1
|
Gilhooly-Finn PA, Westwood MM, Schroeder BC. Will it blend? Exploring the viscoelastic characteristics of P3HT-polyborosiloxane blends towards flexible electronic materials. RSC APPLIED POLYMERS 2024; 2:1182-1192. [PMID: 39464175 PMCID: PMC11498086 DOI: 10.1039/d4lp00163j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Blending organic semiconducting polymers with elastomeric materials has been shown to be a successful method for improving the flexibility of wearable electronics. One such elastomer that has not been readily explored in combination with an organic semiconducting polymer is polyborosiloxane (PBS). PBS shows remarkable viscoelastomeric properties, due to the borate ester groups that crosslink the siloxane backbones, demonstrating a dynamic covalent crosslinking mechanism. The detailed study presented here showcases the properties of two different PBS elastomers and the effect of blending a well-known organic semiconducting polymer, poly(3-hexylthiophene) (P3HT). Compatibility studies showed that one elastomer blends more favourably than the other due to differences in the crosslinking density leading to the formation of P3HT crystallites within the blend. The viscoelastic properties of the PBS : P3HT blends are studied through detailed rheological experiments and the relaxation processes are discussed.
Collapse
Affiliation(s)
- Peter A Gilhooly-Finn
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK of Great Britain and Northern Ireland
| | - Megan M Westwood
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK of Great Britain and Northern Ireland
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 41296 Göteborg Sweden
| | - Bob C Schroeder
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK of Great Britain and Northern Ireland
| |
Collapse
|
2
|
Wan C, Feng Z, Gao Y, Yu J, Wu Z, Yang Z, Mao S, Guo R, Huo W, Huang X. Self-Healing and Shear-Stiffening Electrodes for Wearable Biopotential Sensing and Gesture Recognition. ACS Sens 2024; 9:5253-5263. [PMID: 39329366 DOI: 10.1021/acssensors.4c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The achievement of flexible skin electrodes for dynamic monitoring of biopotential is one of the challenging issues in flexible electronics due to the interference of large acceleration and heavy sweat that influence the stability of skin-electrode interfaces. This work presents materials and techniques to achieve self-healing and shear-stiffening electrodes and an associated flexible system that can be used for multichannel biopotential measurement on the skin. The electrode that is based on a composite of silver (Ag) flakes, Ag nanowires, and polyborosiloxane offers an electrical conductivity of 9.71 × 104 S/m and a rheological characteristic that ensures stable and fully conformal contact with skin and easy removal under different shear rates. The electrode can maintain its conductivity even after being stretched by more than 60% and becomes self-healed after mechanical damage. The combination of the electrodes with a screen-printed multichannel flexible sensor allows stable monitoring of both static and dynamic electromyography signals, leading to the acquisition of high-quality multilead biopotential signals that can be readily extracted to yield gesture recognition results with over 97.42% accuracy. The conductive self-healing materials and flexible sensors may be utilized in various daily biopotential sensing applications, allowing highly stable dynamic measurement to facilitate artificial intelligence-enabled health condition diagnosis and human-computer interface.
Collapse
Affiliation(s)
- Chunxue Wan
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing 100190, China
| | - Zhijie Feng
- School of Life Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072 ,China
| | - Yu Gao
- Flexible Wearable Technology Research Center, Institute of Flexible Electronics Technology of Tsinghua, 906 Yatai Road, Jiaxing 314006, China
| | - Jingxian Yu
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Ziyue Wu
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zhen Yang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Sui Mao
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Rui Guo
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Wenxing Huo
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xian Huang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Institute of Wearable Technology and Bioelectronics, Qiantang Science and Technology Innovation Center, 1002 23rd Street, Hangzhou 310018, China
| |
Collapse
|
3
|
Zhao D, Guo L, Li Q, Yue C, Han B, Liu K, Li H. Multi-Functional Lanthanide Metallopolymer: Self-Healing and Photo-Stimuli-Responsive Dual-Emitting Luminescence for Diverse Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405164. [PMID: 39036828 DOI: 10.1002/adma.202405164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Indexed: 07/23/2024]
Abstract
Photoluminescent metallopolymers displaying photo-stimuli-responsive properties are emerging as promising materials with versatile applications in photo-rewritable patterns, wearable UV sensors, and optical encryption anti-counterfeiting. However, integrating these materials into practical applications that require fast response times, lightweight qualities, fatigue resistance, and multiple encryption capabilities poses challenges. In this study, luminescent photochromic lanthanide (Ln) metallopolymers with rapid self-healing properties are developed by cross-linking terpyridine (Tpy)- and spiropyran (SP)- functionalized polyurethane chains through Ln-Tpy coordination bonds and H-bonds among polymer chains. The resulting products exhibit a range of intriguing features: i) photo-stimuli responsiveness using spiropyran monomers without additional dopants; ii) dual-emitting performance under UV-light due to Ln-Tpy and open-ring spiropyran moieties; iii) satisfactory mechanical properties and self-healing abilities from polymer chains; iv) multiple control switches for luminescence colors through photostimulation or feed ratio adjustments. Leveraging these attributes, the developed material introduces novel opportunities for light-writing applications, advanced information encryption, UV-sensing wearable devices, and insights into designing multifunctional intelligent materials for the future.
Collapse
Affiliation(s)
- Di Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Lei Guo
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Qianrui Li
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Chunmei Yue
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huanrong Li
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| |
Collapse
|
4
|
Huang C, Wu Q, Li X, Pan P, Gu S, Tang T, Wu J. Silicone Bioadhesive with Shear-Stiffening Effect: Rate-Responsive Adhesion Behavior and Wound Dressing Application. Biomacromolecules 2024; 25:4510-4522. [PMID: 38877976 DOI: 10.1021/acs.biomac.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Stimuli-responsive adhesives with on-demand adhesion capabilities are highly advantageous for facilitating wound healing. However, the triggering conditions of stimuli-responsive adhesives are cumbersome, even though some of them are detrimental to the adhesive and adjacent natural tissues. Herein, a novel stimuli-responsive adhesive called shear-stiffening adhesive (SSA) has been created by constructing a poly(diborosiloxane)-based silicone network for the first time, and SSA exhibits a rate-responsive adhesion behavior. Furthermore, we introduced bactericidal factors (PVP-I) into SSA and applied it as a wound dressing to promote the healing of infected wounds. Impressively, the wound dressing not only has excellent biocompatibility and long-term antibacterial properties but also performs well in accelerating wound healing. Therefore, this study provides a new strategy for the synthesis of intelligent adhesives with force rate response, which simplifies the triggering conditions by the force rate. Thus, SSA has great potential to be applied in wound management as an intelligent bioadhesive with on-demand adhesion performance.
Collapse
Affiliation(s)
- Chao Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qi Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xixin Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Peiyue Pan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shiyu Gu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Tian Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
5
|
Menasce S, Libanori R, Coulter FB, Studart AR. 3D-Printed Architectured Silicones with Autonomic Self-Healing and Creep-Resistant Behavior. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306494. [PMID: 38176686 DOI: 10.1002/adma.202306494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/24/2023] [Indexed: 01/06/2024]
Abstract
Self-healing silicones that are able to restore functionalities and extend the lifetime of soft devices hold great potential in many applications. However, currently available silicones need to be triggered to self-heal or suffer from creep-induced irreversible deformation during use. Here, a platform is proposed to design and print silicone objects that are programmed at the molecular and architecture levels to achieve self-healing at room temperature while simultaneously resisting creep. At the molecular scale, dioxaborolanes moieties are incorporated into silicones to synthesize self-healing vitrimers, whereas conventional covalent bonds are exploited to make creep-resistant elastomers. When combined into architectured printed parts at a coarser length scale, the layered materials exhibit fast healing at room temperature without compromising the elastic recovery obtained from covalent polymer networks. A patient-specific vascular phantom and fluidic chambers are printed to demonstrate the potential of architectured silicones in creating damage-resilient functional devices using molecularly designed elastomer materials.
Collapse
Affiliation(s)
- Stefano Menasce
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Rafael Libanori
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Fergal Brian Coulter
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| |
Collapse
|
6
|
Jiao Y, Rong Z, Gao C, Wu Y, Liu Y. Tannic Acid Crosslinked Self-Healing and Reprocessable Silicone Elastomers with Improved Antibacterial and Flame Retardant Properties. Macromol Rapid Commun 2023; 44:e2200681. [PMID: 36125336 DOI: 10.1002/marc.202200681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Indexed: 11/11/2022]
Abstract
Silicone elastomers are widely used in aviation, electronics, automotive, and medical device fields, and their overuse inevitably causes recycled problems. In addition, the elastomers are subject to attack by bacteria and fire during use in some application scenarios, which is a safety hazard. Therefore, there is a great need to prepare silicone elastomers with improved antibacterial, flame retardant, self-healing, and recyclable functions. A new strategy is proposed to prepare silicone elastomers with bio-based tannic acid as cross-linkers to solve this problem by using polydimethylsiloxane as a soft chain segment and 2,2-bis(hydroxymethyl)propionic acid as an intermediate chain extender. Based on the phenol carbamate bonding and hydrogen bonding interactions, the elastomer has efficient self-healing ability and can achieve dynamic dissociation at 120 °C for complete recovery. In addition, due to the unique spatial structure and polyphenolic hydroxyl groups of tannic acid, the mechanical properties of the elastomer are greatly improved with an antimicrobial efficiency of over 90% and a final oxygen index of 25.5%. The multifunctional silicone elastomer has great potential applications in recyclable refractory materials and antimicrobial materials.
Collapse
Affiliation(s)
- Yizhi Jiao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhihao Rong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chuanhui Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yumin Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yuetao Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
7
|
A topological polymer network with Cu(II)-coordinated reversible imidazole-urea locked unit constructs an ultra-strong self-healing elastomer. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Wang C, Lei G, Zhang R, Zhou X, Cui J, Shen Q, Luo G, Zhang L. Shear-Thickening Covalent Adaptive Networks for Bifunctional Impact-Protective and Post-Tunable Tactile Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2267-2276. [PMID: 36573932 DOI: 10.1021/acsami.2c19492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Shear-thickening materials have been widely applied in fields related to smart impact protection due to their ability to absorb large amounts of energy during sudden shock. Shear-thickening materials with multifunctional properties are expanding their applications in wearable electronics, where tactile sensors require interconnected networks. However, current bifunctional shear-thickening cross-linked polymer materials depend on supramolecular networks or slightly dynamic covalently cross-linked networks, which usually exhibit lower energy-absorption density than the highly dynamic covalently cross-linked networks. Herein, we employed boric ester-based covalent adaptive networks (CANs) to elucidate the shear-thickening property and the mechanism of energy dissipation during sudden shock. Guided by the enhanced energy-absorption capability of double networks and the requirements of the conductive networks for the wearable tactile sensors, tungsten powders (W) were incorporated into the boric ester polymer matrix to form a second network. The W networks make the materials stiffer, with a 13-fold increase in Young's modulus. Additionally, the energy-absorption capacity increased nearly 7 times. Finally, we applied these excellent energy-absorbing and conductive materials to bifunctional shock-protective and strain rate-dependent tactile sensors. Considering the self-healable and recyclable properties, we believe that these anti-impact and tactile sensing materials will be of great interest in wearable devices, smart impact-protective systems, post-tunable materials, etc.
Collapse
Affiliation(s)
- Chuanbin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Guoliang Lei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Ruizhi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Xiaozhuang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Jiaxi Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, Sichuan, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou313001, China
| | - Qiang Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
- Hubei Longzhong Laboratory, Xiangyang441000, Hubei, China
| | - Guoqiang Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou521000, China
| | - Lianmeng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou521000, China
| |
Collapse
|
9
|
Drozdov FV, Manokhina EA, Vu TD, Muzafarov AM. Polyborosiloxanes (PBS): Evolution of Approaches to the Synthesis and the Prospects of Their Application. Polymers (Basel) 2022; 14:polym14224824. [PMID: 36432951 PMCID: PMC9696069 DOI: 10.3390/polym14224824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
The mini-review deals with borosiloxanes as a class of organoelement compounds that comprise Si-O-B bonds, including individual compounds and polymeric structures. The borosiloxanes first synthesized in the 1950s using simple methods demonstrated very unusual properties but were hydrolytically unstable. However, in recent times, synthetic methods have changed significantly, which made it possible to synthesize borosiloxanes that are resistant to external factors, including atmospheric moisture. Borosiloxanes became important due to their unique properties. For example, borosiloxane liquids acquire a thixotropic behavior due to donor-acceptor interchain interactions. In addition, borosiloxanes are used to produce flame-retardant ceramics. An analysis of the literature sources shows that no review has yet been completed on the topic of borosiloxanes. Therefore, we decided that even a brief outlook of this area would be useful for researchers in this and related fields. Thus, the review shows the evolution of the synthesis methods and covers the studies on the properties of these unique molecules, the latest achievements in this field, and the prospects for their application.
Collapse
Affiliation(s)
- Fedor V. Drozdov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 117393 Moscow, Russia
- Correspondence:
| | - Elizaveta A. Manokhina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tran D. Vu
- Institute of Tropical Durability, Joint Russia-Vietnam Tropical Science and Technology, Hanoi 122103, Vietnam
| | - Aziz M. Muzafarov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 117393 Moscow, Russia
| |
Collapse
|
10
|
Xu R, Cañón Bermúdez GS, Pylypovskyi OV, Volkov OM, Oliveros Mata ES, Zabila Y, Illing R, Makushko P, Milkin P, Ionov L, Fassbender J, Makarov D. Self-healable printed magnetic field sensors using alternating magnetic fields. Nat Commun 2022; 13:6587. [PMID: 36329023 PMCID: PMC9631606 DOI: 10.1038/s41467-022-34235-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
We employ alternating magnetic fields (AMF) to drive magnetic fillers actively and guide the formation and self-healing of percolation networks. Relying on AMF, we fabricate printable magnetoresistive sensors revealing an enhancement in sensitivity and figure of merit of more than one and two orders of magnitude relative to previous reports. These sensors display low noise, high resolution, and are readily processable using various printing techniques that can be applied to different substrates. The AMF-mediated self-healing has six characteristics: 100% performance recovery; repeatable healing over multiple cycles; room-temperature operation; healing in seconds; no need for manual reassembly; humidity insensitivity. It is found that the above advantages arise from the AMF-induced attraction of magnetic microparticles and the determinative oscillation that work synergistically to improve the quantity and quality of filler contacts. By virtue of these advantages, the AMF-mediated sensors are used in safety application, medical therapy, and human-machine interfaces for augmented reality.
Collapse
Affiliation(s)
- Rui Xu
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Gilbert Santiago Cañón Bermúdez
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Oleksandr V. Pylypovskyi
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany ,grid.510453.6Kyiv Academic University, Kyiv, 03142 Ukraine
| | - Oleksii M. Volkov
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Eduardo Sergio Oliveros Mata
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Yevhen Zabila
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Rico Illing
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Pavlo Makushko
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Pavel Milkin
- grid.7384.80000 0004 0467 6972Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str 36a, 95447 Bayreuth, Germany
| | - Leonid Ionov
- grid.7384.80000 0004 0467 6972Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str 36a, 95447 Bayreuth, Germany
| | - Jürgen Fassbender
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Denys Makarov
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| |
Collapse
|
11
|
Yang Z, Li H, Zhong Y, Lai X, Ding J, Chen Z, Zeng X. Functional Epoxy Elastomer Integrating Self-Healing Capability and Degradability for a Flexible Stretchable Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44878-44889. [PMID: 36162082 DOI: 10.1021/acsami.2c14919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the rapid development of flexible electronics and the increasing deterioration of the natural environment, functional and environmentally friendly flexible strain sensors have become one of the frontier research hotspots. Here, we propose a novel strategy to synthesize a functional epoxy elastomer integrating self-healing capability and degradability for flexible stretchable strain sensors. A carboxyl-terminated epoxy prepolymer was first synthesized using carboxyl-terminated PEG (PEG-COOH), 2,2'-dithiodibenzoic acid (DTSA), and 1,4-butanediol diglycidyl ether (BDDE), and then crosslinked by epoxidized soybean oil (ESO) to yield an epoxy elastomer. The obtained elastomer exhibited not only high tensile stress (5.07 MPa), large stretchability (477%), and high healing efficiency (92.5%) but also superior degradability in alkaline aqueous solution. The elastomer-based stretchable strain sensor with microstructure showed high sensitivity (GF = 176.71) and was successfully applied for detecting human motions and recognizing objects with various shapes. Moreover, the healed sensor could restore stable sensing ability. The prepared functional epoxy elastomer is of great significance for the preparation of environmentally friendly and high-performance sensors and is promising for applications in the fields of healthcare monitoring, intelligent robots, and wearable electronics.
Collapse
Affiliation(s)
- Zhipeng Yang
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Hongqiang Li
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Yunchang Zhong
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Xuejun Lai
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Jianping Ding
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Zhonghua Chen
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Xingrong Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
12
|
Reprocessable thermoset organosilicon elastomer with good self-healable and high stretchable properties for flexible electronic devices. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Stretchable elastomers with self-healing and shape memory properties based on functionalized TMC and DLLA copolymers. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Milkin P, Danzer M, Ionov L. Self-Healing and Electrical Properties of Viscoelastic Polymer-Carbon Blends. Macromol Rapid Commun 2022; 43:e2200307. [PMID: 35511792 DOI: 10.1002/marc.202200307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Indexed: 11/06/2022]
Abstract
Self-healing polymer-carbon composites are seen as promising materials for future electronic devices, which must be able to restore not only their structural integrity but also electrical performance after cracking and wear. Despite multiple reports about self-healing conductive elements, there is a lack of a broad fundamental understanding of correlation between viscoelasticity of such composites, their electrical properties, and self-healing of their mechanical as well as electrical properties. Here we report thorough investigation of electromechanical properties of blends of carbon black as conductive filler and viscoelastic polymers (polydimethylsiloxanes and polyborosiloxane) with different relaxation times as matrices. We show that behavior of composites depends strongly on the viscoelastic properties of polymers. Low molecular polymer composite possesses high conductivity due to strong filler network formation, quick electrical and mechanical properties restoration, but for this we sacrifice the ability to flow and ductility at large deformation (material is brittle). In contrary, high relaxation time polymer composite behaves elastically on small time and flows at large time scale due to weak filler network and can heal. However, the electrical properties are worse than that of carbon and viscous polymer and degrade with time. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Pavel Milkin
- Faculty of Engineering Sciences, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany
| | - Michael Danzer
- Chair of Electrical Energy Systems, University of Bayreuth, Universistätsstr. 30, 95447, Bayreuth, Germany
| | - Leonid Ionov
- Faculty of Engineering Sciences, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany.,Bavarian Polymer Institute, University of Bayreuth, 95447, Bayreuth, Germany
| |
Collapse
|
15
|
Xun X, Zhao X, Li Q, Zhao B, Ouyang T, Zhang Z, Kang Z, Liao Q, Zhang Y. Tough and Degradable Self-Healing Elastomer from Synergistic Soft-Hard Segments Design for Biomechano-Robust Artificial Skin. ACS NANO 2021; 15:20656-20665. [PMID: 34846140 DOI: 10.1021/acsnano.1c09732] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Increasing biomechanical applications of skin-inspired devices raise higher requirements for the skin-bionic robustness and environmental compatibility of elastomers. Here, a tough and degradable self-healing elastomer (TDSE) is developed by a synergistic soft-hard segments design. The polyester/polyether copolymer is introduced in soft segments to endow TDSE with flexibility and degradability. The two isomeric diamines are regulated in hard segments for elevating the toughness and fracture energy to 82.38 MJ/m3 and 43299 J/m2 and autonomous self-healing ability with 93% efficiency in 7 h for the TDSE. Employing TDSE and ionic liquid, a biomechano-robust artificial skin (BA-skin) is constructed with a stretch-insensitive mechanosensation capability during 50% cyclic stretching. The BA-skin has high biomechano-robustness to bear tear damage and good environmental compatibility with total decomposability in a lipase solution. This work provides a molecular design guideline for high-performance skin-bionic elastomers for applications in skin-inspired devices.
Collapse
Affiliation(s)
- Xiaochen Xun
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Xuan Zhao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Qi Li
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Bin Zhao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Tian Ouyang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Qingliang Liao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| |
Collapse
|
16
|
Wu M, Yang L, Shen Q, Zheng Z, Xu C. Endeavour to balance mechanical properties and self-healing of nature rubber by increasing covalent crosslinks via a controlled vulcanization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
“Solid-Liquid” Vitrimers Based on Dynamic Boronic Ester Networks. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2592-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
You Y, Rong MZ, Zhang MQ. Adaptable Reversibly Interlocked Networks from Immiscible Polymers Enhanced by Hierarchy-Induced Multilevel Energy Consumption Mechanisms. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yang You
- Materials Science Institute, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Min Zhi Rong
- Materials Science Institute, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ming Qiu Zhang
- Materials Science Institute, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|