1
|
Zhao J, Liu H, Qi Y, Wang R, Lv Z, Yu Y, Sun S, Wang Y. Superhydrophilic PVDF membrane fabricated on modified TiO 2/CS-SDAEM nanoparticles deposited on GA/CNTs hydrophilic layer to achieve self-cleaning photodegradation and low contamination rate for dyestuff separation. Int J Biol Macromol 2025; 292:139328. [PMID: 39743058 DOI: 10.1016/j.ijbiomac.2024.139328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
In this work CS-SDAEM polymer brushes with long-chain structure were synthesized, and TiO2/CS-SDAEM nanoparticles were prepared by modifying them on the TiO2 surface. The prepared modified membrane can effectively degrade dyes through photocatalysis and can reduce the contamination rate of the membrane during use. The separation membrane achieves efficient removal of contamination by self-cleaning. The results of the membrane surface analysis test show that the formation of coordination bonds between o-benzenetriol of GA and TiO2, and the chemical reaction between CS and GA, which promote the stability between coating components. The results of filtering tests show that with the excellent anti-fouling performance of long-chain polymer brush, the photodegradability of TiO2 and a large number of hydrophilic groups contained in GA and CS, PVDF- TiO2/CS-SDAEM membranes overcome the above shortcomings and achieve super-hydrophilicity, anti-fouling and self-cleaning. In addition, DFT model simulations of photocatalytic processes show that there is a charge transfer between CS and TiO2, which increases the width of the high light absorption band and improves the efficiency of photodegradation. Modified membranes achieve efficient self-cleaning processes and low flux decline rates, which hold great promise for use in real wastewater application scenarios.
Collapse
Affiliation(s)
- Jingxuan Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Hongxu Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yuchao Qi
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ruijia Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ziwei Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yang Yu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
| | - Yiming Wang
- Department of Automotive Engineering, Jining Polytechnic, Jining 272103, China.
| |
Collapse
|
2
|
Zhao J, Liu H, Zhao Y, Qi Y, Wang R, Lv Z, Yu Y, Sun S, Wang Y, Xie A. Construction of CS-SDAEM long-chain polysaccharide derivative on TA@CNTs coated PVDF membrane with effective oil-water emulsion purification and low contamination rate. Int J Biol Macromol 2024; 275:134230. [PMID: 39084996 DOI: 10.1016/j.ijbiomac.2024.134230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Currently, the most effective way to improve the anti-fouling performance of water treatment separation membrane is to enhance the hydrophilicity of the membrane surface, but it can still cause contamination, leading to the occurrence of flux reduction. The construction of a strong hydration layer to resist wastewater contamination is still a challenging task. In this study, a defect-free hydration layer barrier was achieved by grafting chitosan polysaccharide derivatives (CS-SDAEM) on the membrane, which achieved in effective fouling prevention and low flux decline rate. A layer of tannic acid-coated carbon nanotubes (TA@CNTs) has been uniformly deposited on the commercial PVDF membrane so that the surface was rich in -COOH groups, providing sufficient reaction sites. These reactive groups facilitate the grafting of amphiphilic polymers onto the membrane. This modification strategy achieved in enhancing the antifouling performance. The modified membrane achieved low contamination rate with DR of 16.9 % for wastewater filtration, and the flux recovery rate was above 95 % with PWF of 1100 (L·m-2·h-1). The membrane had excellent anti-fouling performance, which provided a new route for the future development of water treatment membrane.
Collapse
Affiliation(s)
- Jingxuan Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Hongxu Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yuanhang Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yuchao Qi
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ruijia Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ziwei Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yang Yu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
| | - Yiming Wang
- Department of Automotive Engineering, Jining Polytechnic, Jining 272103, China
| | - Aihua Xie
- Department of Automotive Engineering, Jining Polytechnic, Jining 272103, China.
| |
Collapse
|
3
|
Zuo L, Yang Y, Zhang H, Ma Z, Xin Q, Ding C, Li J. Bioinspired Multiscale Mineralization: From Fundamentals to Potential Applications. Macromol Biosci 2024; 24:e2300348. [PMID: 37689995 DOI: 10.1002/mabi.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The wondrous and imaginative designs of nature have always been an inexhaustible treasure trove for material scientists. Throughout the long evolutionary process, biominerals with hierarchical structures possess some specific advantages such as outstanding mechanical properties, biological functions, and sensing performances, the formation of which (biomineralization) is delicately regulated by organic component. Provoked by the subtle structures and profound principles of nature, bioinspired functional minerals can be designed with the participation of organic molecules. Because of the designable morphology and functions, multiscale mineralization has attracted more and more attention in the areas of medicine, chemistry, biology, and material science. This review provides a summary of current advancements in this extending topic. The mechanisms underlying mineralization is first concisely elucidated. Next, several types of minerals are categorized according to their structural characteristic, as well as the different potential applications of these materials. At last, a comprehensive overview of future developments for bioinspired multiscale mineralization is given. Concentrating on the mechanism of fabrication and broad application prospects of multiscale mineralization, the hope is to provide inspirations for the design of other functional materials.
Collapse
Affiliation(s)
- Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yifei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengxin Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Med-X Center for Materials, Sichuan University, Sichuan, 610041, China
| |
Collapse
|
4
|
Dou B, Lin S, Wang Y, Yang L, Yao A, Liao H, Tian S, Shang J, Lan J. Versatile CO 2-responsive Sponges Decorated with ZIF-8 for Bidirectional Separation of Oil/Water and Controllable Removal of Dyes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37867-37883. [PMID: 37522905 DOI: 10.1021/acsami.3c03415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The complex wastewater containing water-soluble dyes and water-insoluble oils has given rise to significant environmental concerns that demand urgent remediation. Herein, a novel "smart" multifunctional sponge (ZIF-8@PMS) stepwise decorated with ZIF-8 nanoparticles and CO2-responsive copolymer (poly(2-(diethylamino) ethyl methacrylate-co-3-(trimethoxysilyl)propyl acrylate-co-stearyl methacrylate) was successfully prepared for CO2 controllable oil/water separation and dyes removal. The results revealed that the sponge coated with CO2-responsive copolymer for three cycles (ZIF-8@PMS-3) exhibited optimal comprehensive properties. The ZIF-8@PMS-3 had excellent compressive-resilient characteristics and chemical stability. As expected, it displayed tunable wettability and charged state under the regulation of CO2. Based on these features, ZIF-8@PMS-3 presented highly efficient removal of oil and dyes, even for the dye-containing oil/water emulsions, via a synergistic combination of adsorption and separation methods. The adsorption capacity for oil and various organic solvents ranged from 21.3 to 50 g g-1. The maximum adsorption capacities toward anionic dyes: methyl orange with 1205.89 mg g-1 and methyl blue with 880.00 mg g-1 in the presence of CO2 through electrostatic interaction. In the absence of CO2, it achieved maximum adsorption capacities for cationic dyes, including malachite green with 1246.15 mg g-1 and rhodamine B with 203 mg g-1, primarily driven by π-π interactions. According to distinct adsorption mechanisms, ZIF-8@PMS-3 could selectively adsorb either anionic or cationic dyes by exploiting CO2 as a trigger. Furthermore, the separation efficiencies for both types of oil/water emulsions surpassed 99.9%, with respective fluxes of 1566.99 L m-2 h-1 (water-in-oil emulsion) and 310.37 L m-2 h-1 (oil-in-water emulsion). Additionally, the as-prepared sponges exhibited remarkable antibacterial properties and exceptional recyclability. Therefore, the ZIF-8@PMS-3 holds substantial promise for potential applications in practical industrial wastewater treatment.
Collapse
Affiliation(s)
- Baojie Dou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shaojian Lin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
| | - Yafang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Lin Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Anrong Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hongjiang Liao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Siyao Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jiaojiao Shang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
| | - Jianwu Lan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
5
|
Wu J, Zhang X, Yan C, Li J, Zhou L, Yin X, He Y, Zhao Y, Liu M. A bioinspired strategy to construct dual-superlyophobic PPMB membrane for switchable oil/water separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Tian S, He Y, Zhang L, Li S, Bai Y, Wang Y, Wu J, Yu J, Guo X. CNTs/TiO2- loaded carbonized nanofibrous membrane with two-type self-cleaning performance for high efficiency oily wastewater remediation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Hu L, Shi L, Shen F, Tong Q, Lv X, Li Y, Liu Z, Ao L, Zhang X, Jiang G, Hou L. Electrocatalytic hydrodechlorination system with antiscaling and anti-chlorine poisoning features for salt-laden wastewater treatment. WATER RESEARCH 2022; 225:119210. [PMID: 36215844 DOI: 10.1016/j.watres.2022.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The high salinity and coexistence of scaling ions (Ca2+, Mg2+, HCO3-) in wastewater challenge the efficacy and durability of palladium (Pd)-mediated electrocatalytic hydrodechlorination (EHDC) reaction for chlorinated organic pollutant detoxification, due to the accompanying Cl- poisoning at Pd sites and scaling on electrode. In a concentrated NaCl solution (5.8 g L - 1) with Ca2+ (80.0 mg L - 1), Mg2+ (30.0 mg L - 1) and HCO3- (180.0 mg L - 1), the EHDC efficiency of Pd towards 2,4-dichlorophenol decreases significantly from 67.8% to 33.1% in 72.0 h of reaction, and the electrode is covered with layers of fluffy aragonite precipitate. Herein we demonstrate the inclusion of a commercial antiscalant 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC) can prevent both scale formation and Cl- poisoning, leading to an efficient and steady EHDC process. A mechanistic study reveals that the unique dual function of PBTC primarily originates from the bearing phosphonate and carboxyl groups. With the large affinity of these groups (especially the phosphonate group) for scaling cations and Pd, the PBTC can chelate and stabilize the scaling cations in water and replace Cl- at Pd surface. It can also release protons, and trigger the formation of more electron-deficient Pdδ+ species via PBTC-Pd binding, leading to an enhanced EHDC. This work provides effective solutions to the scaling/poisoning issues that commonly encountered in real wastewater and paves a solid road for EHDC application in pollution abatement.
Collapse
Affiliation(s)
- Lin Hu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Li Shi
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Fei Shen
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Qiuwen Tong
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xiaoshu Lv
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yiming Li
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zixun Liu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Liang Ao
- Chongqing Academy of Eco-Environmental Science, Chongqing 400700, China; Chongqing Institute of Geology and Mineral Resources, Chongqing 400700, China
| | - Xianming Zhang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Guangming Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China; High Tech Inst Beijing, Beijing 100000, China; Chongqing Academy of Eco-Environmental Science, Chongqing 400700, China; Chongqing Institute of Geology and Mineral Resources, Chongqing 400700, China.
| | - Li'an Hou
- High Tech Inst Beijing, Beijing 100000, China.
| |
Collapse
|
8
|
Xu Y, Hu J, Zhang X, Yuan D, Duan G, Li Y. Robust and multifunctional natural polyphenolic composites for water remediation. MATERIALS HORIZONS 2022; 9:2496-2517. [PMID: 35920729 DOI: 10.1039/d2mh00768a] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The scarcity of clean water has become a global environmental problem which constrains the development of public health, economy, and sustainability. In recent years, natural polyphenols have drawn increasing interests as promising platforms towards diverse water remediation composites and devices, owing to their abundant and renewable resource in nature, highly active surface chemistry, and multifunctionality. This review aims to summarize the most recent advances and highlights of natural polyphenol-based composite materials (e.g., nanofibers, membranes, particles, and hydrogels) for water remediation, by focusing on their structural and functional features, as well as their diversified applications including membrane filtration, solar distillation, adsorption, advanced oxidation processes, and disinfection. Finally, the future challenges in this field are also prospected. It is anticipated that this review will provide new opportunities towards the future development of natural polyphenols and other kinds of naturally occurring molecules in water purification applications.
Collapse
Affiliation(s)
- Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Junfei Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Dandan Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Gaigai Duan
- Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
9
|
Multi-functional composite membrane with strong photocatalysis to effectively separate emulsified-oil/dyes from complex oily sewage. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Tong Y, Chen J, Ding W, Shi L, Li W. Fabrication of a Superhydrophilic and Underwater Superoleophobic Membrane via One-Step Strategy for High-Efficiency Semicoking Wastewater Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jinbo Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wenlong Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lijian Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
11
|
Plant-inspired biomimetic hybrid PVDF membrane co-deposited by tea polyphenols and 3-amino-propyl-triethoxysilane for high-efficiency oil-in-water emulsion separation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
|