1
|
Wang Z, Cheng L, Ma H, Ma L, Yang J, Liu S. Monometallic dual-atom two-dimensional phthalocyanine-based metal-organic framework for carbon dioxide electroreduction: A study combining density functional theory and machine learning. J Colloid Interface Sci 2025; 695:137762. [PMID: 40339289 DOI: 10.1016/j.jcis.2025.137762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
Exploring efficient catalysts is key to promoting the practical application of electrochemical CO2 reduction reaction (CO2RR) technology. Herein, we designed 14 types of two dimensional conjugated metal-organic frameworks (2D c-MOFs), denoted as PcM-O8-M, featuring monometallic dual-atom centers with N4 and O4 coordinations, and systematically studied their CO2RR electrocatalytic performance using density functional theory (DFT) calculations. The monometallic dual-atom centers provide a feasible method for regulating both the metal atom and the coordination environment to enhance catalytic activity. Our results reveal that these 14 PcM-O8-M exhibit robust thermodynamic and electrochemical stability, along with good conductivity. The CO2RR mechanism at the MN4 and MO4 sites in PcM-O8-M was analyzed through free energy diagrams. The optimal active site was identified by comparing the limiting potential (UL) of the two active sites. Four PcM-O8-M (M = Cr, Mo, Ru, and Rh) were selected from the 14 MOFs, demonstrating high catalytic activity and selectivity toward C1 products, with the UL ranging from -0.47 V to 0 V. Additionally, a good volcano relationship between ΔG*COOH and UL was established. Machine learning analysis indicates that the atomic charge of the active site is the key intrinsic factor characterizing catalytic activity. Importantly, we identified an intrinsic descriptor φ, which correlates well with UL. This work provides valuable insights for further exploring highly efficient CO2RR electrocatalysts.
Collapse
Affiliation(s)
- Zhou Wang
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, PR China
| | - Lin Cheng
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, PR China.
| | - Huiyan Ma
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, PR China
| | - Lisha Ma
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, PR China
| | - Jucai Yang
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, PR China
| | - Shize Liu
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China.
| |
Collapse
|
2
|
Huang X, Wang M, Zhong H, Li X, Wang H, Lu Y, Zhang G, Liu Y, Zhang P, Zou R, Feng X, Dong R. Metal-Phthalocyanine-Based Two-Dimensional Conjugated Metal-Organic Frameworks for Electrochemical Glycerol Oxidation Reaction. Angew Chem Int Ed Engl 2025; 64:e202416178. [PMID: 39551712 DOI: 10.1002/anie.202416178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Electrochemical glycerol oxidation reaction (GOR) is a promising candidate to couple with cathodic reaction, like hydrogen evolution reaction, to produce high-value product with less energy consumption. Two dimensional conjugated metal-organic frameworks (2D c-MOFs), comprising square-planar metal-coordination motifs (e.g., MO4, M(NH)4, MS4), are notable for their programable active sites, intrinsic charge transport, and excellent stability, making them promising catalyst candidates for GOR. In this study, we introduce a novel class of 2D c-MOFs electrocatalysts, M2[NiPcS8] (M=Co/Ni/Cu), which are synthesized via coordination of octathiolphthalocyaninato nickel (NiPc(SH)8) with various metal centers. Due to a fast kinetic and high activity of CoS4 sites for GOR, the electrocatalytic tests demonstrate that Co2[NiPcS8] supported on carbon paper displays a low GOR potential of 1.35 V vs. RHE at 10 mA cm-2, significantly reducing the overall water-electrolysis-voltage reduction by 0.27 V from oxygen evolution reaction to GOR, thereby outperforming Ni2[NiPcS8] and Cu2[NiPcS8]. Additionally, we have determined that the GOR activity of CoX4 linkage sites varies with different heteroatoms, following an experimentally and theoretically confirmed activity order of CoS4>CoO4>Co(NH)4. The GOR performance of Co2[NiPcS8] not only demonstrate superior performance among non-noble metal complex, but also provides critical insights on designing high-performance MOF electrocatalysts upon optimizing the electronic environment of active sites.
Collapse
Affiliation(s)
- Xing Huang
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Haixia Zhong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Xiaodong Li
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Huaping Wang
- Department of Chemistry, Capital Normal University, 100048, Beijing, China
| | - Yang Lu
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Geping Zhang
- Department of Chemistry, The University of Hong Kong, 999077, Hong Kong, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, 518000, Shenzhen, China
| | - Yannan Liu
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Panpan Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Ruqiang Zou
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Renhao Dong
- Department of Chemistry, The University of Hong Kong, 999077, Hong Kong, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, 518000, Shenzhen, China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| |
Collapse
|
3
|
Fan J, Yang L, Li H, Sun Z, Mei M, Zhu W. A hydrogen passivation strategy for the electrocatalytic chlorine evolution reaction on metal-organic frameworks: a theoretical insight. Phys Chem Chem Phys 2024; 26:28565-28572. [PMID: 39523826 DOI: 10.1039/d4cp03153a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The chlorine evolution reaction (CER) is a crucial solution for treating chlorine-containing wastewater, a type of wastewater generated during the chemical production process. Electrocatalysts applied are mainly dimensionally stable anodes (DSAs) such as precious metals and their oxides. In order to reduce the amounts of rare metals in the catalysts and to improve the catalytic performance, a hydrogen-passivated transition metal site strategy based on a metal-organic framework, TM3(THT)2 (TM = Mn, Fe, Co, Ni, Tc, Ru, Rh, Pd, Re, Os, Ir, Pt), was proposed to force the CER to proceed at the sulfur (S) site. With the help of density functional theory (DFT), the CER process at the transition metal (TM) site and the S site in TM3(THT)2 before and after H passivation has been systematically researched. The results revealed that, for the same catalyst, the catalytic performance for the CER after passivation was significantly improved compared with that before the passivation. The Gibbs free energy of Re3(THT)2 was -0.085 eV after the H passivation. Meanwhile, at an external voltage of 0 V, the theoretical overpotential of the oxygen evolution reaction (OER) was obviously greater than that of the CER. Therefore, excellent activity and selectivity for the CER were demonstrated using the H-passivated Re3(THT)2. Electronic structure analysis revealed that the natural origin of the weak adsorption was the overlap of the p orbital of the S site with the p orbital of Cl, and the overlap area was smaller than the overlap of the d orbital of Re with the p orbital of Cl. To obtain excellent catalytic performance for the CER, the electro zcatalyst should activate Cl while minimizing the adsorption of Cl as much as possible. The strategy of the hydrogen passivation of highly active sites proposed in this article may be an effective means to improve the catalytic performance of metal-organic frameworks for the CER.
Collapse
Affiliation(s)
- Jiake Fan
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Lei Yang
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Hui Li
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Zijian Sun
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Mengyun Mei
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Weihua Zhu
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
4
|
Ghuffar HA, Noh H. Lithium-coupled electron transfer reactions of nano-confined WO x within Zr-based metal-organic framework. Front Chem 2024; 12:1427536. [PMID: 38947957 PMCID: PMC11214277 DOI: 10.3389/fchem.2024.1427536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Interfacial charge transfer reactions involving cations and electrons are fundamental to (photo/electro) catalysis, energy storage, and beyond. Lithium-coupled electron transfer (LCET) at the electrode-electrolyte interfaces of lithium-ion batteries (LIBs) is a preeminent example to highlight the importance of charge transfer in modern-day society. The thermodynamics of LCET reactions define the minimal energy for charge/discharge of LIBs, and yet, these parameters are rarely available in the literature. Here, we demonstrate the successful incorporation of tungsten oxides (WOx) within a chemically stable Zr-based metal-organic framework (MOF), MOF-808. Cyclic voltammograms (CVs) of the composite, WOx@MOF-808, in Li+-containing acetonitrile (MeCN)-based electrolytes showed an irreversible, cathodic Faradaic feature that shifted in a Nernstian fashion with respect to the Li+ concentration, i.e., ∼59 mV/log [(Li+)]. The Nernstian dependence established 1:1 stoichiometry of Li+ and e-. Using the standard redox potential of Li+/0, the apparent free energy of lithiation of WOx@MOF-808 (ΔGapp,Li) was calculated to be -36 ± 1 kcal mol-1. ΔGapp,Li is an intrinsic parameter of WOx@MOF-808, and thus by deriving the similar reaction free energies of other metal oxides, their direct comparisons can be achieved. Implications of the reported measurements will be further contrasted to proton-coupled electron transfer (PCET) reactions on metal oxides.
Collapse
Affiliation(s)
| | - Hyunho Noh
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, United States
| |
Collapse
|
5
|
Intrator JA, Velazquez DA, Fan S, Mastrobattista E, Yu C, Marinescu SC. Electrocatalytic CO 2 reduction to formate by a cobalt phosphino-thiolate complex. Chem Sci 2024; 15:6385-6396. [PMID: 38699267 PMCID: PMC11062087 DOI: 10.1039/d3sc06805f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/09/2024] [Indexed: 05/05/2024] Open
Abstract
Electrochemical conversion of CO2 to value-added products serves as an attractive method to store renewable energy as energy-dense fuels. Selectivity in this type of conversion can be limited, often leading to the formation of side products such as H2. The activity of a cobalt phosphino-thiolate complex ([Co(triphos)(bdt)]+) towards the selective reduction of CO2 to formate is explored in this report. In the presence of H2O, selective production of formate (as high as 94%) is observed at overpotentials of 750 mV, displaying negligible current degradation during long-term electrolysis experiments ranging as long as 24 hours. Chemical reduction studies of [Co(triphos)(bdt)]+ indicates deligation of the apical phosphine moiety is likely before catalysis. Computational and experimental results suggest a metal-hydride pathway, indicating an ECEC based mechanism.
Collapse
Affiliation(s)
- Jeremy A Intrator
- Department of Chemistry, University of Southern California Los Angeles CA 900089 USA
| | - David A Velazquez
- Department of Chemistry, University of Southern California Los Angeles CA 900089 USA
| | - Sicheng Fan
- Department of Chemistry, University of Southern California Los Angeles CA 900089 USA
| | - Ellie Mastrobattista
- Department of Chemistry, University of Southern California Los Angeles CA 900089 USA
| | - Christine Yu
- Department of Chemistry, University of Southern California Los Angeles CA 900089 USA
| | - Smaranda C Marinescu
- Department of Chemistry, University of Southern California Los Angeles CA 900089 USA
| |
Collapse
|
6
|
Jeon M, Kim M, Lee JS, Kim H, Choi SJ, Moon HR, Kim J. Computational Prediction of Stacking Mode in Conductive Two-Dimensional Metal-Organic Frameworks: An Exploration of Chemical and Electrical Property Changes. ACS Sens 2023; 8:3068-3075. [PMID: 37524053 DOI: 10.1021/acssensors.3c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Conductive two-dimensional metal-organic frameworks (2D MOFs) have attracted interest as they induce strong charge delocalization and improve charge carrier mobility and concentration. However, characterizing their stacking mode depends on expensive and time-consuming experimental measurements. Here, we construct a potential energy surface (PES) map database for 36 2D MOFs using density functional theory (DFT) for the experimentally synthesized and non-synthesized 2D MOFs to predict their stacking mode. The DFT PES results successfully predict the experimentally synthesized stacking mode with an accuracy of 92.9% and explain the coexistence mechanism of dual stacking modes in a single compound. Furthermore, we analyze the chemical (i.e., host-guest interaction) and electrical (i.e., electronic structure) property changes affected by stacking mode. The DFT results show that the host-guest interaction can be enhanced by the transition from AA to AB stacking, taking H2S gas as a case study. The electronic band structure calculation confirms that as AB stacking displacement increases, the in-plane charge transport pathway is reduced while the out-of-plane charge transport pathway is maintained or even increased. These results indicate that there is a trade-off between chemical and electrical properties in accordance with the stacking mode.
Collapse
Affiliation(s)
- Mingyu Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Minhyuk Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joon-Seok Lee
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Honghui Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hoi Ri Moon
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Kessler BJO, Mansoor IF, Wozniak DI, Emge TJ, Lipke MC. Controlling Intramolecular and Intermolecular Electronic Coupling of Radical Ligands in a Series of Cobaltoviologen Complexes. J Am Chem Soc 2023; 145:15924-15935. [PMID: 37460450 DOI: 10.1021/jacs.3c03725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Controlling electronic coupling between multiple redox sites is of interest for tuning the electronic properties of molecules and materials. While classic mixed-valence (MV) systems are highly tunable, e.g., via the organic bridges connecting the redox sites, metal-bridged MV systems are difficult to control because the electronics of the metal cannot usually be altered independently of redox-active moieties embedded in its ligands. Herein, this limitation was overcome by varying the donor strengths of ancillary ligands in a series of cobalt complexes without directly perturbing the electronics of viologen-like redox sites bridged by the cobalt ions. The cobaltoviologens [1X-Co]n+ feature four 4-X-pyridyl donor groups (X = CO2Me, Cl, H, Me, OMe, NMe2) that provide gradual electronic tuning of the bridging CoII centers, while a related complex [2-Co]n+ with NHC donors supports exclusively CoIII states even upon reduction of the viologen units. Electrochemistry and IVCT band analysis indicate that the MV states of these complexes have electronic structures ranging from fully localized ([2-Co]4+; Robin-Day Class I) to fully delocalized ([1CO2Me-Co]3+; Class III) descriptions, demonstrating unprecedented control over electronic coupling without changing the identity of the redox sites or bridging metal. Additionally, single-crystal XRD characterization of the homovalent complexes [1H-Co]2+ and [1H-Zn]2+ revealed radical-pairing interactions between the viologen ligands of adjacent complexes, representing a type of through-space electronic coupling commonly observed for organic viologen radicals but never before seen in metalloviologens. The extended solid-state packing of these complexes produces 3D networks of radical π-stacking interactions that impart unexpected mechanical flexibility to these crystals.
Collapse
Affiliation(s)
- Brice J O Kessler
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Iram F Mansoor
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Derek I Wozniak
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
8
|
Muthukumar P, Arunkumar G, Pannipara M, Al-Sehemi AG, Moon D, Anthony SP. Highly enhanced electrocatalytic OER activity of water-coordinated copper complexes: effect of lattice water and bridging ligand. RSC Adv 2023; 13:12065-12071. [PMID: 37082374 PMCID: PMC10111156 DOI: 10.1039/d3ra01186k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
The use of metal-organic compounds as electrocatalysts for water splitting reactions has gained increased attention; however, a fundamental understanding of the structural requirement for effective catalytic activity is still limited. Herein, we synthesized water-coordinated mono and bimetallic copper complexes (CuPz-H2O·H2O, CuPz-H2O, CuBipy-H2O·H2O, and CuMorph-H2O) with varied intermetallic spacing (pyrazine/4,4'-bipyridine) and explored the structure-dependent oxygen evolution reaction (OER) activity in alkaline medium. Single crystal structural studies revealed water-coordinated monometallic complexes (CuMorph-H2O) and bimetallic complexes (CuPz-H2O·H2O, CuPz-H2O, CuBipy-H2O·H2O). Further, CuPz-H2O·H2O and CuBipy-H2O·H2O contained lattice water along with coordinated water. Interestingly, the bimetallic copper complex with lattice water and shorter interspacing between the metal centres (CuPz-H2O·H2O) showed strong OER activity and required an overpotential of 228 mV to produce a benchmark current density of 10 mA cm-2. Bimetallic copper complex (CuPz-H2O) without lattice water but the same intermetallic spacing and bimetallic complex with increased interspacing but with lattice water (CuBipy-H2O·H2O) exhibited relatively lower OER activity. CuPz-H2O and CuBipy-H2O·H2O required an overpotential of 236 and 256 mA cm-2, respectively. Monometallic CuMorph-H2O showed the lowest OER activity (overpotential 271 mV) compared to bimetallic complexes. The low Tafel slope and charge transfer resistance of CuPz-H2O·H2O facilitated faster charge transfer kinetics at the electrode surface and supported the enhanced OER activity. The chronoamperometric studies indicated good stability of the catalyst. Overall, the present structure-electrocatalytic activity studies of copper complexes might provide structural insight for designing new efficient electrocatalysts based on metal coordination compounds.
Collapse
Affiliation(s)
- Pandi Muthukumar
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-600077 Tamil Nadu India
| | - Gunasekaran Arunkumar
- School of Chemical & Biotechnology, SASTRA Deemed University Thanjavur 613401 Tamil Nadu India
| | - Mehboobali Pannipara
- Research Center for Advanced Materials Science, King Khalid University Abha 61413 Saudi Arabia
- Department of Chemistry, King Khalid University Abha 61413 Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University Abha 61413 Saudi Arabia
- Department of Chemistry, King Khalid University Abha 61413 Saudi Arabia
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory 80 Jigokro-127 Beongil, Nam-gu Pohang Gyeongbuk Korea
| | | |
Collapse
|
9
|
Wang L, Sarkar A, Grocke GL, Laorenza DW, Cheng B, Ritchhart A, Filatov AS, Patel SN, Gagliardi L, Anderson JS. Broad Electronic Modulation of Two-Dimensional Metal-Organic Frameworks over Four Distinct Redox States. J Am Chem Soc 2023. [PMID: 37018716 DOI: 10.1021/jacs.3c00495] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Two-dimensional (2D) inorganic materials have emerged as exciting platforms for (opto)electronic, thermoelectric, magnetic, and energy storage applications. However, electronic redox tuning of these materials can be difficult. Instead, 2D metal-organic frameworks (MOFs) offer the possibility of electronic tuning through stoichiometric redox changes, with several examples featuring one to two redox events per formula unit. Here, we demonstrate that this principle can be extended over a far greater span with the isolation of four discrete redox states in the 2D MOFs LixFe3(THT)2 (x = 0-3, THT = triphenylenehexathiol). This redox modulation results in 10,000-fold greater conductivity, p- to n-type carrier switching, and modulation of antiferromagnetic coupling. Physical characterization suggests that changes in carrier density drive these trends with relatively constant charge transport activation energies and mobilities. This series illustrates that 2D MOFs are uniquely redox flexible, making them an ideal materials platform for tunable and switchable applications.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Arup Sarkar
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Garrett L Grocke
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Daniel William Laorenza
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Baorui Cheng
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrew Ritchhart
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Shrayesh N Patel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Laura Gagliardi
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
A hybrid electrocatalyst derived from Co-MOF by doping molybdenum for efficient hydrogen generation. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Adegoke KA, Adegoke OR, Adigun RA, Maxakato NW, Bello OS. Two-dimensional metal-organic frameworks: From synthesis to biomedical, environmental, and energy conversion applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Wang XF, Zhao JY, Jia MQ, Du Zhang X, Xu XB, Cheng JJ, Wang Y, Liu GX, Chen K. Study on the structure regulation and electrochemical properties of imidazole-based MOFs by small molecules. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Tian J, Xu Y, Li J, Chi J, Feng L, Pan Q, Li X, Su Z. Post-decorated synthesis of metal-organic frameworks derived Ni/Ni3S2@CN electrocatalyst for efficient hydrogen evolution. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Zhang H, Cheng L, Li K, Wang Y, Wu Z. Exploring CO 2 electrochemical reduction mechanism on two-dimensional metal 2,3,6,7,10,11-triphenylenehexathiolate frameworks using density functional theory. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2064785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Haoyan Zhang
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, People’s Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Lin Cheng
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, People’s Republic of China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Zhijian Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
15
|
Intrator JA, Orchanian NM, Clough AJ, Haiges R, Marinescu SC. Electronically-coupled redox centers in trimetallic cobalt complexes. Dalton Trans 2022; 51:5660-5672. [PMID: 35322818 DOI: 10.1039/d1dt03404a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Synthesis and isolation of molecular building blocks of metal-organic frameworks (MOFs) can provide unique opportunities for characterization that would otherwise be inaccessible due to the heterogeneous nature of MOFs. Herein, we report a series of trinuclear cobalt complexes incorporating dithiolene ligands, triphenylene-2,3,6,7,10,11-hexathiolate (THT) (13+), and benzene hexathiolate (BHT) (23+), with 1,1,1,-tris(diphenylphosphinomethyl)ethane (triphos) employed as the capping ligand. Single crystal X-ray analyses of 13+ and 23+ display three five-coordinate cobalt centers bound to the triphos and dithiolene ligands in a distorted square pyramidal geometry. Cyclic voltammetry studies of 13+ and 23+ reveal three redox features associated with the formation of mixed valence states due to the sequential reduction of the redox-active metal centers (CoIII/II). Using this electrochemical data, the comproportionality values were determined for 1 and 2 (log Kc = 1.4 and 1.5 for 1, and 4.7 and 5.8 for 2), suggesting strong resonance-stabilized coupling of the metal centers, with stronger electronic coupling observed for complex 2 compared to that for complex 1. Cyclic voltammetry studies were also performed in solvents of varying polarity, whereupon the difference in the standard potentials (ΔE1/2) for 1 and 2 was found to shift as a function of the polarity of the solvent, indicating a negative correlation between the dielectric constant of the electrochemical medium and the stability of the mixed valence species. Spectroelectrochemical studies of in situ generated multi-valent (MV) states of complexes 1 and 2 display characteristic NIR intervalence charge transfer (IVCT) bands, and analysis of the IVCT transitions for complex 2 suggests a weakly coupled class II multi-valent species and relatively large electronic coupling factors (1700 cm-1 for the first multi-valent state of 22+, and 1400 and 4000 cm-1 for the second multi-valent state of 2+). Density functional theory (DFT) calculations indicate a significant deviation in relative energies of the frontier orbitals of complexes 13+, 23+, and 3+ that contrasts those calculated for the analogous trinuclear cobalt dithiolene complexes employing pentamethylcyclopentadienyl (Cp*) as the capping ligand (Co3Cp*3THT and Co3Cp*3BHT, respectively), and may be a result of the cationic nature of complexes 13+, 23+, and 3+.
Collapse
Affiliation(s)
- Jeremy A Intrator
- Department of Chemistry, University of Southern California, Los Angeles, CA, 900089, USA.
| | - Nicholas M Orchanian
- Department of Chemistry, University of Southern California, Los Angeles, CA, 900089, USA.
| | - Andrew J Clough
- Department of Chemistry, University of Southern California, Los Angeles, CA, 900089, USA.
| | - Ralf Haiges
- Department of Chemistry, University of Southern California, Los Angeles, CA, 900089, USA.
| | - Smaranda C Marinescu
- Department of Chemistry, University of Southern California, Los Angeles, CA, 900089, USA.
| |
Collapse
|
16
|
Zhong H, Wang M, Chen G, Dong R, Feng X. Two-Dimensional Conjugated Metal-Organic Frameworks for Electrocatalysis: Opportunities and Challenges. ACS NANO 2022; 16:1759-1780. [PMID: 35049290 DOI: 10.1021/acsnano.1c10544] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A highly effective electrocatalyst is the central component of advanced electrochemical energy conversion. Recently, two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as a class of promising electrocatalysts because of their advantages including 2D layered structure with high in-plane conjugation, intrinsic electrical conductivity, permanent pores, large surface area, chemical stability, and structural diversity. In this Review, we summarize the recent advances of 2D c-MOF electrocatalysts for electrochemical energy conversion. First, we introduce the chemical design principles and synthetic strategies of the reported 2D c-MOFs, as well as the functional design for the electrocatalysis. Subsequently, we present the representative 2D c-MOF electrocatalysts in various electrochemical reactions, such as hydrogen/oxygen evolution, and reduction reactions of oxygen, carbon dioxide, and nitrogen. We highlight the strategies for the structural design and property tuning of 2D c-MOF electrocatalysts to boost the catalytic performance, and we offer our perspectives in regard to the challenges to be overcome.
Collapse
Affiliation(s)
- Haixia Zhong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Guangbo Chen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
- Max Planck Institute of Microstructure Physics, Halle (Saale) 06120, Germany
| |
Collapse
|
17
|
Zhang G, Dong J, Li R, Shen Q, Li K, Kong X, Wu H. A Ni(II) coordination polymer with dual electrochemical functions: synthesis, crystal structure, hydrogen evolution reaction and l-ascorbic acid sensing. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2021-0185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
A two-dimensional Ni(II) coordination polymer (NiCP) of the formula {[NiL(terephthalate)(H2O)2]·2H2O}
n
(L = bis(1-(pyridin-4-ylmethyl)-benzimidazol-2-ylmethyl)ether), has been obtained from a solvothermal reaction, and characterized by single-crystal X-ray diffraction, elemental analysis, and IR and UV/Vis spectra. The coordinated terephthalate anions and the L ligands connect the Ni(II) ions in two directions, resulting in the construction of a corrugated layered structure. The electrochemical properties of a NiCP-CPE composite electrode supported by this coordination polymer were studied. For the electrocatalytic hydrogen evolution reaction, the required overpotential of this electrode (NiCP-CPE) is −521 mV when the current density reaches 10 mA cm−2. Compared with the solid carbon paste electrode (sCPE, −976 mV), the smaller overpotential proves effective electrocatalysis of the coordination polymer of the hydrogen evolution reaction. The doped electrode also exhibits high-efficiency in the electrochemical sensing of l-ascorbic acid in water, showing a detection limit of 0.28 μM in a linear range of 0.4–4000 μM.
Collapse
Affiliation(s)
- Geng Zhang
- School of Chemistry and Chemical Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| | - Jianping Dong
- School of Chemistry and Chemical Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| | - Ruixue Li
- School of Chemistry and Chemical Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| | - Qinqin Shen
- School of Chemistry and Chemical Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| | - Kaiyi Li
- School of Chemistry and Chemical Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| | - Xiaoxia Kong
- School of Chemistry and Chemical Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| | - Huilu Wu
- School of Chemistry and Chemical Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| |
Collapse
|
18
|
Chen K, Downes CA, Goodpaster JD, Marinescu SC. Hydrogen Evolving Activity of Dithiolene-Based Metal-Organic Frameworks with Mixed Cobalt and Iron Centers. Inorg Chem 2021; 60:11923-11931. [PMID: 34352176 DOI: 10.1021/acs.inorgchem.1c00900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrocatalytic systems based on metal-organic frameworks (MOFs) have attracted great attention due to their potential application in commercially viable renewable energy-converting devices. We have recently shown that the cobalt 2,3,6,7,10,11-triphenylenehexathiolate (CoTHT) framework can catalyze the hydrogen evolution reaction (HER) in fully aqueous media with Tafel slopes as low as 71 mV/dec and near-unity Faradaic efficiency (FE). Taking advantage of the high synthetic tunability of MOFs, here, we synthesize a series of iron and mixed iron/cobalt THT-based MOFs. The incorporation of the iron and cobalt dithiolene moieties is verified by various spectroscopic techniques, and the integrity of the crystalline structure is maintained regardless of the stoichiometries of the two metals. The hydrogen evolving activity of the materials was explored in pH 1.3 aqueous electrolyte solutions. Unlike CoTHT, the FeTHT framework exhibits minimal activity due to a late catalytic onset [-0.440 V versus reversible hydrogen electrode (RHE)] and a large Tafel slope (210 mV/dec). The performance of the mixed-metal MOFs is adversely affected by the incorporation of Fe, where increasing Fe content results in MOFs with lower HER activity and diminished long-term stability and FE for H2 production. It is proposed that the FeTHT domains undergo alternative Faradaic processes under catalytic conditions, which alter its local structure and electrochemical behavior, eventually resulting in a material with diminished HER performance.
Collapse
Affiliation(s)
- Keying Chen
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Courtney A Downes
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jason D Goodpaster
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Smaranda C Marinescu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
19
|
Chen K, Ray D, Ziebel ME, Gaggioli CA, Gagliardi L, Marinescu SC. Cu[Ni(2,3-pyrazinedithiolate) 2] Metal-Organic Framework for Electrocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34419-34427. [PMID: 34275268 DOI: 10.1021/acsami.1c08998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The application of metal-organic frameworks (MOFs) as electrocatalysts for small molecule activation has been an emerging topic of research. Previous studies have suggested that two-dimensional (2D) dithiolene-based MOFs are among the most active for the hydrogen evolution reaction (HER). Here, a three-dimensional (3D) dithiolene-based MOF, Cu[Ni(2,3-pyrazinedithiolate)2] (1), is evaluated as an electrocatalyst for the HER. In pH 1.3 aqueous electrolyte solution, 1 exhibits a catalytic onset at -0.43 V vs the reversible hydrogen electrode (RHE), an overpotential (η10 mA/cm2) of 0.53 V to reach a current density of 10 mA/cm2, and a Tafel slope of 69.0 mV/dec. Interestingly, under controlled potential electrolysis, 1 undergoes an activation process that results in a more active catalyst with a 200 mV reduction in the catalytic onset and η10 mA/cm2. It is proposed that the activation process is a result of the cleavage of Cu-N bonds in the presence of protons and electrons. This hypothesis is supported by various experimental studies and density functional theory calculations.
Collapse
Affiliation(s)
- Keying Chen
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Debmalya Ray
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael E Ziebel
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Carlo A Gaggioli
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Smaranda C Marinescu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|