1
|
Guan Y, Yang L, Chen C, Wan R, Guo C, Wang P. Regulable crack patterns for the fabrication of high-performance transparent EMI shielding windows. iScience 2025; 28:111543. [PMID: 39807168 PMCID: PMC11729037 DOI: 10.1016/j.isci.2024.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/16/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Crack pattern-based metal grid film is an ideal candidate material for transparent electromagnetic interference shielding optical windows. However, achieving crack patterns with narrow grid spacing, small wire width, and high connectivity remains challenging. Herein, an aqueous acrylic colloidal dispersion was developed as a crack precursor for preparing crack patterns. The ratio of hard monomers in the precursor, the coating thickness, and the drying mediation strategy were systematically varied to control the spacing and width of the crack patterns. The resulting dense and narrow crack patterns served as sacrificial templates for the fabrication of patterning metal grid films on transparent substrates, intended for optoelectronic applications. These films demonstrated excellent optoelectronic properties (82.7% transmission at 550 nm visible light, sheet resistance 4.1 Ω/sq) and strong EMI shielding effectiveness (average shielding effectiveness 33.6 dB at 1-18 GHz), showcasing their potential as a scalable and effective transparent EMI shielding solution.
Collapse
Affiliation(s)
- Yongmao Guan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS), Xi’an, Shaanxi 710119, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqing Yang
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS), Xi’an, Shaanxi 710119, China
| | - Chao Chen
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS), Xi’an, Shaanxi 710119, China
| | - Rui Wan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS), Xi’an, Shaanxi 710119, China
| | - Chen Guo
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS), Xi’an, Shaanxi 710119, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Wang
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS), Xi’an, Shaanxi 710119, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Yang X, Shi D, Deng L, Hu Y, Luo F, Tang Y, Chen Q. Transparent and Corrosion-Resistant PDMS/ITO/Ag/ITO Multilayer Film for Efficient EMI Shielding in a Marine Environment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68693-68702. [PMID: 39611432 DOI: 10.1021/acsami.4c16158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The issue of increased electromagnetic pollution has sparked widespread demands for electromagnetic interference (EMI) shielding technology in specialized applications such as optical windows and periscopes. More importantly, the materials maintaining a high transmittance and excellent EMI shielding stability in harsh environments still remain an urgent challenge. In this work, a multilayered PDMS/ITO/Ag/ITO (PIAI) film is constructed by magnetron sputtering and spin-coating techniques. The PIAI film with a sandwiched structure design exhibited an efficient shielding effectiveness of 35 dB in the X-band while boasting an impressive transmittance of 89% at 550 nm ascribed to refractive index matching of the PDMS layer and phase cancellation interference between ITO layers. It also represented satisfying corrosion resistance and chemical stability, with a slight shielding effectiveness decrease of 5% after immersing for 24 h in 5 wt % NaCl solution. Therefore, the as-obtained multilayered film integrates the multifunctionality of efficient EMI shielding, high light transmission, and excellent corrosion resistance, offering a promising avenue for transparent EMI shielding films applied to visible windows in a harsh environment.
Collapse
Affiliation(s)
- Xinhua Yang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Dingyu Shi
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Lechun Deng
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Yimao Hu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Fa Luo
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Yun Tang
- School of Materials Science & Engineering, Xi'an University of Architecture & Technology, Xi'an, Shanxi 710055, China
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| |
Collapse
|
3
|
Zhang X, Wu D, Zhou H, Xiang D, Sun H, Chen C, Li D, Wu Y, Fu Q, Deng H. A novel strategy to prepare high performance multifunctional composite films by combining electrostatic assembly, crosslinking, topology enhancement and sintering. MATERIALS HORIZONS 2024; 11:4190-4200. [PMID: 38912594 DOI: 10.1039/d4mh00539b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Currently, polymer-fiber composite films face the challenge of striking a balance between good mechanical properties and multi-functionalities. Here, aramid fibers (ANFs), chitosan (CS) dendritic particles, and silver nanowires (AgNWs) were used to create high-performance multifunctional composite films. AgNWs and polymer dendritic particles form an interpenetrating segregated network that ensures both a continuous conductive filler and a polymer network. Electrostatic assembly eliminates repulsion between negatively charged ANFs, cross-linked CS particles generate a stable three-dimensional network, and a "brick-mortar" structure composed of multiple materials contributes to topological enhancement. Sintering encourages local overlap and fusing of the AgNWs while reducing their internal flaws. Based on the above strategy, these films achieve a strength of 306.5 MPa, a toughness of 26.5 MJ m-3, and a conductivity of 392 S cm-1. Density functional theory (DFT) and Comsol simulations demonstrate that the introduction of CS thin layers leads to strong hydrogen bonds and three-dimensional continuous conductive networks. With its outstanding mechanical and electrical properties, the AgNW@ANF/CS-CH film demonstrates excellent electromagnetic shielding (22 879.1 dB cm2 g-1) and Joule heating (70 °C within 10 s) capabilities. This work presents a novel approach to fabricate high-performance conductive films and expand their potential applications in lightweight wearable electronics and electrothermal therapy.
Collapse
Affiliation(s)
- Xuezhong Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Die Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
- Institute for Mathematical and Computational Materials Science, Chengdu Advanced Metal Materials Industry Technology Research Institute Co., Ltd., Chengdu 610300, Sichuan, China
| | - Hongju Zhou
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dong Xiang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Haoming Sun
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Chuanliang Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Dong Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Yuanpeng Wu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Hua Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
4
|
Wang H, Zheng D, Zhang Y, Han L, Cao Z, Lu Z, Tan J. High-Performance Transparent Ultrabroadband Electromagnetic Radiation Shielding from Microwave toward Terahertz. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49487-49499. [PMID: 37816124 DOI: 10.1021/acsami.3c10474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
In the era of fifth-generation networks and Internet-of-Things, the use of multiband electromagnetic radiation shielding is highly desirable for next-generation electronic devices. Herein, we report a systematic exploration of optoelectronic behaviors of ultrathin-silver-based shielding prototype (USP) film structures at the nanometer scale, unlocking the transparent ultrabroadband electromagnetic interference (EMI) shielding from microwave to terahertz frequencies. A theoretical model is proposed to optimize USP structures to achieve increased transparency, whereby optical antireflection resonances are introduced in dielectrics in conjunction with remarkable EMI shielding capability. USP can realize a state-of-the-art effective electromagnetic radiation shielding bandwidth with measured frequencies from 8 GHz up to 2 THz. Experimental results show that a basic USP (dAg = 10 nm) offers an average shielding efficiency of ∼27.5 dB from the X- to Ka-bands (8-40 GHz) and maintains a stable shielding performance of ∼22.6 dB across a broad range of 0.5-2 THz, with a measured optical transmittance of ∼95.2%. This extraordinary performance of ultrathin-silver-based film structures provides a new ultrabroadband EMI shielding paradigm for potential applications in next-generation electronics.
Collapse
Affiliation(s)
- Heyan Wang
- Ultra-Precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150001, P. R. China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150001, P. R. China
| | - Danni Zheng
- Ultra-Precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150001, P. R. China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150001, P. R. China
| | - Yilei Zhang
- Ultra-Precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150001, P. R. China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150001, P. R. China
| | - Lin Han
- Ultra-Precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150001, P. R. China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150001, P. R. China
| | - Zhibo Cao
- Ultra-Precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150001, P. R. China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150001, P. R. China
| | - Zhengang Lu
- Ultra-Precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150001, P. R. China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150001, P. R. China
| | - Jiubin Tan
- Ultra-Precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150001, P. R. China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150001, P. R. China
| |
Collapse
|
5
|
Su Z, Yang H, Wang G, Zhang Y, Zhang J, Lin J, Jia D, Wang H, Lu Z, Hu P. Transparent and high-performance electromagnetic interference shielding composite film based on single-crystal graphene/hexagonal boron nitride heterostructure. J Colloid Interface Sci 2023; 640:610-618. [PMID: 36878078 DOI: 10.1016/j.jcis.2023.02.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
The multiple requirements of optical transmittance, high shielding effectiveness, and long-term stability bring considerable challenge to electromagnetic interference (EMI) shielding in the fields of visualization windows, transparent optoelectronic devices, and aerospace equipment. To this end, attempts were hereby made, and based on high-quality single crystal graphene (SCG)/hexagonal boron nitride (h-BN) heterostructure, transparent EMI shielding films with weak secondary reflection, nanoscale ultra-thin thickness and long-term stability were finally realized by a composite structure. In this novel structure, SCG was adopted as the absorption layer, while sliver nanowires (Ag NWs) film acted as the reflection layer. These two layers were placed on different sides of the quartz to form a cavity, which achieved the dual coupling effect, so that the electromagnetic wave was reflected multiple times to form more absorption loss. Among the absorption dominant shielding films, the composite structure in this work demonstrated stronger shielding effectiveness of 28.76 dB with a higher light transmittance of 80.6%. In addition, under the protection of the outermost h-BN layer, the decline range of the shielding performance of the shielding film was extensively reduced after 30 days of exposure to air and maintained long-term stability. Overall, this study provides an outstanding EMI shielding material with great potential for practical applications in electronic devices protection.
Collapse
Affiliation(s)
- Zhen Su
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China; Key Laboratory of Micro-systems and Micro-structures, Manufacturing of Ministry of Education (MOE), Harbin Institute of Technology, Harbin 150080, China
| | - Huihui Yang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China; Key Laboratory of Micro-systems and Micro-structures, Manufacturing of Ministry of Education (MOE), Harbin Institute of Technology, Harbin 150080, China.
| | - Gang Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yilei Zhang
- Ultra-precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150080, China
| | - Jia Zhang
- Key Laboratory of Micro-systems and Micro-structures, Manufacturing of Ministry of Education (MOE), Harbin Institute of Technology, Harbin 150080, China
| | - Junhao Lin
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dechang Jia
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Heyan Wang
- Ultra-precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150080, China
| | - Zhengang Lu
- Ultra-precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150080, China
| | - PingAn Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China; Key Laboratory of Micro-systems and Micro-structures, Manufacturing of Ministry of Education (MOE), Harbin Institute of Technology, Harbin 150080, China.
| |
Collapse
|
6
|
Zhu M, Yan X, Li X, Dai L, Guo J, Lei Y, Xu Y, Xu H. Flexible, Transparent, and Hazy Composite Cellulosic Film with Interconnected Silver Nanowire Networks for EMI Shielding and Joule Heating. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45697-45706. [PMID: 36178711 DOI: 10.1021/acsami.2c13035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An optical transparent and hazy film with admirable flexibility, electromagnetic interference (EMI) shielding, and Joule heating performance meeting the requirements of optoelectronic devices is significantly desirable. Herein, a cellulose paper was infiltrated by epoxy resin to fabricate a transparent cellulose paper (TCP) with high transparency, optical haze, and favorable flexibility, owing to effective light scattering and mechanical enhancement of the cellulose network. Moreover, a highly connected silver nanowire (AgNW) network was constructed on the TCP substrate by the spray-coating method and appropriate thermal annealing technique to realize high electrical conductivity and favorable optical transmittance of the composite film at the same time, followed by coating of a polydimethylsiloxane (PDMS) layer for protection of the AgNW network. The obtained PDMS/AgNWs/TCP composite film features considerable optical transmittance (up to 86.8%) and haze (up to 97.7%), while satisfactory EMI shielding effectiveness (SE) (up to 39.1 dB, 8.2-12.4 GHz) as well as strong mechanical strength (higher than 41 MPa) were achieved. The coated PDMS layer prevented the AgNW network from falling off and ensured the long-term stability of the PDMS/AgNWs/TCP composite film under deformations. In addition, the multifunctional PDMS/AgNWs/TCP composite film also exhibited excellent Joule heating performance with low supplied voltages, rapid response, and sufficient stability. This work demonstrates a novel pathway to improve the performance of multifunctional transparent composite films for future advanced optoelectronic devices.
Collapse
Affiliation(s)
- Meng Zhu
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xuanxuan Yan
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xin Li
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Dai
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Junhao Guo
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yuting Lei
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yongjian Xu
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hailong Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
7
|
Du Z, Zhang G, Chen K, Zhou C, Zhu X, Zhang Y, Chen K, Mi HY, Wang Y, Liu C, Shen C. MXene/Polylactic Acid Fabric-Based Resonant Cavity for Realizing Simultaneous High-Performance Electromagnetic Interference (EMI) Shielding and Efficient Energy Harvesting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14607-14617. [PMID: 35297593 DOI: 10.1021/acsami.2c01160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proliferation in telecommunications and integrated/intelligent devices entails an intense concern for electromagnetic interference (EMI) shielding and versatility. It remains an activated passion to launch infusive EMI shielding materials integrated with self-powered peculiarities. Herein, a double-layered MXene/polylactic acid (PLA) fabric resonance cavity (D-MPF-RC) comprised of two MXene/PLA fabrics (MPFs) with alternating MXene and PLA structures that are separated by a poly(tetrafluoroethylene) (PTFE) frame is developed. The D-MPF-RC achieved 48.5 and 74.8% improvement in SET and SEA, and 24.6% reduction in SER by introducing the double-layered structure and increasing the resonance cavity (RC) distance without varying the material composition and cost. A high shielding efficiency (SE) of 92.3 dB was obtained at an RC distance of 6 mm owing to the synergetic effects of multiple reflections and destructive EM wave interference. The tribopolarity difference between PLA and MXene and the RC structure made the D-MPF-RC a readily available triboelectric nanogenerator (TENG) that could convert mechanical energy into electricity. The D-MPF-RC TENG demonstrated an open-circuit voltage of 88 V and achieved a peak power density of 35.4 mW m-2 on a 6.6 MΩ external resistor, which made it possible to charge capacitors and serve as a self-powered tactile sensor. This report offers new insights into the design of high-performance EMI shielding shields with a resonance cavity and proposes a feasible pathway to integrate them with energy harvesting capabilities.
Collapse
Affiliation(s)
- Ziran Du
- Key Laboratory of Materials Processing & Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Gaoyan Zhang
- Key Laboratory of Materials Processing & Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Kun Chen
- Key Laboratory of Materials Processing & Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Cheng Zhou
- Key Laboratory of Materials Processing & Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Xiaoshuai Zhu
- Key Laboratory of Materials Processing & Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Yuxiang Zhang
- Key Laboratory of Materials Processing & Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Kang Chen
- Key Laboratory of Materials Processing & Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Hao-Yang Mi
- Key Laboratory of Materials Processing & Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Yaming Wang
- Key Laboratory of Materials Processing & Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Chuntai Liu
- Key Laboratory of Materials Processing & Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Changyu Shen
- Key Laboratory of Materials Processing & Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
8
|
Thermally Conductive Poly(lactic acid) Composites with Superior Electromagnetic Shielding Performances via 3D Printing Technology. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2673-9
expr 921341742 + 922448849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
9
|
Zhong Y, Tang J, Zhang X, Wei X, Li M, Feng Y, Wang J. Flexible and durable poly para-phenylene terephthalamide fabric constructed by polydopamine and corrugated Co-Ni-P alloy with reflection characteristic for electromagnetic interference shielding. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Ma TB, Ma H, Ruan KP, Shi XT, Qiu H, Gao SY, Gu JW. Thermally Conductive Poly(lactic acid) Composites with Superior Electromagnetic Shielding Performances via 3D Printing Technology. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2673-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Zhao Y, Hao L, Zhang X, Tan S, Li H, Zheng J, Ji G. A Novel Strategy in Electromagnetic Wave Absorbing and Shielding Materials Design: Multi‐Responsive Field Effect. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100077] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yue Zhao
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| | - Lele Hao
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| | - Xindan Zhang
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| | - Shujuan Tan
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| | - Haohang Li
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| | - Jing Zheng
- Department of Chemistry and Materials Science College of Science Nanjing Forestry University Nanjing 210037 P. R. China
| | - Guangbin Ji
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| |
Collapse
|
12
|
Liang C, Gu Z, Zhang Y, Ma Z, Qiu H, Gu J. Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding: A Review. NANO-MICRO LETTERS 2021; 13:181. [PMID: 34406529 PMCID: PMC8374026 DOI: 10.1007/s40820-021-00707-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 05/21/2023]
Abstract
With the widespread application of electronic communication technology, the resulting electromagnetic radiation pollution has been significantly increased. Metal matrix electromagnetic interference (EMI) shielding materials have disadvantages such as high density, easy corrosion, difficult processing and high price, etc. Polymer matrix EMI shielding composites possess light weight, corrosion resistance and easy processing. However, the current polymer matrix composites present relatively low electrical conductivity and poor EMI shielding performance. This review firstly discusses the key concept, loss mechanism and test method of EMI shielding. Then the current development status of EMI shielding materials is summarized, and the research progress of polymer matrix EMI shielding composites with different structures is illustrated, especially for their preparation methods and evaluation. Finally, the corresponding key scientific and technical problems are proposed, and their development trend is also prospected.
Collapse
Affiliation(s)
- Chaobo Liang
- Key Laboratory of Functional Nanocomposites of Shanxi Province, College of Materials Science and Engineering, North University of China, Taiyuan, 030051, China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian, 710072, China
| | - Zhoujie Gu
- Research and Development Center, Guangdong Suqun New Materials Co., Ltd, Dongguan, 523000, China
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian, 710072, China
| | - Zhonglei Ma
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian, 710072, China.
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian, 710072, China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian, 710072, China.
| |
Collapse
|
13
|
Manufacture of high sensitive Ag-Fe3O4-PDMS nanocomposite pressure sensor through morphology control of conductive filler. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|