1
|
Chu K, Weng B, Lu Z, Ding Y, Zhang W, Tan R, Zheng YM, Han N. Exploration of Multidimensional Structural Optimization and Regulation Mechanisms: Catalysts and Reaction Environments in Electrochemical Ammonia Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416053. [PMID: 39887545 PMCID: PMC11923998 DOI: 10.1002/advs.202416053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Ammonia (NH3) is esteemed for its attributes as a carbon-neutral fuel and hydrogen storage material, due to its high energy density, abundant hydrogen content, and notably higher liquefaction temperature in comparison to hydrogen gas. The primary method for the synthetic generation of NH3 is the Haber-Bosch process, involving rigorous conditions and resulting in significant global energy consumption and carbon dioxide emissions. To tackle energy and environmental challenges, the exploration of innovative green and sustainable technologies for NH3 synthesis is imperative. Rapid advances in electrochemical technology have created fresh prospects for researchers in the realm of environmentally friendly NH3 synthesis. Nevertheless, the intricate intermediate products and sluggish kinetics in the reactions impede the progress of green electrochemical NH3 synthesis (EAS) technologies. To improve the activity and selectivity of the EAS, which encompasses the electrocatalytic reduction of nitrogen gas, nitrate, and nitric oxide, numerous electrocatalysts and design strategies have been meticulously investigated. Here, this review primarily delves into recent progress and obstacles in EAS pathways, examining methods to boost the yield rate and current efficiency of NH3 synthesis via multidimensional structural optimization, while also exploring the challenges and outlook for EAS.
Collapse
Affiliation(s)
- Kaibin Chu
- School of Materials Science and Engineering, Linyi University, Linyi, 276000, P. R. China
| | - Bo Weng
- State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Zhaorui Lu
- School of Materials Science and Engineering, Linyi University, Linyi, 276000, P. R. China
| | - Yang Ding
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Wei Zhang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Rui Tan
- Department of Chemical Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Yu-Ming Zheng
- State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Ning Han
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| |
Collapse
|
2
|
Wu M, Chen C, Duo J, Li Q, Song M, Sun B, Su G. Super-exchange interaction enables Fe 2-xMn xO 3 perovskite with excellent catalytic oxidation activity toward hexabromocyclododecane under humidity. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135691. [PMID: 39217925 DOI: 10.1016/j.jhazmat.2024.135691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Although enhancing the catalytic oxidation activity is a hotspot in thermal-driven catalytic disposal of persistent organic pollutants, few studies have managed to improve catalysts' water-resistance properties. Herein, we developed Fe2-xMnxO3 perovskite to boost the catalytic oxidation of hexabromocyclododecane under humidity by modulating its super-exchange interaction (SEI, Fe3+ + Mn3+ → Fe2+ + Mn4+). Fe0.4Mn1.6O3, with the strongest SEI, exhibits the biggest oxidation rate-constant, which is 3 times higher than that of commonly used Fe2O3 without SEI. Notably, unlike Fe2O3 which deactivates at a relative humidity of 5 %. Fe0.4Mn1.6O3 maintains its activity and is even boosted by 22 % compared to dry conditions. Mechanistic insights reveal that SEI between Fe and Mn enhances the reactivity of Mn4+- linked Olatt by lowering the reductive temperature from Mn4+ to Mn3+. Meanwhile, SEI promotes the adsorption of the associatively adsorbed H2O (HOH-type water) by reducing adsorption energy, thereby facilitating the formation of hydroxyl species, which are crucial for the oxidation process under humidity.
Collapse
Affiliation(s)
- Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, and State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, and State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Duo
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of ecology and geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, and State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, and State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, and State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, and State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Chu K, Zong W, Xue G, Guo H, Qin J, Zhu H, Zhang N, Tian Z, Dong H, Miao YE, Roeffaers MBJ, Hofkens J, Lai F, Liu T. Cation Substitution Strategy for Developing Perovskite Oxide with Rich Oxygen Vacancy-Mediated Charge Redistribution Enables Highly Efficient Nitrate Electroreduction to Ammonia. J Am Chem Soc 2023; 145:21387-21396. [PMID: 37728869 PMCID: PMC10557098 DOI: 10.1021/jacs.3c06402] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 09/21/2023]
Abstract
The electrocatalytic nitrate (NO3-) reduction reaction (eNITRR) is a promising method for ammonia synthesis. However, its efficacy is currently limited due to poor selectivity, largely caused by the inherent complexity of the multiple-electron processes involved. To address these issues, oxygen-vacancy-rich LaFe0.9M0.1O3-δ (M = Co, Ni, and Cu) perovskite submicrofibers have been designed from the starting material LaFeO3-δ (LF) by a B-site substitution strategy and used as the eNITRR electrocatalyst. Consequently, the LaFe0.9Cu0.1O3-δ (LF0.9Cu0.1) submicrofibers with a stronger Fe-O hybridization, more oxygen vacancies, and more positive surface potential exhibit a higher ammonia yield rate of 349 ± 15 μg h-1 mg-1cat. and a Faradaic efficiency of 48 ± 2% than LF submicrofibers. The COMSOL Multiphysics simulations demonstrate that the more positive surface of LF0.9Cu0.1 submicrofibers can induce NO3- enrichment and suppress the competing hydrogen evolution reaction. By combining a variety of in situ characterizations and density functional theory calculations, the eNITRR mechanism is revealed, where the first proton-electron coupling step (*NO3 + H+ + e- → *HNO3) is the rate-determining step with a reduced energy barrier of 1.83 eV. This work highlights the positive effect of cation substitution in promoting eNITRR properties of perovskites and provides new insights into the studies of perovskite-type electrocatalytic ammonia synthesis catalysts.
Collapse
Affiliation(s)
- Kaibin Chu
- The
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, International Joint Research
Laboratory for Nano Energy Composites, Jiangnan
University, Wuxi 214122, China
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Wei Zong
- The
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, International Joint Research
Laboratory for Nano Energy Composites, Jiangnan
University, Wuxi 214122, China
| | - Guohao Xue
- The
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, International Joint Research
Laboratory for Nano Energy Composites, Jiangnan
University, Wuxi 214122, China
| | - Hele Guo
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Jingjing Qin
- The
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, International Joint Research
Laboratory for Nano Energy Composites, Jiangnan
University, Wuxi 214122, China
| | - Haiyan Zhu
- The
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, International Joint Research
Laboratory for Nano Energy Composites, Jiangnan
University, Wuxi 214122, China
| | - Nan Zhang
- The
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, International Joint Research
Laboratory for Nano Energy Composites, Jiangnan
University, Wuxi 214122, China
| | - Zhihong Tian
- Engineering
Research Center for Nanomaterials, Henan
University, Kaifeng 475004, China
| | - Hongliang Dong
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Yue-E. Miao
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Maarten B. J. Roeffaers
- cMACS,
Department
of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Feili Lai
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Tianxi Liu
- The
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, International Joint Research
Laboratory for Nano Energy Composites, Jiangnan
University, Wuxi 214122, China
| |
Collapse
|
4
|
Hou G, Song Y, Ma X, Chu F, Wu M, Wang D, Wu J, Qi Y, Wu C, Xiong M. First principles study on electronic properties and oxygen evolution mechanism of 2D bimetallic N-doped graphene. J Mol Graph Model 2021; 111:108101. [PMID: 34922331 DOI: 10.1016/j.jmgm.2021.108101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/13/2021] [Accepted: 11/29/2021] [Indexed: 01/29/2023]
Abstract
Currently, the oxygen evolution reaction (OER) is constrained by complex four-electron transport, thus it is difficult to understand the catalytic mechanism. In this work, the electronic properties and catalytic performance of M1M2/NC (M = Mn, Fe, Co, Ni, Cu and Zn, random combination in pairs) is studied by density functional theory, the calculated results show that the overpotential of FeCu/NC is 0.88 V, which is used as the optimal catalyst to further study the OER reaction mechanism. Combined with the volcano map and the d-band center position, the low overpotential of FeCu/NC is because it has a more suitable position of d-band center -1.806 eV than other materials. Moreover, the calculation results show that the density of states (DOS) of iron-containing materials is stronger than that of other materials near the Fermi level, which can promote the catalytic reaction. In addition, O∗OH and O∗H, O∗H and O∗ linearly related theoretical equations are proposed, respectively. Furthermore, the analysis of the catalytic mechanism shows that the formation of the catalytic rate-determining step is affected by the movement of the d-band center, the distance of the transition state adsorption and the electric field.
Collapse
Affiliation(s)
- Guoyu Hou
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yubao Song
- Xi'an Thermal Power Research Institute Co., Ltd, Suzhou Branch, Suzhou, 215153, China
| | - Xinxia Ma
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Fenghong Chu
- College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Maoliang Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Daolei Wang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China.
| | - Jiang Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China.
| | - Yongfeng Qi
- School of Hydraulic Energy and Power Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Cuicui Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Muchun Xiong
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| |
Collapse
|