1
|
Chen Y, Liu Y, Min Y. Innovative Polyimide Modifications for Aerospace and Optoelectronic Applications: Synergistic Enhancements in Thermal, Mechanical, and Optical Properties. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16016-16026. [PMID: 40013927 DOI: 10.1021/acsami.4c21102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
This study pioneers a molecular topology engineering strategy by incorporating a twisted diamine motif into polyimide (PI) backbones, achieving an unprecedented integration of thermal stability, mechanical robustness, and optoelectronic functionality that surpasses conventional high-performance PIs. Unlike traditional PIs constrained by performance trade-offs (e.g., compromised flexibility for thermal resistance or sacrificed bulk properties for functionalization), the modified PI demonstrates a breakthrough balance: thermal degradation temperature (T5%) exceeding 560 °C, glass transition temperature (Tg) of 380 °C, and tensile strength of 160-180 MPa. Crucially, it exhibits green fluorescence (505-515 nm) under 365/467 nm excitation─a previously unreported optical capability in PIs. Molecular dynamics/density functional theory (MD/DFT) simulations coupled with UV-vis and mechanical analyses reveal that the twisted conformation induces molecular orbital reorganization and optimized stress distribution, establishing a design framework for multifunctional PIs. In contrast to additive-dependent modification approaches, this topology-driven strategy enables intrinsic multifunctionality while maintaining compatibility with industrial polymerization processes, overcoming scalability challenges in functional PI production. The work redefines PI applications in aerospace composites, optoelectronic systems, and next-gen sensors under extreme conditions, while providing a paradigm for developing performance-integrated polymers through rational topological design.
Collapse
Affiliation(s)
- Yuwei Chen
- School of Electromechanical Engineering, Guangdong University of Technology, No. 100 Waihuanxi Road, Guangzhou HEMC, Guangzhou 510006, China
| | - Yidong Liu
- Widerange Flight Engineering Science and Applications Center, Institute of Mechanics, Chinese Academy of Sciences, No.15 Beisihuanxi Road, Beijing 100190, China
- Guangdong Aerospace Research Academy, Nansha, Guangzhou 511462, China
| | - Yonggang Min
- School of Electromechanical Engineering, Guangdong University of Technology, No. 100 Waihuanxi Road, Guangzhou HEMC, Guangzhou 510006, China
| |
Collapse
|
2
|
Pordel M, Gheibi H, Sharif A. Recent Advances in the Synthesis and Optical Applications of Acridine-based Hybrid Fluorescent Dyes. J Fluoresc 2024:10.1007/s10895-024-04001-3. [PMID: 39417934 DOI: 10.1007/s10895-024-04001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Acridine-based hybrid fluorescent dyes represent a category of dyes that integrate the acridine chromophore with other functional groups or materials to enhance their fluorescence properties. These dyes have garnered substantial attention across various domains, encompassing bioimaging, sensing, and optoelectronics. In recent years, researchers have directed their efforts toward fabricating acridine-based hybrid fluorescent dyes with improved water solubility, biocompatibility, and targeting capabilities. These advancements have facilitated their utilization in biological imaging applications, such as monitoring cellular processes, investigating protein-protein interactions, and detecting specific biomolecules. This review delineates the recent progress in synthesizing acridine-based hybrid fluorescent dyes and their applications in optical properties over the past decade. This review is anticipated to catalyze the development of innovative fluorescent materials featuring heightened properties and functionalities.
Collapse
Affiliation(s)
- Mehdi Pordel
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Hanieh Gheibi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ayda Sharif
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
3
|
Blazevicius D, Grigalevicius S. A Review of Benzophenone-Based Derivatives for Organic Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:356. [PMID: 38392729 PMCID: PMC10892487 DOI: 10.3390/nano14040356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Organic light-emitting diodes (OLEDs) have garnered considerable attention in academic and industrial circles due to their potential applications in flat-panel displays and solid-state lighting technologies, leveraging the advantages offered by organic electroactive derivatives over their inorganic counterparts. The thin and flexible design of OLEDs enables the development of innovative lighting solutions, facilitating the creation of customizable and contoured lighting panels. Among the diverse electroactive components employed in the molecular design of OLED materials, the benzophenone core has attracted much attention as a fragment for the synthesis of organic semiconductors. On the other hand, benzophenone also functions as a classical phosphor with high intersystem crossing efficiency. This characteristic makes it a compelling candidate for effective reverse intersystem crossing, with potential in leading to the development of thermally activated delayed fluorescent (TADF) emitters. These emitting materials witnessed a pronounced interest in recent years due to their incorporation in metal-free electroactive frameworks and the capability to convert triplet excitons into emissive singlet excitons through reverse intersystem crossing (RISC), consequently achieving exceptionally high external quantum efficiencies (EQEs). This review article comprehensively overviews the synthetic pathways, thermal characteristics, electrochemical behaviour, and photophysical properties of derivatives based on benzophenone. Furthermore, we explore their applications in OLED devices, both as host materials and emitters, shedding light on the promising opportunities that benzophenone-based compounds present in advancing OLED technology.
Collapse
Affiliation(s)
- Dovydas Blazevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT50254 Kaunas, Lithuania
| | - Saulius Grigalevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT50254 Kaunas, Lithuania
| |
Collapse
|
4
|
Liu J, Zhao Z, Li Q, Hua L, Zhao H, Yu C, Cao W, Ren Z. Thermally Activated Delayed Fluorescence Emitters Based on a Special Tetrahedral Silane Core. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37874777 DOI: 10.1021/acsami.3c08770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Based on the tetraphenylsilane skeleton, a new class of thermally activated delayed fluorescence (TADF) molecules have been designed and synthesized. Benefiting from the unique tetrahedron architecture of tetraphenylsilane, the intermolecular distance between TADF units can be enlarged and thus weakened the aggregation-induced quenching of triplet excitons. By adjusting the numbers of TADF subunits, the spin-orbit coupling processes can be controlled, leading to efficient up-conversion processes. The related OLEDs are fabricated through the solution processing technology, and pure-blue and green electroluminescence were observed with maximum external quantum efficiencies (EQEmax) of 6.6 and 13.8% as well as Commission Internationale de l'Eclairage coordinates of (0.14, 0.15) and (0.25, 0.45), respectively. This study provides a new idea for designing color-tunable TADF emitters through spatial structure regulation.
Collapse
Affiliation(s)
- Junhui Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Quanwei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Hua
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haisong Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | | | - Weiyu Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Zhang J, Li W, Lyu L, Wei Q, Meng Y, Li D, Wang Z, Luo M, Du S, Xu X, Zhang X, Xie G, Ge Z. Pioneering research on blue "hot exciton" polymers and their application in solution-processed organic light-emitting diodes. MATERIALS HORIZONS 2023; 10:3582-3588. [PMID: 37310703 DOI: 10.1039/d3mh00676j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An innovative novel category of polymeric hybridized local and charge-transfer (HLCT) blue materials prepared via solution processing has yet to be reported. This study introduces three polymers, namely PZ1, PZ2, and PZ3, incorporating donor-acceptor-donor (D-A-D) structures with carbazole functioning as the donor and benzophenone as the acceptor. To regulate the luminescence mechanism and conjugation length, carbonyl and alkyl chains are strategically inserted into the backbone. Theoretical calculation and transient absorption spectroscopy illustrate that the robust spin-orbit coupling between high-lying singlet excited states (Sm: m ⩽ 4) and triplet excited states (Tn: n ⩽ 7) of the polymers hastens and significantly heightens the efficiency of reverse intersystem crossing processes from Tn states. Furthermore, the existence of multiple degenerated frontier molecular orbits and significant overlaps between Tn and Sm states give rise to added radiative pathways that boost the radiative rate. This study marks a fundamental and initial manifestation of HLCT materials within the polymer field and provides a new avenue for the design of highly efficient polymeric emitters.
Collapse
Affiliation(s)
- Jiasen Zhang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lingling Lyu
- Ningbo Dayang Technology Co., Ltd., Ningbo 315000, P. R. China
| | - Qiang Wei
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanyuan Meng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deli Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou 510640, Guangdong Province, P. R. China
| | - Zhichuan Wang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Ming Luo
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Songyu Du
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xu Xu
- Ningbo Dayang Technology Co., Ltd., Ningbo 315000, P. R. China
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Wang W, Chen K, Wu H, Long Y, Zhao J, Jiang L, Liu S, Chi Z, Xu J, Zhang Y. Benzoxazole-Based Hybridized Local and Charge-Transfer Deep-Blue Emitters for Solution-Processable Organic Light-Emitting Diodes and the In fluences of Hexahydrophthalimido. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13415-13426. [PMID: 36867671 DOI: 10.1021/acsami.2c23254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hybridized local and charge-transfer (HLCT) emitters have attracted extensive attention, but the insolubility and severe self-aggregation tendency restrict their applications in solution-processable organic light-emitting diodes (OLEDs), particularly deep-blue OLEDs. Herein, two novel benzoxazole-based solution-processable HLCT emitters (BPCP and BPCPCHY) are designed and synthesized, in which benzoxazole acts as an acceptor, carbazole acts as a donor, and hexahydrophthalimido (HP, with a large intramolecular torsion angle and spatial distortion characteristics) acts as a bulky modified end-group with weak electron-withdrawing effects. Both BPCP and BPCPCHY exhibit HLCT characteristics and emit near ultraviolet in toluene at 404 and 399 nm. Compared to the BPCP, the BPCPCHY solid shows much better thermal stability (Tg, 187 vs 110 °C), higher oscillator strengths of the S1-to-S0 transition (0.5346 vs 0.4809), and faster kr (1.1 × 108 vs 7.5 × 107 s-1) and thus a much higher ΦPL in the neat film. The introduction of HP groups greatly suppresses the intra-/intermolecular charge-transfer effect and self-aggregation trends, and the BPCPCHY neat films placed in air for 3 months can still maintain an excellent amorphous morphology. The solution-processable deep-blue OLEDs utilizing BPCP and BPCPCHY achieved a CIEy of 0.06 with maximum external quantum efficiency (EQEmax) values of 7.19 and 8.53%, respectively, which are among the best results of the solution-processable deep-blue OLEDs based on the "hot exciton" mechanism. All of the above results indicate that benzoxazole is an excellent acceptor for constructing deep-blue HLCT materials, and the strategy of introducing HP as a modified end-group into an HLCT emitter provides a new perspective to develop solution-processable efficient deep-blue OLEDs with high morphological stability.
Collapse
Affiliation(s)
- Wenhui Wang
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Kaijin Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Huiyan Wu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Testing Institute of Product Quality Supervision, Guangzhou 510670, China
| | - Yubo Long
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Juan Zhao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Long Jiang
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Siwei Liu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiarui Xu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Zhang
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Kothavale S, Kim SC, Cheong K, Zeng S, Wang Y, Lee JY. Solution-Processed Pure Red TADF Organic Light-Emitting Diodes With High External Quantum Efficiency and Saturated Red Emission Color. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208602. [PMID: 36653735 DOI: 10.1002/adma.202208602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
In spite of recent research progress in red thermally activated delayed fluorescence (TADF) emitters, highly efficient solution-processable pure red TADF emitters are rarely reported. Most of the red TADF emitters reported to date are designed using a rigid acceptor unit which renders them insoluble and unsuitable for solution-processed organic light-emitting diodes (OLEDs). To resolve this issue, a novel TADF emitter, 6,7-bis(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)-2,3-bis(4-(tert-butyl)phenyl)quinoxaline-5,8-dicarbonitrile (tBuTPA-CNQx) is designed and synthesized. The highly twisted donor-acceptor architecture and appropriate highest occupied molecular orbital/lowest unoccupied molecular orbital distribution lead to a very small singlet-triplet energy gap of 0.07 eV, high photoluminescence quantum yield of 92%, and short delayed fluorescence lifetime of 52.4 µs. The peripheral t-butyl phenyl decorated quinoxaline acceptor unit and t-butyl protected triphenylamine donor unit are proven to be useful building blocks to improve solubility and minimize the intermolecular interaction. The solution-processed OLED based on tBuTPA-CNQx achieves a high external quantum efficiency (EQE) of 16.7% with a pure red emission peak at 662 nm, which is one of the highest EQE values reported till date in the solution-processed pure red TADF OLEDs. Additionally, vacuum-processable OLED based on tBuTPA-CNQx exhibits a high EQE of 22.2% and negligible efficiency roll-off.
Collapse
Affiliation(s)
- Shantaram Kothavale
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Seung Chan Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Kiun Cheong
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Songkun Zeng
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Yafei Wang
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
8
|
Zhou L, Ni F, Li N, Wang K, Xie G, Yang C. Tetracoordinate Boron-Based Multifunctional Chiral Thermally Activated Delayed Fluorescence Emitters. Angew Chem Int Ed Engl 2022; 61:e202203844. [PMID: 35441761 DOI: 10.1002/anie.202203844] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 11/07/2022]
Abstract
Purely organic emitters have shown great potential but still suffer from low efficiency in near-infrared organic light-emitting diodes (NIR-OLEDs) due to the intensive non-radiative recombination. In this contribution, two pairs of thermally activated delayed fluorescence (TADF) enantiomers (R/S-DOBP and R/S-HDOBP) with tetracoordinate boron geometries were designed and synthesized. The TADF emitters simultaneously showed aggregation-induced emission, circularly polarized luminescence, high-contrast mechanochromism, and piezochromism behaviors. More importantly, R/S-DOBP and R/S-HDOBP revealed high photoluminescence quantum yields and efficient reverse intersystem crossing in neat films. The nondoped solution-processed OLEDs based on these unique emitters revealed the NIR emission (peaking at 716 nm) with a maximum external quantum efficiency of 1.9 % and high exciton utilization efficiency of 86 %, which represent one of the best solution-processed nondoped NIR-OLEDs.
Collapse
Affiliation(s)
- Ling Zhou
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Fan Ni
- College of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Nan Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chuluo Yang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China.,College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
9
|
Zhou L, Ni F, Li N, Wang K, Xie G, Yang C. Tetracoordinate Boron‐Based Multifunctional Chiral Thermally Activated Delayed Fluorescence Emitters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ling Zhou
- Sauvage Center for Molecular Sciences Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Fan Ni
- College of Instrument Science and Opto-electronic Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Nan Li
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 P. R. China
| | - Kai Wang
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 P. R. China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Chuluo Yang
- Sauvage Center for Molecular Sciences Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Department of Chemistry Wuhan University Wuhan 430072 P. R. China
- College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
10
|
Zhang J, Wei Q, Lyu L, Cao L, Zhao M, Fei N, Wang T, Ge Z. Thermally Activated Delayed Fluorescent (TADF) Mono‐Polymeric OLED with Higher EQE over Its TADF Repeating Unit. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiasen Zhang
- College of material science and engineering Zhejiang Sci‐Tech University Hangzhou 310018 PR China
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 PR China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences PR China
| | - Qiang Wei
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 PR China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences PR China
| | | | - Liang Cao
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 PR China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences PR China
| | - Mengyu Zhao
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 PR China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences PR China
| | - Nannan Fei
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 PR China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences PR China
| | - Tao Wang
- College of material science and engineering Zhejiang Sci‐Tech University Hangzhou 310018 PR China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 PR China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences PR China
| |
Collapse
|