse
|
34
|
He K, Bu T, Zheng X, Xia J, Bai F, Zhao S, Sun XY, Dong M, Wang L. "Lighting-up" methylene blue-embedded zirconium based organic framework triggered by Al 3+ for advancing the sensitivity of E. coli O157:H7 analysis in dual-signal lateral flow immunochromatographic assay. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128034. [PMID: 34896715 DOI: 10.1016/j.jhazmat.2021.128034] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The sensitive detection of foodborne pathogens is of great significance for ensuring food safety and quality. Herein, on the basis of methylene blue-embedded zirconium based organic framework (UIO@MB) as the remarkable capture carrier and signal indicator, with the Al3+-assisted the fluorescent signal response, we developed a label-free and dual-signal lateral flow immunochromatographic assay (LDLFIA) for sensitive detection of Escherichia coli (E. coli) O157:H7. The UIO@MB sensing carrier without monoclonal antibodies (mAbs) was manufactured, which adhered to bacteria to form the UIO@MB-E. coli O157:H7 conjugate, resulting in visible blue band. Then the fluorescent response of the OH-rich UIO@MB was excited by introducing Al3+, arising from capturing of Al3+ by -OH through coordination and electrostatic affinity, thus generating a green fluorescent band. Impressively, a smartphone-based portable reading system was developed that can reflect the test results of UIO@MB-LDLFIA immediately. Under optimum conditions, UIO@MB-LDLFIA can complete colorimetric and fluorescent mode detection within 90 min, with a detection sensitivity of 103 CFU/mL, which were 100 times lower than traditional gold nanoparticles-based LFIA and polymerase chain reaction (PCR). Moreover, the feasibility of the method was further evaluated by the determination of E. coli O157: H7 in drinking water and cabbage with average recoveries of 85.1-123.0%.
Collapse
Affiliation(s)
- Kunyi He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaohan Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junfang Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Yu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengna Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
35
|
Zhu C, He Q, Yao H, Le S, Chen W, Chen C, Wang S, Duan X. Amino-functionalized NH 2-MIL-125(Ti)-decorated hierarchical flowerlike Znln 2S 4 for boosted visible-light photocatalytic degradation. ENVIRONMENTAL RESEARCH 2022; 204:112368. [PMID: 34774832 DOI: 10.1016/j.envres.2021.112368] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Developing novel heterojunction photocatalysts with visible-light response and remarkable photocatalytic activity have been verified to applying for the photodegradation of antibiotics in water environment. Herein, NH2-MIL-125(Ti) was integrated with flowerlike ZnIn2S4 to construct NH2-MIL-125(Ti)@ZnIn2S4 heterostructure using a one-pot solvothermal method. The photocatalytic performance was evaluated by the degradation of tetracycline (TC) under visible light illumination. The optimized NM(2%)@ZIS possesses a photodegradation rate (92.8%) and TOC removal efficiency (58.5%) superior to pristine components, which can be principally attributed to the positive cooperative effects of well-matched energy level positions, strong visible-light-harvesting capacity, and abundant coupling interfaces between the two. Moreover, the probable TC degradation mechanism was also clarified using the active species trapping experiments. This study inspires further design and construction of NH2-MIL-125(Ti) and ZnIn2S4 based photocatalysts for effective removal of antibiotics in water environment.
Collapse
Affiliation(s)
- Chengzhang Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Qiuying He
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Haiqian Yao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Shukun Le
- Chemical Engineering College, Inner Mongolia University of Technology, Huhhot, 010051, China.
| | - Wenxia Chen
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China.
| | - Chuanxiang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
36
|
Abubshait HA, Iqbal S, Abubshait SA, Alotaibi MT, Alwadai N, Alfryyan N, Alsaab HO, Awwad NS, Ibrahium HA. A well-defined S-g-C 3N 4/Cu-NiS heterojunction interface towards enhanced spatial charge separation with excellent photocatalytic ability: synergetic effect, kinetics, antibacterial activity, and mechanism insights. RSC Adv 2022; 12:3274-3286. [PMID: 35425388 PMCID: PMC8979347 DOI: 10.1039/d1ra07974c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/02/2022] [Indexed: 12/22/2022] Open
Abstract
A well-defined heterojunction among two dissimilar semiconductors exhibited enhanced photocatalytic performance owing to its capability for boosting the photoinduced electron/hole pair transportation. Therefore, designing and developing such heterojunctions using diverse semiconductor-based materials to enhance the photocatalytic ability employing various approaches have gained research attention. For this objective, g-C3N4 is considered as a potential photocatalytic material for organic dye degradation; however, the rapid recombination rate of photoinduced charge carriers restricts the widespread applications of g-C3N4. Henceforth, in the current study, we constructed a heterojunction of S-g-C3N4/Cu-NiS (SCN/CNS) two-dimensional/one-dimensional (2D/1D) binary nanocomposites (NCs) by a self-assembly approach. XRD results confirm the construction of 22% SCN/7CNS binary NCs. TEM analysis demonstrates that binary NCs comprise Cu-NiS nanorods (NRs) integrated with nanosheets (NSs) such as the morphology of SCN. The observed bandgap value of SCN is 2.69 eV; nevertheless, the SCN/CNS binary NCs shift the bandgap to 2.63 eV. Photoluminescence spectral analysis displays that the electron-hole pair recombination rate in the SCN/CNS binary NCs is excellently reduced owing to the construction of the well-defined heterojunction. The photoelectrochemical observations illustrate that SCN/CNS binary NCs improve the photocurrent to ∼0.66 mA and efficiently suppress the electron-hole pairs when compared with that of undoped NiS, CNS and SCN. Therefore, the 22% SCN/7CNS binary NCs efficiently improved methylene blue (MB) degradation to 99% for 32 min under visible light irradiation.
Collapse
Affiliation(s)
- Haya A Abubshait
- Basic Sciences Department, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University P. O. Box 1982 Dammam 31441 Saudi Arabia
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Samar A Abubshait
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University P. O. Box 1982 Dammam 31441 Saudi Arabia
| | - Mohammed T Alotaibi
- Department of Chemistry, Turabah University College, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Norah Alwadai
- Department of Physics, College of Sciences, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Nada Alfryyan
- Department of Physics, College of Sciences, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority P. O. Box 530 El Maadi Egypt
| |
Collapse
|
37
|
Li M, Xu Z, Chen Y, Shen G, Wang X, Dai B. MOFs-Derived Zn-Based Catalysts in Acetylene Acetoxylation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:98. [PMID: 35010047 PMCID: PMC8746958 DOI: 10.3390/nano12010098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Metal-organic frameworks (MOFs)-derived materials with a large specific surface area and rich pore structures are favorable for catalytic performance. In this work, MOFs are successfully prepared. Through pyrolysis of MOFs under nitrogen gas, zinc-based catalysts with different active sites for acetylene acetoxylation are obtained. The influence of the oxygen atom, nitrogen atom, and coexistence of oxygen and nitrogen atoms on the structure and catalytic performance of MOFs-derived catalysts was investigated. According to the results, the catalysts with different catalytic activity are Zn-O-C (33%), Zn-O/N-C (27%), and Zn-N-C (12%). From the measurements of X-ray photoelectron spectroscopy (XPS), it can be confirmed that the formation of different active sites affects the electron cloud density of zinc. The electron cloud density of zinc affects the ability to attract CH3COOH, which makes catalysts different in terms of catalytic activity.
Collapse
Affiliation(s)
- Mengli Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China; (M.L.); (Z.X.); (Y.C.); (G.S.)
| | - Zhuang Xu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China; (M.L.); (Z.X.); (Y.C.); (G.S.)
| | - Yuhao Chen
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China; (M.L.); (Z.X.); (Y.C.); (G.S.)
| | - Guowang Shen
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China; (M.L.); (Z.X.); (Y.C.); (G.S.)
| | - Xugen Wang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China; (M.L.); (Z.X.); (Y.C.); (G.S.)
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi 832000, China
| | - Bin Dai
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China; (M.L.); (Z.X.); (Y.C.); (G.S.)
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi 832000, China
| |
Collapse
|
38
|
Cong Z, Zhu M, Zhang Y, Yao W, Kosinova M, Fedin VP, Wu S, Gao E. Three novel metal-organic frameworks with different coordination modes for trace detection of anthrax biomarkers. Dalton Trans 2021; 51:250-256. [PMID: 34881770 DOI: 10.1039/d1dt03760a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dipicolinic acid (DPA) is an anthrax biomarker. Its serious consequences make its detection a great need. In this paper, three novel metal-organic frameworks (MOFs) with different coordination modes were synthesized by a simple solvothermal method, which can be used as highly efficient fluorescence sensors for the highly selective and sensitive trace detection of DPA. MOFs 1-3 showed rapid responses to DPA (<30 s), and the limits of detection (LODs) were calculated to be 1.01 × 10-6 M-1 (MOF 1), 1.17 × 10-6 M-1 (MOF 2) and 2.07 × 10-6 M-1 (MOF 3). DPA detection based on MOFs 1-3 in fetal bovine serum is highly reliable based on the high recovery rates (90% to 115%). Hence, the three MOF-based sensors can be used in the real-time detection of DPA.
Collapse
Affiliation(s)
- Zhenzhong Cong
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, China
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, China
| | - Ying Zhang
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, China
| | - Wei Yao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, PR China.
| | - Marina Kosinova
- Nikolaev Institute of Inorganic Chemistry, Lavrentiev Avenue 3, Novosibirsk 630090, Russia
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry, Lavrentiev Avenue 3, Novosibirsk 630090, Russia
| | - Shuangyan Wu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, China
| | - Enjun Gao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, PR China. .,The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, China
| |
Collapse
|
39
|
Xu ML, Jiang XJ, Li JR, Wang FJ, Li K, Cheng X. Self-Assembly of a 3D Hollow BiOBr@Bi-MOF Heterostructure with Enhanced Photocatalytic Degradation of Dyes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56171-56180. [PMID: 34784191 DOI: 10.1021/acsami.1c16612] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Considering the flexibility, adjustable pore structure, and abundant active sites of metal-organic frameworks (MOFs), rational design and fine control of the MOF-based hetero-nanocrystals is a highly important and challenging subject. In this work, self-assembly of a 3D hollow BiOBr@Bi-MOF microsphere was fabricated through precisely controlled dissociation kinetics of the self-sacrificial template (BiOBr) for the first time, where the residual quantity of BiOBr and the formation of Bi-MOF were carefully regulated by changing the reaction time and the capability of coordination. Meanwhile, the hollow microstructure was formed in BiOBr@Bi-MOF through the Oswald ripening mechanism to separate photogenerated electron-hole pairs and increase the adsorption capacity of Bi-MOF for dyes, which significantly enhanced the photocatalytic degradation efficiency of RhB from 56.4% for BiOBr to 99.4% for the optimal BiOBr@Bi-MOF microsphere. This research broadens the selectivity of semiconductor/MOF hetero-nanocrystals with reasonable design and flexible synthesis.
Collapse
Affiliation(s)
- Mei-Ling Xu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China
| | - Xiao-Jie Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Jia-Ran Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Fu-Ji Wang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Kui Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Xin Cheng
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China
| |
Collapse
|
40
|
Quan Y, Wang G, Li D, Jin Z. CdS Reinforced with CoS X /NiCo-LDH Core-shell Co-catalyst Demonstrate High Photocatalytic Hydrogen Evolution and Durability in Anhydrous Ethanol. Chemistry 2021; 27:16448-16460. [PMID: 34519374 DOI: 10.1002/chem.202102726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/10/2022]
Abstract
At present, inefficient charge separation of single photocatalyst impedes the development of photocatalytic hydrogen evolution. In this work, the CoSX /NiCo-LDH core-shell co-catalyst was cleverly designed, which exhibit high activity and high stability of hydrogen evolution in anhydrous ethanol system when coupled with CdS. Under visible light (λ≥420 nm) irradiation, the 3 %Co/NiCo/CdS composite photocatalyst exhibits a surprisingly high photocatalytic hydrogen evolution rate of 20.67 mmol g-1 h-1 , which is 59 times than that of the original CdS. Continuous light for 20 h still showed good cycle stability. In addition, the 3 %Co/NiCo/CdS composite catalyst also shows good hydrogen evolution performance under the Na2 S/Na2 SO3 and lactic acid system. The fluorescence (PL), ultraviolet-visible diffuse reflectance (UV-vis) and photoelectrochemical tests show that the coupling of CdS and CoSX /NiCo-LDH not only accelerates the effective transfer of charges, but also greatly increases the absorption range of CdS to visible light. Therefore, the hydrogen evolution activity of the composite photocatalyst has been significantly improved. This work will provide new insights for the construction of new co-catalysts and the development of composite catalysts for hydrogen evolution in multiple systems.
Collapse
Affiliation(s)
- Yongkang Quan
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.,Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, P.R.China.,Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| | - Guorong Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.,Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, P.R.China.,Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| | - Dujuan Li
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.,Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, P.R.China.,Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.,Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, P.R.China.,Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| |
Collapse
|