1
|
Cho W, Oh MA, Kang CM, Chang H, Chung TD. Distinct Exocytosis Behavior at Synaptic Membrane Protein-Protein Coupled Cell-Electrode Interfaces Revealed by Single-Cell Amperometry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411284. [PMID: 40143788 DOI: 10.1002/smll.202411284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/05/2025] [Indexed: 03/28/2025]
Abstract
Neural interfacing technologies, combined with biospecific targeting and neuroelectrochemical analysis, provide a powerful platform for advancing the understanding of neural communication at the single-cell level. A key factor in this integration is the role of protein-mediated cell adhesion at the cell-electrode interface, which can influence cellular processes such as exocytosis. However, the specific impact of this interaction remains largely unexplored. In this study, a biospecific electrode platform functionalized with genetically engineered neuroligin-2 (eNLG2) is developed and its effect on exocytosis in PC12 cells is investigated. The findings reveal that eNLG2-modified electrodes significantly slowed exocytosis kinetics and increased the amount of neurotransmitters released per event compared to non-protein-modified and laminin-modified electrodes. These results suggest that synaptic membrane proteins, such as neuroligin and neurexin, modulate vesicle fusion dynamics likely by influencing membrane properties and intracellular signaling. This study highlights the potential of combining biospecific neural interfacing technologies with neuroelectrochemical approaches to gain comprehensive insights into exocytosis and neural communication.
Collapse
Affiliation(s)
- Wonkyung Cho
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Ah Oh
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chung Mu Kang
- Advanced Institutes of Convergence Technology, Suwon, 16229, Republic of Korea
| | - Hwanjae Chang
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Suwon, 16229, Republic of Korea
| |
Collapse
|
2
|
Villa J, Cury J, Kessler L, Tan X, Richter CP. Enhancing biocompatibility of the brain-machine interface: A review. Bioact Mater 2024; 42:531-549. [PMID: 39308547 PMCID: PMC11416625 DOI: 10.1016/j.bioactmat.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording. Although some neuroprostheses have achieved clinical success, electrode material properties, inflammatory response, and glial scar formation at the electrode-tissue interfaces affect performance and sustainability. Those challenges can be addressed by improving some of the materials' mechanical, physical, chemical, and electrical properties. This paper reviews materials and designs of current microelectrodes and discusses perspectives to advance neuroprosthetics performance.
Collapse
Affiliation(s)
- Jordan Villa
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Joaquin Cury
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Lexie Kessler
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Xiaodong Tan
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
| | - Claus-Peter Richter
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Biomedical Engineering, Northwestern University, USA
| |
Collapse
|
3
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Cho W, Jung M, Yoon SH, Jeon J, Oh MA, Kim JY, Park M, Kang CM, Chung TD. On-Site Formation of Functional Dopaminergic Presynaptic Terminals on Neuroligin-2-Modified Gold-Coated Microspheres. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3082-3092. [PMID: 38206769 DOI: 10.1021/acsami.3c13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Advancements in neural interface technologies have enabled the direct connection of neurons and electronics, facilitating chemical communication between neural systems and external devices. One promising approach is a synaptogenesis-involving method, which offers an opportunity for synaptic signaling between these systems. Janus synapses, one type of synaptic interface utilizing synaptic cell adhesion molecules for interface construction, possess unique features that enable the determination of location, direction of signal flow, and types of neurotransmitters involved, promoting directional and multifaceted communication. This study presents the first successful establishment of a Janus synapse between dopaminergic (DA) neurons and abiotic substrates by using a neuroligin-2 (NLG2)-mediated synapse-inducing method. NLG2 immobilized on gold-coated microspheres can induce synaptogenesis upon contact with spatially isolated DA axons. The induced DA Janus synapses exhibit stable synaptic activities comparable to that of native synapses over time, suggesting their suitability for application in neural interfaces. By calling for DA presynaptic organizations, the NLG2-immobilized abiotic substrate is a promising tool for the on-site detection of synaptic dopamine release.
Collapse
Affiliation(s)
- Wonkyung Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minji Jung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun-Heui Yoon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Joohee Jeon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ah Oh
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Yong Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minjung Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chung Mu Kang
- Advanced Institutes of Convergence Technology, Suwon-si 16229, Gyeonggi-do, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Suwon-si 16229, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Cho W, Yoon SH, Chung TD. Streamlining the interface between electronics and neural systems for bidirectional electrochemical communication. Chem Sci 2023; 14:4463-4479. [PMID: 37152246 PMCID: PMC10155913 DOI: 10.1039/d3sc00338h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Seamless neural interfaces conjoining neurons and electrochemical devices hold great potential for highly efficient signal transmission across neural systems and the external world. Signal transmission through chemical sensing and stimulation via electrochemistry is remarkable because communication occurs through the same chemical language of neurons. Emerging strategies based on synaptic interfaces, iontronics-based neuromodulation, and improvements in selective neurosensing techniques have been explored to achieve seamless integration and efficient neuro-electronics communication. Synaptic interfaces can directly exchange signals to and from neurons, in a similar manner to that of chemical synapses. Hydrogel-based iontronic chemical delivery devices are operationally compatible with neural systems for improved neuromodulation. In this perspective, we explore developments to improve the interface between neurons and electrodes by targeting neurons or sub-neuronal regions including synapses. Furthermore, recent progress in electrochemical neurosensing and iontronics-based chemical delivery is examined.
Collapse
Affiliation(s)
- Wonkyung Cho
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Sun-Heui Yoon
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
- Advanced Institutes of Convergence Technology Suwon-si 16229 Gyeonggi-do Republic of Korea
| |
Collapse
|