1
|
Yang Y, Zheng H, Du C, Wang H, Luo G, Zhang X, Chen J. A Z-scheme photoelectrochemical biosensing platform based on Cu 2O-sensitized hollow covalent organic frameworks for sensitive microcystin-LR detection. Anal Chim Acta 2025; 1356:344050. [PMID: 40288883 DOI: 10.1016/j.aca.2025.344050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Photoactive materials play a crucial role in enhancing the sensitivity of photoelectrochemical (PEC) biosensors. In this work, we developed a highly sensitive Z-scheme PEC biosensing platform based on Cu2O-sensitized hollow structured covalent organic frameworks (HCOF-OMe) microspheres for the detection of microcystin-LR (MC-LR). The HCOF-OMe photoelectrode with enhanced PEC response can be sensitized by Cu2O nanocubes through the formation of a Z-scheme system, enabling the construction of a signal-on PEC biosensing platform. To amplify the detection signal, a homogeneous biosensing strategy was employed by integrating a DNA walker nanomachine-assisted CRISPR/Cas12a system. A DNA walker nanomachine was assembled on streptavidin-modified magnetic bead (MB) and initially locked by MC-LR aptamer. Upon MC- LR recognition, the walker DNA was allowed to hybridize with support DNA, exposing cleavage sites for the nicking endonuclease Nb.BbvCI, which can release the activator strand to trigger the trans-cleavage ability of CRISPR/Cas12a. As a result, Cu2O nanocubes were released from the MB-ssDNA-Cu2O complex and subsequently loaded on the HCOF-OMe photoelectrode, significantly improving the PEC signals. This enabled the sensitive assay of MC-LR over a wide linear range of 1.0 × 10-5-100 μg/L with a low detection limit of 4.6 × 10-6 μg/L. The proposed biosensing platform is highly versatile and can be extended to detect other environmental pollutants or biological disease markers.
Collapse
Affiliation(s)
- Yiyuan Yang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Hejie Zheng
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Cuicui Du
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Huan Wang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Guizhen Luo
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Jinhua Chen
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
2
|
Liao R, Mao J, Wang S, Wang S, Deng W, Tan Y, Xie Q. Coordination-Induced Photocurrent Polarity Switching of Black Titanium Dioxide for Tyrosinase Activity Assay. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11776-11784. [PMID: 40319501 DOI: 10.1021/acs.langmuir.5c01300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Polarity-switchable photoelectrochemical (PEC) analysis has garnered significant attention owing to its enhanced accuracy and superior anti-interference capability. Developing a straightforward and efficient approach for polarity-switchable PEC analysis is critically essential. We present here a novel approach for polarity-switchable PEC assay by leveraging the coordination interactions between black titanium dioxide (b-TiO2) and o-diphenol-functionalized BiOI. Specifically, 4-hydroxyphenylacetic acid was covalently functionalized onto hydrolyzed 3-aminopropyl triethoxysilane-modified BiOI nanosheets, and the monophenol groups on BiOI are further converted into o-diphenol groups through tyrosinase (TYR) catalysis. Consequently, the o-diphenol-functionalized BiOI nanosheets are attached to a b-TiO2-based photoelectrode via coordination interactions between b-TiO2 and the o-diphenol groups, enabling photocurrent polarity switching of the b-TiO2-based electrode and polarity-switchable PEC assay of TYR activity. The developed PEC assay of TYR activity exhibits a broad linear range from 0.010 to 10 U mL-1 and a low detection limit of 0.002 U mL-1. The present work not only reports an innovative photocurrent polarity switchable strategy but also establishes an effective method for TYR activity assay.
Collapse
Affiliation(s)
- Rong Liao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jiaxin Mao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Siyu Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Shihua Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
3
|
He S, Lin W, Liu X, Li F, Liang H, Xu H, Lu C, Xing C. A DNA concatemer-encoded CRISPR/Cas12a fluorescence sensor for sensitive detection of Pb 2+ based on DNAzymes. Analyst 2025; 150:1778-1784. [PMID: 40135711 DOI: 10.1039/d5an00189g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Lead pollution presents a significant threat to ecological systems and human health, underscoring the urgent need for highly sensitive detection methods. Herein, we introduce a novel DNA concatemer-encoded CRISPR/Cas12a fluorescence sensor (MDD-Cas12a) for sensitive detection of Pb2+ based on DNAzymes. To accomplish this, we designed a substrate strand containing a long DNA concatemer encoding multiple protospacer adjacent motifs (PAMs) and protospacer sequences for activation of the CRISPR/Cas12a system. The DNA concatemer was subsequently anchored to the surface of magnetic beads (MBs) to fabricate a MBs-DNA concatemer nanoprobe. In the presence of Pb2+, the DNAzyme structure catalyzes the cleavage of the substrate strand, leading to the release of DNA concatemers. Following magnetic separation, the released DNA concatemers significantly activate the non-specific trans-cleavage activity of the Cas12a/crRNA complex. The fluorescence reporter DNA is then completely cleaved by the activated Cas12a/crRNA complex, and the Pb2+ concentration in the sample can be quantified by measuring the fluorescence signal. By harnessing the specific recognition capability of DNAzymes for Pb2+, the programmability of DNA concatemers, and the self-amplification features of the CRISPR/Cas12a system, the MDD-Cas12a platform demonstrates high sensitivity and specificity for detecting Pb2+ in milk and lake water samples.
Collapse
Affiliation(s)
- Shaoying He
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, P.R. China.
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P.R. China.
| | - Wei Lin
- College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China.
| | - Xin Liu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, P.R. China.
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P.R. China.
| | - Fei Li
- College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China.
| | - Hong Liang
- College of Geography and Oceanography, Minjiang University, Fuzhou 350108, P.R. China
| | - Huo Xu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P.R. China.
| | - Chunhua Lu
- College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China.
| | - Chao Xing
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, P.R. China.
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P.R. China.
| |
Collapse
|
4
|
Luo L, Zhou Y, Chai Y, Yuan R, Liu H. Homogeneous Multicycle Cascaded DNA Circuit for Sensitive "Signal On-Off-Super On" PEC Biosensing. Anal Chem 2025; 97:7978-7985. [PMID: 40175284 DOI: 10.1021/acs.analchem.5c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The minor changes of miRNA levels due to various diseases and cancers bring great challenges for early diagnosis. Here we propose a "signal on-off-super on" PEC biosensor based on a homogeneous multicycle cascaded DNA circuit and a SnSe/CdS photoanode for sensitive detection of biomarker miRNA-222. Specifically, a Z-type SnSe/CdS heterojunction with greatly enhanced photoanodic performance was developed to provide the initial "on" signal. The target miRNA-222 was converted to a dendritic DNA structure through a cascade DNA circuit. The PEC signal can be switched off by the dendritic DNA structure and further switched super on by the loading of photosensitizer manganese porphyrin (MnPP). It is worth noting that the homogeneous multicycle cascaded DNA circuit not only improved the reaction kinetics but also avoided the leakage of signal. Compared with the traditional "signal-on" or "signal-off" readout, this "signal on-off-super on" strategy avoids the false response and background, thereby enhancing the sensitivity and accuracy of the PEC biosensor. The detection limit of the constructed PEC sensor is 0.3 fM in the linear range from 1 fM to 10 nM. The PEC biosensor with outstanding reproducibility, stability, and sensitivity provides a promising platform for biomarker detection and early disease diagnosis.
Collapse
Affiliation(s)
- Lingling Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuying Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hongyan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Suo Z, Yu T, Xu Y, Ren W, Liu Y, Wei M, Jin H, He B, Zhao R. Research progress of photoelectrochemical sensors in food detection. Food Res Int 2025; 206:116071. [PMID: 40058922 DOI: 10.1016/j.foodres.2025.116071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/10/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
Food is the basic of the people, security is the basic of the food. As the quality of life improves, food safety has emerged as a global concern, making the development of simple, rapid, and efficient food safety detection methods critically important. Photoelectrochemical (PEC) sensors are a novel class of sensors developed in recent years that integrate photoelectric technology with biosensing. Owing to their high sensitivity, simple design, low cost, and ease of miniaturization, PEC sensors have found widespread applications in food detection, bioanalysis, clinical diagnostics, and environmental protection. This paper reviews the development of PEC sensors, the basic principles of PEC sensor detection, and the electron transport pathways of semiconductor materials in PEC sensors. It focuses on how photoelectroactive materials and related signal amplification strategies can improve the detection performance of the sensors, as well as the latest research advances of PEC sensors in the detection of food toxins. Finally, the challenges and future trends of PEC sensors in food safety detection are discussed.
Collapse
Affiliation(s)
- Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China.
| | - Tengfei Yu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China
| | - Yiwei Xu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China
| | - Wenjie Ren
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China
| | - Yong Liu
- School of Energy Science and Technology, Henan University, Kaifeng 475004, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Li Y, Zhao L, Bai Y, Feng F. Applications of covalent organic frameworks (COFs)-based sensors for food safety: Synthetic strategies, characteristics and current state-of-art. Food Chem 2025; 469:142495. [PMID: 39719784 DOI: 10.1016/j.foodchem.2024.142495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
Food safety is a pressing global public issue that has garnered significant attention worldwide, especially recent outbreaks of foodborne illnesses. The use of emerging porous materials enables the development of effective and durable detection methods for the detection of food contaminants. Covalent organic frameworks (COFs), as a class of emerging porous crystalline materials, rendered with the advantage of large specific surface area, highly controllable and ordered structures, diverse pore structures, high stability, and controllable surface functionalization. Especially in the development of sensors, COFs exhibit versatile roles as signal amplifiers, molecular recognizers, molecular transfer mediators, carriers, catalysts, and reporters, making them highly valuable in various applications. In the context of food safety, COFs-based sensing platforms have shown great potential. This review aims to provide an in-depth understanding of COFs-based sensors by discussing recent advancements in this field. It begins with a systemic introduction of the synthetic strategies of COFs and the pros and cons, followed by the distinctive characteristics of COFs and their diverse functional roles in sensing strategies, emphasizing their importance in analysing food safety risks. Then the review further presented a comprehensive summary of the applications of COFs in sensing, specifically highlighting significant breakthroughs in the detection of various food contaminants like foodborne pathogens, mycotoxins, pesticides, antibiotics, heavy metals, etc. Additionally, the review addressed the challenges and opportunities associated with COFs-based sensors in the detection of food safety issues. The aim of the review was to contribute to the ongoing development and advancement of COFs for ensuring food safety.
Collapse
Affiliation(s)
- Yaru Li
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China.
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Yunfeng Bai
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China; School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China.
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China.
| |
Collapse
|
7
|
Chen H, Wang Z, Zhao Y, Song ZL, Fan GC, Luo X. Enhanced Anti-Interference Photoelectrochemical DNA Bioassay: Grafting a Peptide-Conjugated Hairpin DNA Probe on a COF-Based Photocathode. ACS Sens 2025; 10:507-516. [PMID: 39761446 DOI: 10.1021/acssensors.4c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Precise and sensitive analysis of specific DNA in actual human bodily fluids is crucial for the early diagnosis of major diseases and for a deeper understanding of DNA functions. Herein, by grafting a peptide-conjugated hairpin DNA probe to a covalent organic framework (COF)-based photocathode, a robust anti-interference photoelectrochemical (PEC) DNA bioassay was explored, which could specifically resist potential interference from nonspecific proteins and reducing species. Human immunodeficiency virus (HIV) DNA was used as the target DNA (tDNA) for the PEC DNA bioassay. The vinyl-functionalized COF (COF-V) was modified with meso-tetra(4-carboxyphenyl)-porphine (TCPP) and polydopamine (PDA) to fabricate a PDA/TCPP/COF-V photocathode, which served as the photocurrent signal transducer. Toward the unconventional recognition element, a hairpin DNA probe (hDNA) was efficiently linked with a linear zwitterionic peptide (LZP) to form the LZP-hDNA bioconjugate, which was then grafted onto the COF-based photocathode. The grafting of the LZP generated a sturdy anti-interference interface on the signal transducer. For tDNA probing, AgInS2 (AIS) quantum dots acted as signal quenchers, marked on signaling DNA (sDNA) to obtain AIS-sDNA labeling, and a striking drop in the photocurrent signal was achieved through λ-exonuclease (λ-Exo)-aided target recycling. This novel peptide-conjugated hairpin DNA probe endowed the PEC DNA bioassay with an impressive anti-interference property without requiring tedious steps. By combining the excellent photoelectric properties of the COF-based photocathode with an effective signaling strategy, accurate and sensitive results for tDNA probing were achieved.
Collapse
Affiliation(s)
- Huimin Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhen Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ying Zhao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhi-Ling Song
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Gao-Chao Fan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
8
|
Kong Y, Qian X, Mei X, Ma J, Wu K, Deng A, Li J. Electrochemiluminescence immunoassay system based on PCN-224-Mn and gold-platinum bimetallic nanoflowers for sensitive detection of ochratoxin A. Talanta 2025; 281:126937. [PMID: 39326117 DOI: 10.1016/j.talanta.2024.126937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In this work, a novel Electrochemiluminescence Immunosensor was constructed using PCN-224-Mn and gold-platinum nanoflowers (AuPt NFs) for the ultrasensitive detection of ochratoxin A (OTA). PCN-224 modified with Mn (II) was synthesized as a probe material. The interaction efficiency of PCN-224 with S2O82- was also greatly improved. AuPt NFs were used as the substrate material for the electrodes. It has favorable biocompatibility, large specific surface area and can bind more antigen. Also greatly increased the electroactive surface area and conductivity of the electrode. OTA was detected using a competitive immunoassay strategy, in which OTA in the sample competes with the encapsulated antigen for a finite number of antibodies. ECLIA for the detection of OTA was designed to be highly sensitive, with a linear range from 0.0002 ng mL-1 to 1000 ng mL-1 and a LOD as low as 0.067 pg mL-1. In addition, it was evident from the electrochemical analyses that PCN-224-Mn had a stronger and more stable ECL signal compared to the plain PCN-224. The successful preparation of specific, sensitive and reproducible ECL immunosensors confirms the great promise for the detection of OTA or other small molecule mycotoxins.
Collapse
Affiliation(s)
- Yue Kong
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xinyue Qian
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xiao Mei
- Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China
| | - Jun Ma
- Suzhou Shanding Honey Product Co., Ltd, Suzhou, 215101, PR China
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, PR China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China; Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China.
| |
Collapse
|
9
|
Jayapaul A, Prasanna SB, Lin LY, Duann YF, Lin YC, Chung RJ. Selective and stable visible-light-prompted scavenger-free photoelectrochemical strategy based on a ternary ErVO 4/P@g-C 3N 4/SnS 2 nanocomposite for the detection of lead ions in different water samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124892. [PMID: 39241949 DOI: 10.1016/j.envpol.2024.124892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Lead ions (Pb2+) are heavy metal environmental pollutants that can significantly impact biological health. In this study, the synthesis of a ternary nanocomposite, ErVO4/P@g-C3N4/SnS2, was achieved using a combination of hydrothermal synthesis and mechanical grinding. The as-fabricated photoelectrochemical (PEC) sensor was found to be an ideal substrate for Pb2+ detection with high sensitivity and reliability. The ErVO4/P@g-C3N4/SnS2/FTO was selected as the substrate because of its remarkable and reliable photocurrent response. The Pb2+ sensor exhibited a low detection limit of 0.1 pM and a broad linear range of 0.002-0.2 nM. Moreover, the sensor exhibited outstanding stability, selectivity, and reproducibility. In real-time applications, it exhibited stable recovery and a low relative standard deviation, ensuring reliable and accurate measurements. The as-prepared PEC sensor was highly stable for the detection of Pb2+ in different water samples. This promising characteristic highlights its significant potential for use in the detection of environmental pollutants.
Collapse
Affiliation(s)
- Abishek Jayapaul
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Sanjay Ballur Prasanna
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Yeh-Fang Duann
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan; School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore; ZhongSun Co., LTD, New Taipei City, 220031, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan.
| |
Collapse
|
10
|
Guo Y, Di W, Qin C, Liu R, Cao H, Gao X. Covalent Organic Framework-Involved Sensors for Efficient Enrichment and Monitoring of Food Hazards: A Systematic Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23053-23081. [PMID: 39382449 DOI: 10.1021/acs.jafc.4c06755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The food safety issues caused by environmental pollution have posed great risks to human health that cannot be ignored. Hence, the precise monitoring of hazard factors in food has emerged as a critical concern for the food safety sector. As a novel porous material, covalent organic frameworks (COFs) have garnered significant attention due to their large specific surface area, excellent thermal and chemical stability, modifiability, and abundant recognition sites. This makes it a potential solution for food safety issues. In this research, the synthesis and regulation strategies of COFs were reviewed. The roles of COFs in enriching and detecting food hazards were discussed comprehensively and extensively. Taking representative hazard factors in food as the research object, the expression forms and participation approaches of COFs were explored, along with the effectiveness of corresponding detection methods. Finally, the development directions of COFs in the future as well as the problems existing in practical applications were discussed, which was beneficial to promote the application of COFs in food safety and beyond.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Wenli Di
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Chuan Qin
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Rui Liu
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Hongqian Cao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Xibao Gao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| |
Collapse
|
11
|
Dash PP, Ghosh AK, Mohanty P, Behura R, Behera S, Jali BR, Sahoo SK. Advances on fluorescence chemosensors for selective detection of water. Talanta 2024; 275:126089. [PMID: 38608343 DOI: 10.1016/j.talanta.2024.126089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Water, although an important part of everyday life, is acts as one of the most significant contaminants in various applications such as biomedical monitoring, chemical production, petroleum-based fuel and food processing. In fact, the presence of water in other solvents is a huge concern. For the quantification of trace water content, different methods such as Karl-Fischer, electrochemical, nuclear magnetic resonance, chromatography, and thermogravimetric analysis have been used. Although every technique has its own benefit, each one suffers from several drawbacks that include high detection costs, lengthy procedures and specialized operations. Nowadays, the development of fluorescence-based chemical probes has become an exciting area of research for the quick and accurate estimation of water content in organic solvents. A variety of chemical processes such as hydrolysis reaction, metal ions promoted oxidation reaction, suppression of the -C═N isomerization, protonation and deprotonation reactions, and molecular aggregation have been well researched in the last few years for the fluorescent detection of trace water. These chemical processes eventually lead to different photophysical events such as aggregation-induced emission (AIE), aggregation-induced emission enhancement (AIEE), aggregation-caused quenching (ACQ), fluorescent resonance energy transfer (FRET), charge transfer, photo-induced electron transfer (PET), excited state intramolecular proton transfer (ESIPT) that are responsible for the detection. This review presents a summary of the fluorescence-based chemosensors reported in recent years. The design of water sensors, sensing mechanisms and their potential applications are reviewed and discussed.
Collapse
Affiliation(s)
- Pragyan Parimita Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Arup Kumar Ghosh
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| | - Patitapaban Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Rubi Behura
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Sunita Behera
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Bigyan R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India.
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| |
Collapse
|
12
|
Li M, Shen G, Zhou Y, Chen Y, Jia L, Li X, Zhang F. Photoelectrochemical analysis of Pb 2+ based on Au@PTCA Schottky junction with Pb 2+-G quadruplex structure. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5049-5059. [PMID: 38989610 DOI: 10.1039/d4ay00716f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Herein, a novel photoelectrochemical (PEC) aptasensor using gold nanoparticles@3,4,9,10-perylene tetracarboxylic (Au@PTCA) Schottky junction as the effective optoelectronic material and lead ion (Pb2+)-G quadruplex structure as the efficient quencher was constructed for the detection of Pb2+ with high sensitivity and excellent selectivity. Au@PTCA Schottky junction, which was proposed by the in situ reduction of Au NPs on the PTCA surface, exhibited a strong unidirectional conductivity, which could generate a significantly enhanced PEC signal compared with the pure PTCA. The Pb2+-G quadruplex structure with a large spatial hindrance effect was formed when the target Pb2+ was present owing to the occurrence of the specific recognition between Pb2+ and its aptamer S1. The formation of a Pb2+-G quadruplex structure effectively quenched the initial signal generated by the Au@PTCA Schottky junction, which was derived from restricted electron transport and light transmission. The obtained prominently decreased PEC signal could achieve the quantitative detection of Pb2+ from 0.5 pM to 500 nM, with a low detection limit of 0.17 pM. The preparation time of this PEC aptasensor was 13 h, and the time for PEC measurement depended on the illumination time, which switched off-on-off for 10 s-20 s-10 s. The study proposed here with high sensitivity and excellent selectivity for Pb2+ analysis offered a novel and reliable tool for environmental monitoring related to heavy metal ions.
Collapse
Affiliation(s)
- Mengjie Li
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China.
- JINSHAN Science & Technology (Group) Co., Ltd, Chongqing 401120, China
- College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Guohao Shen
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - You Zhou
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Yang Chen
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Liping Jia
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Xiang Li
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Feng Zhang
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China.
- JINSHAN Science & Technology (Group) Co., Ltd, Chongqing 401120, China
- College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
13
|
He X, Jiang C, Yang J, Sheng S, Wang Y. Sensitive photoelectric sensing for 5-HMF detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3766-3773. [PMID: 38818642 DOI: 10.1039/d3ay02273k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
5-Hydroxymethylfurfural (5-HMF) is a heterocyclic compound with six carbons commonly found in heat-treated carbohydrate-rich foods. 5-HMF exceeding the specified limit is cytotoxic to the human body, and will be converted into carcinogenic substances (5-sulfoxide methyl furfural) after long-term accumulation in the body. Therefore, it is highly necessary to develop a sensitive and accurate detection method for 5-HMF in the field of food safety. In this study, a photoelectric sensing method was developed for the highly sensitive detection of 5-HMF using hollow TiO2 nanospheres successfully synthesized by template, sol-gel and lye etching methods. The structure and composition of the materials were studied by XRD, XPS, SEM and TEM. The electrochemical and photoelectrochemical properties of an h-TiO2 electrode probe based on indium tin oxide (ITO) slides were investigated. The results indicated that the linear relationship of 5-HMF is good in the concentration range of 10-11-10-7 M, and the detection limit of 5-HMF is 0.001 nM. Moreover, the PEC sensor shows high accuracy in the detection of actual samples.
Collapse
Affiliation(s)
- Xin He
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| | - Caiyun Jiang
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
- Jiangsu Engineering Research and Development Center of Food Safety, Department of Health, Jiangsu Vocational Institute of Commerce, Nanjing 211168, China
| | - Jie Yang
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| | - Shuangchao Sheng
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| | - Yuping Wang
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
14
|
Li S, Zhao G, Sun X, Zheng J, Liu J, Huang M. Highly sensitive and selective fluorescent "turn-on" sensor for Ag+ detection using MAPbBr3@PCN-221(Fe): An efficient Ag+-bridged energy transfer from perovskite to MOF. J Chem Phys 2024; 160:184709. [PMID: 38738613 DOI: 10.1063/5.0207983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Metal ion-induced water pollution is attracting increasing public attention. Perovskite quantum dots and metal-organic frameworks (MOFs), owing to their outstanding properties, hold promise as ideal probes for detecting metal ions. In this study, a composite material, MAPbBr3@PCN-221(Fe), was prepared by encapsulating MAPbBr3 quantum dots with PCN-221(Fe), demonstrating high chemical stability and good reusability. The composite material shows a sensitive fluorescence turn-on signal in the presence of silver ions. The fluorescence intensity of the composite material exhibits a linear relationship with the concentration of Ag+ in the solution, with a low detection limit of 8.68 µM. Moreover, the fluorescence signal exhibits a strong selectivity for Ag+, enabling the detection of Ag+ concentration. This fluorescence turn-on signal originates from the Ag+-bridged energy transfer from the conductive band of MAPbBr3 to the excited state of the MOF, which is directly proportional to the concentration of silver ions. Simultaneously, this finding may open up a new possibility in artificial controlled energy transfer from perovskite to MOF for future development.
Collapse
Affiliation(s)
- Songyuan Li
- Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Gang Zhao
- Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Xinhang Sun
- Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Jiale Zheng
- Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Junhui Liu
- Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Mingju Huang
- Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| |
Collapse
|
15
|
Song Y, Meng Y, Chen K, Huang G, Li S, Hu L. Novel electrochemical sensing strategy for ultrasensitive detection of tetracycline based on porphyrin/metal phthalocyanine-covalent organic framework. Bioelectrochemistry 2024; 156:108630. [PMID: 38147788 DOI: 10.1016/j.bioelechem.2023.108630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023]
Abstract
In this work, a novel two-dimensional semiconducting metal covalent organic framework (CuTAPc-TFPP-COF) was synthesized and used as biosensing platform to construct aptasensor for trace detection of tetracycline (TC). The CuTAPc-TFPP-COF integrates the highly conjugated structure, large specific surface area, high porosity, abundant nitrogen functional groups, excellent electrochemical activity, and strong bioaffinity for aptamers, providing abundant active sites to effectively anchor aptamer strands. As a result, the CuTAPc-TFPP-COF-based aptasensor shows high sensitivity for detecting TC via specific recognition between aptamer and TC to form Apt-TC complex. An ultralow detection limit of 59.6 fM is deduced from the electrochemical impedance spectroscopy within a wide linear range of 0.1-100000 pM for TC. The CuTAPc-TFPP-COF-based aptasensor also exhibits good selectivity, reproducibility, stability, regenerability, and excellent applicability for real river water, milk, and pork samples. Therefore, the CuTAPc-TFPP-COF-based aptasensor will be promising for detecting trace harmful antibiotics residues in environmental water and food samples.
Collapse
Affiliation(s)
- Yingpan Song
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China.
| | - Yubo Meng
- School of Mechanical Engineering, Henan University of Engineering, Zhengzhou, 451191, PR China
| | - Kun Chen
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Gailing Huang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Sizhuan Li
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Lijun Hu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| |
Collapse
|
16
|
Liu S, Zhan J, Cai B. Recent advances in photoelectrochemical platforms based on porous materials for environmental pollutant detection. RSC Adv 2024; 14:7940-7963. [PMID: 38454947 PMCID: PMC10915833 DOI: 10.1039/d4ra00503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Human health and ecology are seriously threatened by harmful environmental contaminants. It is essential to develop efficient and simple methods for their detection. Environmental pollutants can be detected using photoelectrochemical (PEC) detection technologies. The key ingredient in the PEC sensing system is the photoactive material. Due to the unique characteristics, such as a large surface area, enhanced exposure of active sites, and effective mass capture and diffusion, porous materials have been regarded as ideal sensing materials for the construction of PEC sensors. Extensive efforts have been devoted to the development and modification of PEC sensors based on porous materials. However, a review of the relationship between detection performance and the structure of porous materials is still lacking. In this work, we present an overview of PEC sensors based on porous materials. A number of typical porous materials are introduced separately, and their applications in PEC detection of different types of environmental pollutants are also discussed. More importantly, special attention has been paid to how the porous material's structure affects aspects like sensitivity, selectivity, and detection limits of the associated PEC sensor. In addition, future research perspectives in the area of PEC sensors based on porous materials are presented.
Collapse
Affiliation(s)
- Shiben Liu
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| |
Collapse
|
17
|
Wang J, Chen J, Huang W, Li X, Lai G. Exonuclease-catalyzed recycling and annular four-footed DNA walking amplification-assisted "on-off-super on" signal transitions for photoelectrochemical biosensing of kanamycin. Biosens Bioelectron 2024; 246:115894. [PMID: 38061262 DOI: 10.1016/j.bios.2023.115894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Photoelectrochemical (PEC) biosensors have exhibited a promising potential for assays of a large variety of analytes; however, how to realize their low background-based "super on" signal output is still a great challenge. Herein, we report a novel multiple nucleic acid amplification-assisted "on-off-super on" signal transition mechanism for the PEC biosensing of kanamycin antibiotics. The biosensing platform was constructed on a perylene-3,4,9,10-tetracarboxylic dianhydride-based photoelectrode, and its strong photocurrent could be well inhibited by an anchored ferrocene (Fc)-labeled hairpin DNA to produce a low background signal. Two target biorecognition-triggered exonuclease III-catalytic reactions were adopted to produce an annular four-footed DNA walker (AFW) and a methylene blue (MB)-labeled DNA strand. By using their synergistic effect to release Fc quenchers and simultaneously capture MB sensitizers, a "super on" signal output was realized. As a result, a very wide linear range from 10 fg mL-1 to 10 ng mL-1 and an ultra-low detection limit of 7.8 fg mL-1 were obtained. Meanwhile, the aptamer recognition-based homogeneous reaction and AFW-based multiple nucleic acid amplification effectively simplified the assay manipulation and well ensured the repeatability of the method. The satisfactory sample experiment results indicated its good reliability and accuracy for the antibiotic residue analysis application.
Collapse
Affiliation(s)
- Jiahao Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Jing Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Wan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
18
|
Patra BC, Datta S, Bhattacharya S. A Stimuli-Responsive Dual-Emitting Covalent Organic Framework Shows Selective Sensing of Highly Corrosive Acidic Media via Fluorescence Turn-On Signal with White Light Emission. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7650-7659. [PMID: 38315165 DOI: 10.1021/acsami.3c15339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Luminescent covalent organic frameworks (LCOFs) have been employed as platforms for sensing analytes. Judicial incorporation of appropriate functional units inside the framework leads to the different electronic states in the presence of external stimuli, e.g., temperature, pH, etc. We report herein a new COF (TPEPy) as a solid-state acid sensor specific for the highly acidic environments that range from pH ∼0.5 to ∼3.0. This COF shows a protonation-induced reversible color change from bright yellow to deep red upon decreasing the pH from 3 to 0.5 and vice versa. No visual color change was, however, observed above pH 3.0. Photoluminescence (PL) studies show that the intrinsic emission peak of the TPEPy COF at 530 nm is shifted to 420 nm owing to the N-protonation of the imine nitrogen of COF within this pH range. Extensive studies demonstrate that the protonation behavior of the COF is counterion dependent. This was revealed when different acids, e.g., HCl, HNO3, HBr, and HI, were employed. The intensity of the proton-induced emission peak at 420 nm depends significantly upon the counterions with the order of HCl > HNO3 > HBr > HI. These anions interact with the protonated TPEPy COF by cation-anion and H-bonding interactions. Further, the pristine COF showed near white light emission at a particular pH of 2.5 (CIE coordinates 0.27, 0.32). From the PL spectrophotometric titrations, the deprotonation pKa was experimentally found to be 1.8 ± 0.02 for the TPEPy COF. The sensor reported herein is reversible, reusable, and regenerable and is useful for assessing pH fluctuations within a strongly acidic range via digital signaling.
Collapse
Affiliation(s)
- Bidhan Chandra Patra
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Subhasis Datta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- Department of Chemistry, Indian Institute of Science Education and Research, Tirupati 517619, India
| |
Collapse
|
19
|
Liu Q, Li H, Zhang Y, Chen W, Yu S, Chen Y. Porphyrin/phthalocyanine-based porous organic polymers for pollutant removal and detection: Synthesis, mechanisms, and challenges. ENVIRONMENTAL RESEARCH 2023; 239:117406. [PMID: 37839529 DOI: 10.1016/j.envres.2023.117406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
The growing global concern about environmental threats due to environmental pollution requires the development of environmentally friendly and efficient removal/detection materials and methods. Porphyrin/phthalocyanine (Por/Pc) based porous organic polymers (POPs) as a newly emerging porous material are prepared through polymerizing building blocks with different structures. Benefiting from the high porosity, adjustable pore structure, and enzyme-like activities, the Por/Pc-POPs can be the ideal platform to study the removal and detection of pollutants. However, a systematic summary of their application in environmental treatment is still lacking to date. In this review, the development of various Por/Pc-POPs for pollutant removal and detection applications over the past decade was systematically addressed for the first time to offer valuable guidance on environmental remediation through the utilization of Por/Pc-POPs. This review is divided into two sections (pollutants removal and detection) focusing on Por/Pc-POPs for organic, inorganic, and gaseous pollutants adsorption, photodegradation, and chemosensing, respectively. The related removal and sensing mechanisms are also discussed, and the methods to improve removal and detection efficiency and selectivity are also summarized. For the future practical application of Por/Pc-POPs, this review provides the emerging research directions and their application possibility and challenges in the removal and detection of pollutants.
Collapse
Affiliation(s)
- Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Hao Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yuming Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Wenmiao Chen
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar.
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| |
Collapse
|
20
|
Liu Q, Guo Z, Hou X, Huang G, You T. Signal Modulation of Organic Photoelectrochemical Transistor by a Z-Scheme Photocathodic Gate: An Innovative Dual Amplification Strategy for Sensitive Aptasensing Application. Anal Chem 2023; 95:17108-17116. [PMID: 37948569 DOI: 10.1021/acs.analchem.3c04258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Pursuing a more efficient signal amplification strategy is highly demanded for improving the performance of the promising cathodic photoelectrochemical (PEC) sensors. In this work, we present an extremely effective dual signal amplification strategy by the integration of a Z-scheme nanohybrids-based photocathode with the effective signal modulation of an organic photoelectrochemical transistor (OPECT) device. Specifically, photocathodic gate material of CdTe-BiOBr nanohybrids with a Z-scheme electron-transfer route was designed and synthesized for preliminary improvement of the activity of the photogate; afterward, signal modulation of the OPECT system by the photocathodic gate of CdTe-BiOBr was then accomplished for further signal amplification by 2 orders of magnitude. As a result, the output PEC signal of CdTe-BiOBr was enhanced by 17.5-fold as compared to BiOBr, and the channel current (IDS) of the OPECT device was 117-fold magnified than its gate current (IG) response. Exemplified by tetracycline (TC) as a model target and aptamer as the specific recognition element, a versatile cathodic aptasensing platform was constructed based on the proposed OPECT device. The introduced OPECT aptasensor merits advantages, including a good linear range (1.0 × 10-12 to 1.0 × 10-6 M), a low limit of detection (4.2 × 10-13 M), and superior sensitivity than the traditional PEC methods for TC detection, which represents a universal protocol for developing the innovative photocathodic OPECT sensing platform toward accurate analysis.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- CECEP Solar Energy Technology (Zhenjiang) Co., Ltd., Zhenjiang 212013, Jiangsu, China
| | - Zhijie Guo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiuli Hou
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Guoping Huang
- CECEP Solar Energy Technology (Zhenjiang) Co., Ltd., Zhenjiang 212013, Jiangsu, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
21
|
Guan X, Zhang J, Lai S, Wang K, Zhang W, Han Y, Fan Y, Li C, Tong J. Green Synthesis of Carboxymethyl Chitosan-Based CuInS 2 QDs with Luminescent Response toward Pb 2+ Ion and Its Application in Bioimaging. Inorg Chem 2023; 62:17486-17498. [PMID: 37814218 DOI: 10.1021/acs.inorgchem.3c02901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Polysaccharide-based QDs have attracted great attention in the field of biological imaging and diagnostics. How to get rid of the high heavy metal toxicity resulting from conventional Cd- and Pb-based QDs is now the main challenge. Herein, we offer a simple and environmentally friendly approach for the "direct" interaction of thiol-ending carboxymethyl chitosan (CMC-SH) with metal salt precursors, resulting in CuInS2 QDs based on polysaccharides. A nucleation-growth mechanism based on the LaMer model can explain how CMC-CuInS2 QDs are formed. As-prepared water-soluble CMC-CuInS2 QDs exhibit monodisperse particles with sizes of 5.5-6.5 nm. CMC-CuInS2 QDs emit the bright-green fluorescence at 530 nm when excited at 466 nm with the highest quantum yield of ∼18.0%. Meanwhile, the fluorescence intensity of CMC-CuInS2 QD aqueous solution is quenched with the addition of Pb2+ and the minimal limit of detection is as little as 0.4 nM. Furthermore, due to its noncytotoxicity, great biocompatibility, and strong biorecognition ability, CMC-CuInS2 QDs can be exploited as a possible cell membrane imaging reagent. The imaging studies also demonstrate that CMC-CuInS2 QDs are suitable for Pb2+ detection in live cells and living organisms (zebrafish). Thus, this work offers such an efficient, green, and practical method for creating low-toxicity and water-soluble QD nanosensors for a sensitive and selective detection of toxic metal ion in live cells and organisms.
Collapse
Affiliation(s)
- Xiaolin Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiaming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shoujun Lai
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou 730000, China
| | - Kang Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wentao Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yang Han
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuwen Fan
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Chenghao Li
- Key Laboratory of Traditional Chinese Medicine Prevention and Treatment, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Jinhui Tong
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
22
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
23
|
Dong Q, Xing J, Yuan R, Yuan Y. Novel Porphyrinic Covalent Organic Polymer with Polarity-Switchable Dual Wavelength for Accurate and Sensitive Photoelectrochemical Sensing. Anal Chem 2023; 95:13967-13974. [PMID: 37672686 DOI: 10.1021/acs.analchem.3c02548] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Herein, we synthesized a novel porphyrinic covalent organic polymer (TPAPP-PTCA PCOP) for constructing a polarity-switchable dual-wavelength photoelectrochemical (PEC) biosensor with ferrocene (Fc) and hydrogen peroxide (H2O2) as regulator and amplifier simultaneously. Interestingly, this new PCOP possessed both n-type and p-type semiconductor characteristics, which thus enabled the appearance of a dual-polarity photocurrent at two different excitation wavelengths. Furthermore, Fc and H2O2 could readily switch the photocurrent of PCOP to the cathode and anode stemming from its efficient electron collection and donation function, respectively. Based on these, a PCOP-based PEC biosensor skillfully integrating dual wavelengths with reliable accuracy and polarity switch with high sensitivity was instituted. As a result, the developed PEC biosensor exhibited a low detection limit down to 0.089 pg mL-1 for the most powerful natural carcinogen aflatoxin M1 (AFM1) assay. Impressively, the target exhibited a completely opposite photocurrent difference to the interfering substances, and the linear correlation coefficient of the assay was improved compared to single-wavelength detection. The PEC sensing platform not only provided a basis for exploring multicharacteristic photoactive material but also innovatively developed the detection mode of the PEC biosensor.
Collapse
Affiliation(s)
- Qingyuan Dong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Juan Xing
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
24
|
Fan YY, Wen J, Li J, Yang XW, Zhang L, Zhang ZQ. Structure-switching aptasensors for sensitive detection of ochratoxin A. LUMINESCENCE 2023; 38:1678-1685. [PMID: 37455261 DOI: 10.1002/bio.4556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Ochratoxin A (OTA) is a toxic metabolite commonly found in various foods and feedstuffs. Accurate and sensitive detection of OTA is needed for food safety and human health. Based on a common OTA-binding aptamer (OTABA), two structure-switching OTABAs, namely OTABA4 and OTABA3, were designed by configuring a split G-quadruplex and a split G-triplex, respectively, at the two ends of OTABA to construct aptasensors for the detection of OTA. The OTABA, G-quadruplex, and G-triplex all can capture the thioflavin T (ThT) probe, thereby enhancing the fluorescence intensity of ThT. Bonding with OTA could change the conformations of OTABA and G-quadruplex or G-triplex regions, resulting in the release of the captured ThT and diminution of its fluorescence intensity. Dual conformation changes in structure-switching OTABA synergistically amplified the fluorescence signal and improved the sensitivity of the aptasensor, especially for that with OTABA3. The detection limits of the OTABA4-ThT and OTABA3-ThT systems for OTA were 0.28 and 0.059 ng ml-1 , with a 1.4-fold and 6.7-fold higher sensitivity than that of the original OTABA-ThT system, respectively. They performed well in corn and peanut samples and met the requirements of the food safety inspections.
Collapse
Affiliation(s)
- Yao-Yao Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Jie Wen
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Jun Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Xiao-Wen Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Lu Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
25
|
Bai Y, Miao J, Bian X, Wang Q, Gao W, Xue Y, Yang G, Zhu P, Yu J. In situ growth of a cobalt porphyrin-based covalent organic framework on multi-walled carbon nanotubes for ultrasensitive real-time monitoring of living cell-released nitric oxide. Analyst 2023; 148:4219-4226. [PMID: 37540136 DOI: 10.1039/d3an00947e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Nitric oxide (NO), as a critical transcellular messenger, participates in a variety of physiological and pathological processes. However, its real-time detection still faces challenges due to its short half-life and trace amounts. Here, MWCNTs@COF-366-Co was prepared by in situ growth of a cobalt porphyrin-based covalent organic framework (COF-366-Co) on multi-walled carbon nanotubes (MWCNTs), and a unique biosensing platform for ultrasensitive real-time NO determination was established. Remarkably, MWCNTs@COF-366-Co contains plenty of atomically arranged M-N4 active sites for electrocatalysis, which provides more efficient electron transfer pathways and resolves the random arrangement issue of active sites. COF-366-Co with a high surface area contains a large number of exposed active M-N4 sites, providing faster NO transport/diffusion and more efficient electron transfer pathways. Due to the synergy of atomic-level periodic structural features of COF-366-Co and high conductivity of MWCNTs, the MWCNTs@COF-366-Co electrochemical biosensor exhibited excellent NO determination performance in a wide range from 0.09 to 400 μM, with high sensitivity (8.9 μA μM-1 cm-2) and a low limit of detection (16 nM). Moreover, the biosensor has been successfully used to sensitively monitor NO molecules released from human umbilical vein endothelial cells (HUVECs). This research not only designed a multifunctional intelligent biosensor platform, but also provided a broad prospect for continuous dynamic monitoring of the activity of living cells and their released metabolites.
Collapse
Affiliation(s)
- Yujiao Bai
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jiansong Miao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Xiaodi Bian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Qian Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Wenqing Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Yu Xue
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Peihua Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
26
|
Liang P, Huang W, Li C, Li X, Lai G. Dual cascade DNA walking-induced "super on" photocurrent response for constructing a novel antibiotic biosensing method. Anal Chim Acta 2023; 1264:341240. [PMID: 37230718 DOI: 10.1016/j.aca.2023.341240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
The construction of effective methods for the convenient testing of antibiotic residues in real samples has attracted considerable interest. Herein, we designed a dual cascade DNA walking amplification strategy and combined it with the controllable photocurrent regulation of a photoelectrode to develop a novel photoelectrochemical (PEC) biosensing method for antibiotic detection. The photoelectrode was prepared through the surface modification of a glassy carbon electrode with the TiO2/CdS QDs nanocomposite synthesized by an in situ hydrothermal deposition method. The strong anodic PEC response of the nanocomposite could be well inhibited by the introduction of a silver nanoclusters (Ag NCs)-labeled DNA hairpin onto its surface. Upon the target biorecognition reaction, an Mg2+-dependent DNAzyme (MNAzyme)-driven DNA walking was triggered to release another MNAzyme strand-linked streptavidin (SA) complex. As this SA complex could serve as a four-legged DNA walker, its cascade walking on the electrode surface not only released Ag NCs but also caused the linking of Rhodamine 123 with the electrode to realize the "super on" photocurrent output. By using kanamycin as the model analyte, this method showed a very wide linear range from 10 fg mL-1 to 1 ng mL-1 and a very low detection limit of 0.53 fg mL-1. Meanwhile, the simple photoelectrode preparation and the aptamer recognition-based autonomous DNA walking resulted in the convenient manipulation and excellent repeatability. These unique performances determine the great potential of the proposed method for practical applications.
Collapse
Affiliation(s)
- Pan Liang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Wan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Can Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
27
|
Huang Y, Feng D, Li X, Li W, Ren J, Zhong H. Covalent organic frameworks assisted for food safety analysis. Crit Rev Food Sci Nutr 2023; 64:11006-11025. [PMID: 37417398 DOI: 10.1080/10408398.2023.2230506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Food safety incidents threaten human health and life safety. It is an effective method to prevent and control the occurrence of food safety events by enhancing the rapid and sensitive detection of food contaminants. Emerging porous materials provide for the development of efficient and stable detection methods. Covalent organic frameworks (COFs) are favored by researchers for their highly ordered pore structure, large specific surface area, and good structural and functional designability. Especially in the sensing field, COFs play the roles of carriers, conductors, quenchers, and reporters, and have broad application prospects. To better understand COFs-based sensing studies, this review briefly introduces the characteristics and different functional roles of COFs in food safety analysis, focusing on the applications of COFs in the detection of various food contaminants (including foodborne pathogens, mycotoxins, pesticides, antibiotics, heavy metals, and others). Finally, the challenges and opportunities for COFs-based sensing are discussed to facilitate further applications and development of COFs in food safety.
Collapse
Affiliation(s)
- Ying Huang
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Donghui Feng
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Xu Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Wang Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Jiali Ren
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Haiyan Zhong
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| |
Collapse
|
28
|
Wang Y, Rong Y, Ma T, Li L, Li X, Zhu P, Zhou S, Yu J, Zhang Y. Photoelectrochemical sensors based on paper and their emerging applications in point-of-care testing. Biosens Bioelectron 2023; 236:115400. [PMID: 37271095 DOI: 10.1016/j.bios.2023.115400] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023]
Abstract
Point-of-care testing (POCT) technology is urgently required owing to the prevalence of the Internet of Things and portable electronics. In light of the attractive properties of low background and high sensitivity caused by the complete separation of excitation source and detection signal, the paper-based photoelectrochemical (PEC) sensors, featured with fast in analysis, disposable and environmental-friendly have become one of the most promising strategies in POCT. Therefore, in this review, the latest advances and principal issues in the design and fabrication of portable paper-based PEC sensors for POCT are systematically discussed. Primarily, the flexible electronic devices that can be constructed by paper and the reasons why they can be used in PEC sensors are expounded. Afterwards, the photosensitive materials involved in paper-based PEC sensor and the signal amplification strategies are emphatically introduced. Subsequently, the application of paper-based PEC sensors in medical diagnosis, environmental monitoring and food safety are further discussed. Finally, the main opportunities and challenges of paper-based PEC sensing platforms for POCT are briefly summarized. It provides a distinct perspective for researchers to construct paper-based PEC sensors with portable and cost-effective, hoping to enlighten the fast development of POCT soon after, as well as benefit human society.
Collapse
Affiliation(s)
- Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yumeng Rong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shuang Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
29
|
Zhao H, Liu T, Yang F. Photoelectrochemical polarity-switching-mode and split-type biosensor based on SQ-COFs/BiOBr heterostructure for the detection of uracil-DNA glycosylase. Talanta 2023; 262:124694. [PMID: 37244241 DOI: 10.1016/j.talanta.2023.124694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Here, we constructed a split-type and photocurrent polarity switching photoelectrochemical (PEC) biosensor for ultrasensitive detection of Uracil-DNA glycosylase (UDG, abnormal UDG activity is correlated with human immunodeficiency, cancers, bloom syndrome, neurodegenerative diseases and so on) based on SQ-COFs/BiOBr heterostructure, as the photoactive materials, methylene blue (MB) as the signal sensitizer, and catalytic hairpin assembly (CHA) for signal amplification. Specifically, the photocurrent intensity generated by SQ-COFs/BiOBr was about 2 and 6.4 times of that of BiOBr and SQ-COFs alone, which could be responsible for the detection sensitivity for the proposed biosensor. In addition, it is not common to construct heterojunctions between covalent organic skeletons and inorganic nanomaterials. In UDG recognition tube, the plenty of COP probes loaded methylene blue (MB) were obtained by magnetic separation with the help of the simple chain displacement reaction of CHA. MB, as a responsive substance, can efficiently switched the photocurrent polarity of the SQ-COFs/BiOBr electrode from cathode to anode, which reduce the background signal, further improve the sensitivity of the biosensor. Based on the above, the linear detection range of our designed biosensor is 0.001-3 U mL-1, and the detection limit (LODs) is as low as 4.07 × 10-6 U mL-1. Furthermore, the biosensor can still maintain good analytical performance for UDG in real sample, which means that it has broad application prospects in the field of biomedicine.
Collapse
Affiliation(s)
- Huijuan Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Tingting Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Fei Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
30
|
Liu J, Bi Y, Tai W, Wei Y, Zhang Q, Liu A, Hu Q, Yu L. The development of a paper-based distance sensor for the detection of Pb 2+ assisted with the target-responsive DNA hydrogel. Talanta 2023; 257:124344. [PMID: 36801758 DOI: 10.1016/j.talanta.2023.124344] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Due to the serious risks of lead pollution to human health, it plays a great role in constructing a simple, inexpensive, portable, and user-friendly strategy for Pb2+ detection in environmental samples. Herein, a paper-based distance sensor is developed to detect Pb2+ assisted with the target-responsive DNA hydrogel. Pb2+ can activate DNAzyme to cleave its substrate strand, which results in the hydrolysis of the DNA hydrogel. The released water molecules trapped in the hydrogel can flow along the patterned pH paper due to the capillary force. The water flow distance (WFD) is significantly influenced by the amount of water released from the collapsed DNA hydrogel triggered by the addition of various Pb2+ concentrations. In this way, Pb2+ can be quantitatively detected without using specialized instruments and labeled molecules, and the limit of detection (LOD) of Pb2+ is 3.0 nM. Additionally, the Pb2+ sensor works well in lake water and tap water. Overall, this simple, inexpensive, portable, and user-friendly method is very promising for quantitative and in-field detection of Pb2+ with excellent sensitivity and selectivity.
Collapse
Affiliation(s)
- Jinpeng Liu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China
| | - Yanhui Bi
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, 19 Keyuan Street, Jinan, 250014, China.
| | - Wenjun Tai
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China
| | - Yong Wei
- Zhongtuo Biomedical Co., Ltd., Linyi, 276017, China
| | - Qiang Zhang
- Zhongtuo Biomedical Co., Ltd., Linyi, 276017, China
| | - Anna Liu
- Zhongtuo Biomedical Co., Ltd., Linyi, 276017, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, 19 Keyuan Street, Jinan, 250014, China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China.
| |
Collapse
|
31
|
Li HJ, Huang Y, Zhang S, Chen C, Guo X, Xu L, Liao Q, Xu J, Zhu M, Wang X, Wang D, He B. S-Scheme Porphyrin Covalent Organic Framework Heterojunction for Boosted Photoelectrochemical Immunoassays in Myocardial Infarction Diagnosis. ACS Sens 2023; 8:2030-2040. [PMID: 37134009 DOI: 10.1021/acssensors.3c00246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cardiac troponin I (cTnI) is an extremely sensitive biomarker for early indication of acute myocardial infarction (AMI). However, it still remains a tough challenge for many newly developed cTnI biosensors to achieve superior sensing performance including high sensitivity, rapid detection, and resistance to interference in clinical serum samples. Herein, a novel photocathodic immunosensor toward cTnI sensing has been successfully developed by designing a unique S-scheme heterojunction based on the porphyrin-based covalent organic frameworks (p-COFs) and p-type silicon nanowire arrays (p-SiNWs). In the novel heterojunction, the p-SiNWs are employed as the photocathode platform to acquire a strong photocurrent response. The in situ-grown p-COFs can accelerate the spatial migration rate of charge carriers by forming proper band alignment with the p-SiNWs. The crystalline π-conjugated network of p-COFs with abundant amino groups also promotes the electron transfer and anti-cTnI immobilizing process. The developed photocathodic immunosensor demonstrates a broad detection range of 5 pg/mL-10 ng/mL and a low limit of detection (LOD) of 1.36 pg/mL in clinical serum samples. Besides, the PEC sensor owns several advantages including good stability and superior anti-interference ability. By comparing our results with that of the commercial ELISA method, the relative deviations range from 0.06 to 0.18% (n = 3), and the recovery rates range from 95.4 to 109.5%. This work displays a novel strategy to design efficient and stable PEC sensing platforms for cTnI detection in real-life serums and provides guidance in future clinical diagnosis.
Collapse
Affiliation(s)
- Hui-Jun Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yueyi Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Shen Zhang
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chengzhen Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xiaoyu Guo
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ling Xu
- Institute of Brain-inspired Circuits and Systems, Fudan University, Shanghai 200093, China
| | - Qiaobo Liao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Jingcheng Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Minfang Zhu
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xianying Wang
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), Shanghai 200050, China
| | - Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Bin He
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
32
|
Emerging tetrapyrrole porous organic polymers for chemosensing applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
33
|
Zhu J, Wen W, Tian Z, Zhang X, Wang S. Covalent organic framework: A state-of-the-art review of electrochemical sensing applications. Talanta 2023; 260:124613. [PMID: 37146454 DOI: 10.1016/j.talanta.2023.124613] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Covalent organic framework (COF), a kind of porous polymer with crystalline properties, is a periodic porous framework material with precise regulation at atomic level, which can be formed by the orderly connection of pre-designed organic construction units through covalent bonds. Compared with metal-organic frameworks, COFs exhibit unique performance, including tailor-made functions, stronger load ability, structural diversity, ordered porosity, intrinsic stability and excellent adsorption features, are more conducive to the expansion of electrochemical sensing applications and the universality of applications. In addition, COFs can accurately integrate organic structural units with atomic precision into ordered structures, so that the structural diversity and application of COFs can be greatly enriched by designing new construction units and adopting reasonable functional strategies. In this review, we mainly summarized state-of-the-art recent advances of the classification and synthesis strategy of COFs, the design of functionalized COF for electrochemical sensors and COFs-based electrochemical sensing. Then, an overview of the considerable recent advances made in applying outstanding COFs to establish electrochemical sensing platform, including electrochemical sensor based on voltammetry, amperometry, electrochemical impedance spectroscopy, electrochemiluminescence, photoelectrochemical sensor and others. Finally, we discussed the positive outlooks, critical challenges and bright directions of COFs-based electrochemical sensing in the field of disease diagnosis, environmental monitoring, food safety, drug analysis, etc.
Collapse
Affiliation(s)
- Junlun Zhu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Zhengfang Tian
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China.
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
34
|
Fan D, Luo J, Gong Z, Niu J, Wang H, Wu D, Wei Q. Polyacrylic acid/polyethylene glycol hybrid antifouling interface for photoelectrochemical immunosensing of CYFRA 21-1 based on TiO 2/PpIX/Ag@Cu 2O composite. Talanta 2023; 260:124570. [PMID: 37094452 DOI: 10.1016/j.talanta.2023.124570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
A photoelectrochemical (PEC) transducer based on composite TiO2/PpIX/Ag@Cu2O was prepared for the detection of CYFRA 21-1. TiO2 nanomaterials were synthesized by hydrothermal method. TiO2/PpIX/Ag@Cu2O composites were obtained by combining protoporphyrin Ⅸ (PpIX) molecules and Ag@Cu2O on TiO2. This composite material has strong absorption in visible light region and excellent photoelectric chemical properties. Ascorbic acid (AA) is a good electron donor, which can remove photogenerated holes in liquid environment to inhibit the recombination of photogenerated electrons and hole pairs, thus enhancing the photocurrent and improving its stability. The results showed that the sensor can quantitatively test CYFRA 21-1 in the range of 0.1 pg/mL∼100 ng/mL. The photoelectric chemical sensor has the advantages of high sensitivity, low detection line limit and wide linear range.
Collapse
Affiliation(s)
- Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Jing Luo
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Zhengxing Gong
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jiali Niu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
35
|
Valentini F, Sabuzi F, Forchetta M, Conte V, Galloni P. KuQuinones: a ten years tale of the new pentacyclic quinoid compound. RSC Adv 2023; 13:9065-9077. [PMID: 36950082 PMCID: PMC10025941 DOI: 10.1039/d3ra00539a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
Quinones are widespread in nature, as they participate, mainly as redox mediators, in several biochemical processes. Up to now, various synthetic quinones have been recommended in the literature as leading molecules in energy, biomedical and catalytic fields. In this brief review, we retraced our research activity in the last ten years, mainly dedicated to the study of a new class of peculiar pentacyclic conjugated quinoid compounds, synthesized in our group. In particular, their application as sensitive materials in photoelectrochemical devices and in biosensors, as photocatalysts in selective oxidation reactions, and their anticancer activity is here reviewed.
Collapse
Affiliation(s)
- Francesca Valentini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| | - Mattia Forchetta
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| |
Collapse
|
36
|
Peng C, Pei L, Chen S, Song Y, Wang L. A hydrazone-linked covalent organic framework with abundant N and O atoms for detecting heavy metal ions. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
37
|
Wang Q, Lv L, Chi W, Bai Y, Gao W, Zhu P, Yu J. Porphyrin-Based Covalent Organic Frameworks with Donor-Acceptor Structure for Enhanced Peroxidase-like Activity as a Colorimetric Biosensing Platform. BIOSENSORS 2023; 13:188. [PMID: 36831954 PMCID: PMC9953433 DOI: 10.3390/bios13020188] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen peroxide (H2O2) and glucose play a key role in many cellular signaling pathways. The efficient and accurate in situ detection of H2O2 released from living cells has attracted extensive research interests. Herein, a new porphyrin-based porous covalent organic framework (TAP-COF) was fabricated via one-step condensation of 1,6,7,12-tetrachloroperylene tetracarboxylic acid dianhydride and 5,10,15,20-tetrakis (4-aminophenyl)porphyrin iron(III). The obtained TAP-COF has high surface areas, abundant surface catalytic active sites, and highly effective electron transport due to its precisely controllable donor-acceptor arrangement and 3D porous structure. Then, the new TAP-COF exhibited excellent peroxidase-like catalytic activity, which could effectively catalyze oxidation of the substrate 3,3',5,5'-tetramethylbenzidine by H2O2 to produce a typical blue-colored reaction. On this basis, simple, rapid and selective colorimetric methods for in situ H2O2 detection were developed with the detection limit of 2.6 nM in the wide range of 0.01 to 200 μM. The colorimetric approach also could be used for in situ detection of H2O2 released from living MCF-7 cells. This portable sensor based on a COF nanozyme not only opens a new path for point-of-care testing, but also has potential applications in the field of cell biology and clinical diagnosis.
Collapse
Affiliation(s)
- Qian Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liang Lv
- Jinan Agricultural Product Quality and Safety Center, Jinan 250316, China
| | - Wenhao Chi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yujiao Bai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenqing Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
38
|
Sun Y, Zhang B, Zhang C, Lu H, Yang Y, Han B, Dong F, Lv J, Zhang S, Li Z, Lei Z, Ma H. Simple Way to Fabricate Emissive Boron-Containing Covalent Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4569-4579. [PMID: 36642890 DOI: 10.1021/acsami.2c20580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Highly fluorescent covalent organic frameworks (COFs) are rarely obtained because of the π-π stacked layers with aggregation-caused quenching behavior. Unarguably, highly fluorescent COFs with tunable emission colors are even more rarely achieved. Herein, a general strategy to modify the classical COF material (named COF-1) by different fluorescent molecules via N → B interaction was developed. In this method, the boron-containing COF-1 acted as a porous and crystalline matrix as well as a reaction partner of Lewis acid; after interacting with fluorescent molecules with the anchoring group of pyridine (Lewis base), COF-1 takes a gorgeous transfiguration from a non-emissive powder into a highly fluorescent COF material with tunable emission colors. This disclosed method endowed the typical COFs with new emissive life and is speculated with the general research concept for all boron-containing COFs. Benefiting from the prominent fluorescent emission in the aggregation state, sensitive probes toward amines are achieved.
Collapse
Affiliation(s)
- Yuqing Sun
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Bo Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Caili Zhang
- Rizhao Customs, Rizhao, Shandong 276826, P. R. China
| | - Huiming Lu
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Yuan Yang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Bingyang Han
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Fenghao Dong
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Jiawei Lv
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Shengjun Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhao Li
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Ziqiang Lei
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Hengchang Ma
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
39
|
Chaki Roy N, Kundu T. Photoresponse of CVD grown crystalline quantum dot-embedded covalent organic framework thin film. RSC Adv 2023; 13:3669-3676. [PMID: 36756569 PMCID: PMC9890657 DOI: 10.1039/d2ra06190b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Covalent organic frameworks (COFs) are a new family of novel 2D materials which are highly sought after for integration into future sensors and other devices for their highly porous structures and large surface areas. However, low-temperature large-area growth of these semiconductive materials with a clean surface for direct device applications is still a challenging task. To provide an on-chip photonic device, a COF366-Quantum dot (COF366-QDs) thin-film-based device fabricated by in situ chemical vapor deposition (CVD) is presented. The high-resolution transmission electron microscopy (HRTEM) displays the formation of the periodic, crystalline and porous framework of the COF layer with mono-dispersed QDs of average particle size of ∼2.5-3 nm. The fabricated COF366-QD layer acts as a photoactive layer in the photonic device with an Au-COFQD-Au structure where a conduction path is formed between the metal electrodes through a network of COF layer with embedded QDs. The device shows photoactive response under 514 nm visible light with a very low dark current of 4.36 × 10-11 A with a minimum light detection capability of 160 nW and a responsivity of ∼3.42 A W-1. The photonic device was highly stable for successive switching cycles with very low attenuation. To our knowledge, this is the first report of a Quantum dot embedded COF366 thin-film by chemical vapor deposition. The proposed interfacing of COF366-QD thin-films on silicon substrate using in situ low-temperature CVD technique can be highly valuable for the development of transfer-free, clean, and low-cost preparation of industrial-scale organic electronics, optoelectronic device applications, and lab-on-chip based technologies for a wide range of future applications.
Collapse
Affiliation(s)
- Neha Chaki Roy
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology (IIT Bombay) India
| | - Tapanendu Kundu
- Department of Physics, Indian Institute of Technology (IIT Bombay) India
| |
Collapse
|
40
|
Ma X, Kang J, Wu Y, Pang C, Li S, Li J, Xiong Y, Luo J, Wang M, Xu Z. Recent advances in metal/covalent organic framework-based materials for photoelectrochemical sensing applications. Trends Analyt Chem 2022; 157:116793. [DOI: 10.1016/j.trac.2022.116793] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Recent advances in covalent organic frameworks-based heterogeneous catalysts for high-efficiency chemical transformation of carbon dioxide. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Zhang X, Gao Y, Li J, Yan J, Liu P, Fan X, Song W. A novel TAPP-DHTA COF cathodic photoelectrochemical immunosensor based on CRISPR/Cas12a-induced nanozyme catalytic generation of heterojunction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Zhang Y, Wu J, Gao J, Chen X, Wang Q, Yu X, Zhang Z, Liu M, Li J. Oxygen ether chain containing covalent organic frameworks as efficient fluorescence-enhanced probe for water detection. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Ultrathin Covalent Organic Framework Nanosheets/Ti 3C 2T x-Based Photoelectrochemical Biosensor for Efficient Detection of Prostate-Specific Antigen. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196732. [PMID: 36235265 PMCID: PMC9572316 DOI: 10.3390/molecules27196732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022]
Abstract
Designable and ultrathin covalent organic framework nanosheets (CONs) with good photoelectric activity are promising candidates for the construction of photoelectrochemical (PEC) biosensors for the detection of low-abundance biological substrates. However, achieving highly sensitive PEC properties by using emerging covalent organic framework nanosheets (CONs) remains a great challenge due to the polymeric nature and poor photoelectric activity of CONs. Herein, we report for the first time the preparation of novel composites and their PEC sensing properties by electrostatic self-assembly of ultrathin CONs (called TTPA-CONs) with Ti3C2Tx. The prepared TTPA-CONs/Ti3C2Tx composites can be used as photocathodes for PEC detection of prostate-specific antigen (PSA) with high sensitivity, low detection limit, and good stability. This work not only expands the application of CONs but also opens new avenues for the development of efficient PEC sensing platforms.
Collapse
|
45
|
Ratiometric electrochemiluminescence lab-on-paper device for DNA methylation determination based on highly conductive copper paper electrode. Biosens Bioelectron 2022; 214:114522. [DOI: 10.1016/j.bios.2022.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
|
46
|
Wu Y, Lu K, Pei F, Yan Y, Feng S, Hao Q, Xia M, Lei W. Construction of g-C3N4/Au/NH2-UiO-66 Z-scheme heterojunction for label-free photoelectrochemical recognition of D-penicillamine. Talanta 2022; 248:123617. [DOI: 10.1016/j.talanta.2022.123617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/23/2023]
|
47
|
Li L, Chen J, Xiao C, Luo Y, Zhong N, Xie Q, Chang H, Zhong D, Xu Y, Zhao M, Liao Q. Recent advances in photoelectrochemical sensors for detection of ions in water. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Yan X, Li H, Yin T, Jie G, Zhou H. Photoelectrochemical biosensing platform based on in situ generated ultrathin covalent organic framework film and AgInS 2 QDs for dual target detection of HIV and CEA. Biosens Bioelectron 2022; 217:114694. [PMID: 36113299 DOI: 10.1016/j.bios.2022.114694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/02/2022]
Abstract
In this work, a new photoelectrochemical (PEC) biosensing platform based on an ordered two-dimensional (2D) ultrathin covalent organic framework (COF) film and AgInS2 quantum dots (QDs) has been developed to enable dual-target detection of HIV and CEA. The porous COF film was firstly in situ generated on ITO, displaying super-stable and intense photocurrent with excellent repeatability. Moreover, an effective PEC quenching probe was specifically designed by loading large number of AgInS2 QDs on Au nanoparticles (NPs). After target HIV-induced cyclic amplification process to generate abundant DNA S0, the Au NPs-AgInS2 QDs probe was binded to the COF film through DNA hybridization, enabling PEC signal of the COF film to turn "off" for ultra-sensitive detection of HIV. Furthermore, when CEA as the second target specifically binded to its aptamer, the Au NPs-AgInS2 QDs quenching probe was released, achieving PEC signal "on" of the T-DA COF film for ultra-sensitive detection of CEA. This work opened a unique 2-D COF film-based PEC biosensing platform with excellent signal for rapid detection of dual targets, which can effectively avoid false positives and negatives and shows promising application for early prevention and detection of cancer diseases.
Collapse
Affiliation(s)
- Xiaoshi Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Tengyue Yin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
49
|
Ma Y, Li M, Pang K, Zhao M. Dual-Modulated Heterojunctions for Anti-Interference Sensing of Heavy Metals in Seawater. Anal Chem 2022; 94:10183-10191. [PMID: 35776919 DOI: 10.1021/acs.analchem.2c01644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trace analyte detection in a complex environment such as in seawater is usually challenging for classic redox-based electrochemical sensors since the matrix effect of high salinity and various interfering species with similar redox properties can generate false positive/negative signals, thus impacting the sensitivity and specificity of the sensors. In this work, unlike redox-based approaches, we propose a novel sensing mode that relies on dual-modulated interfacial energy barriers of heterojunctions. By constructing the hierarchical structure of Ni/TiO2/porous-reduced graphene oxide/chitosan (CS), we introduce interfacial energy barriers of Schottky junctions into the electrochemical sensors for Cu2+. Most importantly, we found that two factors, light and the electrostatic interactions between the heterojunctions and Cu2+, can be coupled to regulate the height of the interfacial energy barrier and at last exponentially magnify the sensing signals in response to Cu2+. Since the electrostatic interaction is inert to redox, the proposed sensor is robust against most interfering species even in seawater. Illumination further enhances its sensitivity by 6.23 times and endows it a limit of detection of 0.22 nM. Such a dual-modulated sensing mode is also valid in other heterojunctions such as in the p-n junctions of Ni/NiO/MoS2/CS, demonstrating its potential in more universal applications.
Collapse
Affiliation(s)
- Ye Ma
- School of Material Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao, Shandong 266100, China
| | - Ming Li
- School of Material Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao, Shandong 266100, China
| | - Kun Pang
- School of Material Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao, Shandong 266100, China
| | - Minggang Zhao
- School of Material Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao, Shandong 266100, China
| |
Collapse
|
50
|
Li M, Wu Y, An S, Yan Z. Au NP-Decorated g-C 3N 4-Based Photoelectochemical Biosensor for Sensitive Mercury Ions Analysis. ACS OMEGA 2022; 7:19622-19630. [PMID: 35721978 PMCID: PMC9202297 DOI: 10.1021/acsomega.2c01335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Herein, an efficient and feasible photoelectrochemical (PEC) biosensor based on gold nanoparticle-decorated graphitic-like carbon nitride (Au NPs@g-C3N4) with excellent photoelectric performance was designed for the highly sensitive detection of mercury ions (Hg2+) . The proposed Au NPs@g-C3N4 was first modified on the surface of the electrode, which possessed a remarkable photocurrent conversion efficiency and could produce a strong initial photocurrent. Then, the thymine-rich DNA (S1) was immobilized on the surface of the modified electrode via Au-N bonds. Subsequently, 1-hexanethiol (HT) was added to the resultant electrode to block nonspecific binding sites. Finally, the target Hg2+ was incubated on the surface of the modified glassy carbon electrode (GCE). In the presence of target Hg2+, the thymine-Hg2+-thymine (T-Hg2+-T) structure formed due to the selective capture capability of thymine base pairs toward Hg2+, resulting in the significantly decrease of the photocurrent. Thereafter, the proposed PEC biosensor was successfully used for sensitive Hg2+ detection, as it possessed a wide linear range from 1 pM to 1000 nM with a low detection limit of 0.33 pM. Importantly, this study demonstrates a new method of detecting Hg2+ and provides a promising platform for the detection of other heavy metal ions of interest.
Collapse
Affiliation(s)
- Mengjie Li
- School
of Civil Engineering and Architecture, Chongqing
University of Science and Technology, Chongqing 401331, China
- Institute
for Health and Environment, Chongqing University
of Science and Technology, Chongqing 401331, PR China
| | - Ying Wu
- School
of Civil Engineering and Architecture, Chongqing
University of Science and Technology, Chongqing 401331, China
- Institute
for Health and Environment, Chongqing University
of Science and Technology, Chongqing 401331, PR China
| | - Siyu An
- School
of Civil Engineering and Architecture, Chongqing
University of Science and Technology, Chongqing 401331, China
- Institute
for Health and Environment, Chongqing University
of Science and Technology, Chongqing 401331, PR China
| | - Zhitao Yan
- School
of Civil Engineering and Architecture, Chongqing
University of Science and Technology, Chongqing 401331, China
- Institute
for Health and Environment, Chongqing University
of Science and Technology, Chongqing 401331, PR China
| |
Collapse
|