1
|
Ghosh D, Bag S, De P. Facially Amphiphilic Cholate-Conjugated Polymers for Regulating Insulin Fibrillation. Bioconjug Chem 2025; 36:1040-1053. [PMID: 40240031 DOI: 10.1021/acs.bioconjchem.5c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
To understand the influence of facially amphiphilic polymers (FAPs) on insulin fibril (IF) inhibition, three different cholate-based FAPs [cationic (PFCAQA), anionic (PFCASF), and zwitterionic (PFCASB)] have been synthesized. Besides, two control polymers [cholate and sulfobetaine-pendant random copolymer PRCASB (without facial amphiphilicity) and sulfobetaine-tethered homopolymer PSBMA (without cholate pendants)] are also prepared. Several biophysical experiments such as spectroscopic techniques [thioflavin T (ThT), Nile red (NR), tyrosine (Tyr) fluorescence assay], turbidity assay by ultraviolet-visible (UV-vis) spectroscopy, dynamic light scattering (DLS), circular dichroism (CD) study, and microscopic investigation are performed to investigate the role of polymers as antiamyloidogenic agents during insulin fibrillation. Interestingly, the PFCASB zwitterionic polymer behaves as the most efficacious antiamyloidogenic agent. To clarify the interaction of PFCASB and native insulin (NI), an isothermal titration calorimetry (ITC) experiment is carried out. Tyr and the NR fluorescence investigation suggest the important role of hydrophobic interactions, whereas the ITC experiment confirms the significance of hydrophobic and electrostatic interactions in the IF inhibitory process. A hemolytic test is conducted to investigate the toxicity caused by IF and the efficacy of PFCASB in prohibiting erythrocyte disruption caused by IF. Overall, the present work reveals the impact of the facially amphiphilic cholic acid (CA)-based zwitterionic polymer in modulating the insulin aggregation process and gives a new perspective for investigations on different protein aggregations.
Collapse
Affiliation(s)
- Desoshree Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, 741246 Mohanpur, West Bengal, India
| | - Sagar Bag
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, 741246 Mohanpur, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, 741246 Mohanpur, West Bengal, India
| |
Collapse
|
2
|
Sehra N, Parmar R, Jain R. Peptide-based amyloid-beta aggregation inhibitors. RSC Med Chem 2024:d4md00729h. [PMID: 39882170 PMCID: PMC11773382 DOI: 10.1039/d4md00729h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/28/2024] [Indexed: 01/31/2025] Open
Abstract
Aberrant protein misfolding and accumulation is considered to be a major pathological pillar of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Aggregation of amyloid-β (Aβ) peptide leads to the formation of toxic amyloid fibrils and is associated with cognitive dysfunction and memory loss in Alzheimer's disease (AD). Designing molecules that inhibit amyloid aggregation seems to be a rational approach to AD drug development. Over the years, researchers have utilized a variety of therapeutic strategies targeting different pathways, extensively studying peptide-based approaches to understand AD pathology and demonstrate their efficacy against Aβ aggregation. This review highlights rationally designed peptide/mimetics, including structure-based peptides, metal-peptide chelators, stapled peptides, and peptide-based nanomaterials as potential amyloid inhibitors.
Collapse
Affiliation(s)
- Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| |
Collapse
|
3
|
Andrikopoulos N, Tang H, Wang Y, Liang X, Li Y, Davis TP, Ke PC. Exploring Peptido-Nanocomposites in the Context of Amyloid Diseases. Angew Chem Int Ed Engl 2024; 63:e202309958. [PMID: 37943171 DOI: 10.1002/anie.202309958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Therapeutic peptides are a major class of pharmaceutical drugs owing to their target-binding specificity as well as their versatility in inhibiting aberrant protein-protein interactions associated with human pathologies. Within the realm of amyloid diseases, the use of peptides and peptidomimetics tailor-designed to overcome amyloidogenesis has been an active research endeavor since the late 90s. In more recent years, incorporating nanoparticles for enhancing the biocirculation and delivery of peptide drugs has emerged as a frontier in nanomedicine, and nanoparticles have further demonstrated a potency against amyloid aggregation and cellular inflammation to rival strategies employing small molecules, peptides, and antibodies. Despite these efforts, however, a fundamental understanding of the chemistry, characteristics and function of peptido-nanocomposites is lacking, and a systematic analysis of such strategy for combating a range of amyloid pathogeneses is missing. Here we review the history, principles and evolving chemistry of constructing peptido-nanocomposites from bottom up and discuss their future application against amyloid diseases that debilitate a significant portion of the global population.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Huayuan Tang
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Yue Wang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
| | - Xiufang Liang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
| | - Yuhuan Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Thomas P Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Pu Chun Ke
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
4
|
Wang Y, Liu W, Dong X, Sun Y. Design of Self-Assembled Nanoparticles as a Potent Inhibitor and Fluorescent Probe for β-Amyloid Fibrillization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12576-12589. [PMID: 37624641 DOI: 10.1021/acs.langmuir.3c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Alzheimer's disease (AD) remains incurable due to its complex pathogenesis. The deposition of β-amyloid (Aβ) in the brain appears much earlier than any clinical symptoms and plays an essential role in the occurrence and development of AD neuropathology, which implies the importance of early theranostics. Herein, we designed a self-assembled bifunctional nanoparticle (LC8-pCG-fLC8) for Aβ fluorescent diagnosis and inhibition. The nanoparticle was synthesized by click chemistry from Aβ-targeting peptide Ac-LVFFARKC-NH2 (LC8) and an Aβ fluorescent probe f with the zwitterionic copolymer poly(carboxybetaine methacrylate-glycidyl methacrylate) (p(CBMA-GMA), pCG). Owing to the high reactivity of epoxy groups, the peptide concentration of LC8-pCG-fLC8 nanoparticles reached about 4 times higher than that of the existing inhibitor LVFFARK@poly(carboxybetaine) (LK7@pCB). LC8-pCG-fLC8 exhibited remarkable inhibitory capability (suppression efficiency of 83.0% at 20 μM), altered the aggregation pathway of Aβ, and increased the survival rate of amyloid-induced cultured cells from 76.5% to 98.0% at 20 μM. Notably, LC8-pCG-fLC8 possessed excellent binding affinity, good biostability, and high fluorescence responsivity to β-sheet-rich Aβ oligomers and fibrils, which could be used for the early diagnosis of Aβ aggregation. More importantly, in vivo tests using transgenic C. elegans CL2006 stain showed that LC8-pCG-fLC8 could specifically image Aβ plaques, prolong the lifespan (from 13 to 17 days), and attenuate the AD-like symptoms (reducing paralysis and Aβ deposition). Therefore, self-assembled nanoparticles hold great potential in AD theranostics.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
5
|
Zangiabadi M, Ghosh A, Zhao Y. Nanoparticle Scanners for the Identification of Key Sequences Involved in the Assembly and Disassembly of β-Amyloid Peptides. ACS NANO 2023; 17:4764-4774. [PMID: 36857741 DOI: 10.1021/acsnano.2c11186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The aggregation of β-amyloid peptides (Aβ), implied in the development and progression of Alzheimer's disease, is driven by a complex set of intramolecular and intermolecular interactions involving both hydrophobic and polar residues. The key residues responsible for the forward assembling process may be different from those that should be targeted to disassemble already formed aggregates. Molecularly imprinted nanoparticle (MINP) receptors are reported in this work to strongly and selectively bind specific segments of Aβ40. Combined fluorescence spectroscopy, atomic force microscopy (AFM) imaging, and circular dichroism (CD) spectroscopy indicate that binding residues 21-30 near the loop region is most effective at inhibiting the aggregation of monomeric Aβ40, but residues 11-20 that include the internal β strand closer to the N-terminal represent the best target for disaggregating already formed aggregates in the polymerization phase. Once the aggregation proceeds to the saturation phase, binding residues 1-10 has the largest effect on the disaggregation, likely because of the accessibility of these amino acids relative to others to the MINP receptors.
Collapse
Affiliation(s)
- Milad Zangiabadi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Avijit Ghosh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
6
|
Zhang N, Yan C, Yin C, Hu X, Guan P, Cheng Y. Structural Remodeling Mechanism of the Toxic Amyloid Fibrillary Mediated by Epigallocatechin-3-gallate. ACS OMEGA 2022; 7:48047-48058. [PMID: 36591187 PMCID: PMC9798747 DOI: 10.1021/acsomega.2c05995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Numerous therapeutic agents and strategies were designed targeting the therapies of Alzheimer's disease, but many have been suspended due to their severe clinical side effects (such as encephalopathy) on patients. The attractiveness for small molecules with good biocompatibility is therefore restarted. Epigallocatechin-3-gallate (EGCG), extracted from green tea, is expected to be a promising small-molecule drug candidate, which can remodel the structure of preformed β-sheet-rich oligomers/fibrils and then effectively interfere with neurodegenerative processes. However, as the structure of non-fibrillary aggregates cannot be directly characterized, the atomic details of the underlying inhibitory and destructive mechanisms still remain elusive to date. Here, all-atom molecular dynamics simulations and experiments were carried out to elucidate the EGCG-induced remodeling mechanism of amyloid β (Aβ) fibrils. We showed that EGCG was indeed an effective Aβ fibril inhibitor. EGCG was capable of mediating conformational rearrangement of Aβ1-42 fibrils (from a β-sheet to a random coil structure) and triggering the disintegration of fibrils in a dose-dependent manner. EGCG redirected the structure of Aβ by breaking the β-sheet structure and hydrogen bonds between peptide chains within the Aβ protofibrils, especially the parallel β-strand (L17VFFAEDVGS26). Moreover, reduced solvent exposure and multisite binding patterns all tended to induce the conformation conversion of Aβ17-42 pentameric protofibrils, destroying pre-formed fibrils and inhibiting continued fibril growth. Detailed data analysis revealed that structural features of EGCG with abundant benzene ring and phenolic hydroxyl moieties preferentially interact with the parallel β-strands to effectually hinder the interaction of the interpeptide chain and the growth of the ordered β-sheet structure. Furthermore, experimental studies confirmed that EGCG was able to disaggregate the preformed fibrils and alter the protein structure. This study will enable a deeper understanding of fundamental principles for design of structural-based inhibitors.
Collapse
Affiliation(s)
- Nan Zhang
- School
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Chaoren Yan
- School
of Medicine, Key Laboratory for Molecular Genetic Mechanisms and Intervention
Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang 712082, China
| | - Changji Yin
- Monash
Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China
- Department
of Materials Science and Engineering, Monash
University, Melbourne 3800, Victoria, Australia
| | - Xiaoling Hu
- School
of Chemistry and Chemical Engineering, Northwestern
Polytechnical University, Xi’an 710072, China
| | - Ping Guan
- School
of Chemistry and Chemical Engineering, Northwestern
Polytechnical University, Xi’an 710072, China
| | - Yuan Cheng
- Monash
Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China
- Department
of Materials Science and Engineering, Monash
University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
7
|
Li L, Liu J, Li X, Tang Y, Shi C, Zhang X, Cui Y, Wang L, Xu W. Influencing factors and characterization methods of nanoparticles regulating amyloid aggregation. SOFT MATTER 2022; 18:3278-3290. [PMID: 35437550 DOI: 10.1039/d1sm01704g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human disorders associated with amyloid aggregation, such as Alzheimer's disease and Parkinson's disease, afflict the lives of millions worldwide. When peptides and proteins in the body are converted to amyloids, which have a tendency to aggregate, the toxic oligomers produced during the aggregation process can trigger a range of diseases. Nanoparticles (NPs) have been found to possess surface effects that can modulate the amyloid aggregation process and they have potential application value in the treatment of diseases related to amyloid aggregation and fibrillary tangles. In this review, we discuss recent progress relating to studies of nanoparticles that regulate amyloid aggregation. The review focuses on the factors influencing this regulation, which are important as guidelines for the future design of NPs for the treatment of amyloid aggregation. We describe the characterization methods that have been utilized so far in such studies. This review provides research information and characterization methods for the rational design of NPs, which should result in therapeutic strategies for amyloid diseases.
Collapse
Affiliation(s)
- Lingyi Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Jianhui Liu
- Yantai Center of Ecology and Environment Monitoring of Shandong Province, Yantai 264025, China
| | - Xinyue Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Yuanhan Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Changxin Shi
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Xin Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Yuming Cui
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Linlin Wang
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd, Yantai 264000, China.
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| |
Collapse
|
8
|
Wang W, Liu M, Gao W, Sun Y, Dong X. Coassembled Chitosan-Hyaluronic Acid Nanoparticles as a Theranostic Agent Targeting Alzheimer's β-Amyloid. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55879-55889. [PMID: 34786930 DOI: 10.1021/acsami.1c17267] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
β-Amyloid (Aβ) fibrillogenesis is closely associated with the pathogenesis of Alzheimer's disease (AD), so detection and inhibition of Aβ aggregation are of significance for the theranostics of AD. In this work, the coassembled nanoparticles of chitosan and hyaluronic acid cross-linked with glutaraldehyde (CHG NPs) were found to work as a theranostic agent for imaging/probing and inhibition of Aβ fibrillization both in vitro and in vivo. The biomass-based CHG NPs of high stability exhibited a wide range of excitation/emission wavelengths and showed binding affinity toward Aβ aggregates, especially for soluble Aβ oligomers. CHG NPs displayed weak emission in the monodispersed state, while they remarkably emitted increased red fluorescence upon interacting with Aβ oligomers and fibrils, showing high sensitivity with a detection limit of 0.1 nM. By comparing the different fluorescence responses of CHG NPs and Thioflavin T to Aβ aggregation, the Aβ oligomerization rate during nucleation can be determined. Moreover, the fluorescence recognition behavior of CHG NPs was selective. CHG NPs specifically bind to negatively charged amyloid aggregates but not to positively charged amyloids and negatively charged soluble proteins. Such enhancement in fluorescence emission is attributed to the clustering-triggered emission effect of CHG NPs after interaction with Aβ aggregates via various electronic conjugations and hydrogen bonding, electrostatic, and hydrophobic interactions. Besides fluorescent imaging/probing, CHG NPs over 360 μg/mL could almost completely inhibit the formation of Aβ fibrils, exhibiting the capability of regulating Aβ aggregation. In-vivo assays with Caenorhabditis elegans CL2006 demonstrated the potency of CHG NPs as an effective theranostic nanoagent for imaging Aβ plaques and inhibiting Aβ deposition. The findings proved the potential of CHG NPs for development as a potent agent for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Miaomiao Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Weiqun Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
9
|
Bera A, Sahoo S, Goswami K, Das SK, Ghosh P, De P. Modulating Insulin Aggregation with Charge Variable Cholic Acid-Derived Polymers. Biomacromolecules 2021; 22:4833-4845. [PMID: 34674527 DOI: 10.1021/acs.biomac.1c01107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To understand the effect of cholic acid (CA)-based charge variable polymeric architectures on modulating the insulin aggregation process, herein, we have designed side-chain cholate-containing charge variable polymers. Three different types of copolymers from 2-(methacryloyloxy)ethyl cholate with anionic or cationic or neutral units have been synthesized by reversible addition-fragmentation chain transfer polymerization. The effects of these copolymers on the insulin fibrillation process was studied by multiple biophysical approaches including different types of spectroscopic and microscopic analyses. Interestingly, the CA-based cationic polymer (CP-10) was observed to inhibit the insulin fibrillation process in a dose-dependent manner and to act as an effective anti-amyloidogenic agent. Corresponding anionic (AP-10) and neutral (NP-10) copolymers with cholate pendants remained insignificant in controlling the aggregation process. Tyrosine fluorescence assays and Nile red fluorescence measurements demonstrate the role of hydrophobic interaction to explain the inhibitory potencies of CP-10. Furthermore, circular dichroism spectroscopic measurements were carried out to explore the secondary structural changes of insulin fibrils in the presence of cationic polymers with and without cholate moieties. Isothermal titration calorimetry measurements revealed the involvement of electrostatic polar interaction between the CA-based cationic polymer and insulin at different stages of fibrillation. Overall, this work demonstrates the efficacy of the CA-based cationic polymer in controlling the insulin aggregation process and provides a novel dimension to the studies on protein aggregation.
Collapse
Affiliation(s)
- Avisek Bera
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Subhasish Sahoo
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Kalyan Goswami
- Department of Biochemistry, AIIMS, Kalyani, Basantapur, NH-34 Connector, Kalyani 741245, Nadia, West Bengal, India
| | - Subir Kumar Das
- Department of Biochemistry, College of Medicine & JNM Hospital, WBUHS, Kalyani 741235, Nadia, West Bengal, India
| | - Pooja Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| |
Collapse
|