1
|
Peng S, Wang R, Yang Y, Wang S, Liang E, Han B, Li J, Yu X, Zhang Q. sp 2 Carbon-Conjugated Covalent Organic Frameworks (sp 2c-COFs): Synthesis and Application in Photocatalytic Water Splitting. Macromol Rapid Commun 2025; 46:e2400967. [PMID: 39923235 DOI: 10.1002/marc.202400967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/12/2025] [Indexed: 02/11/2025]
Abstract
Preparation of irreversible sp2 carbon-conjugated covalent organic frameworks (sp2c-COFs) with specific porosity, easy structural functionalization, high chemical stability, and unique π-electron conjugation structure (especially the combination of π-π stacking interactions and conjugation system), can remove the barrier of electron transfer and provide a unique advantage for photocatalytic water splitting. Herein, based on three kinds of reactions (Aldol condensation reaction, Knoevenagel condensation reaction, and Horner-Wadsworth-Emmons reaction) and guided by the precise modulation of ligand structure and topology, this review summarizes the synthesis of sp2c-COFs and their applications in photoelectrocatalytic water splitting (hydrogen evolution and oxygen evolution reactions). Furthermore, challenges and possible research directions for sp2c-COFs in photocatalytic water splitting are also provided.
Collapse
Affiliation(s)
- Shiqiong Peng
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Renjie Wang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Yao Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Shuyan Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - En Liang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Bing Han
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Junbo Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Xianglin Yu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy, City University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
2
|
Huang T, Xiong W, Liao F, Wei G, Yin Z, Fan H. A novel overtone peak self-referencing fluorescent sensor based on a bipyridine-linked covalent organic framework for highly sensitive copper ion detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1362-1370. [PMID: 39835939 DOI: 10.1039/d4ay01738b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
This study reports a novel ratiometric fluorescence sensor based on a tetraphenylethylene-bipyridine covalent organic framework (TPE-Bpy-COF) for the sensitive detection of Cu2+, leveraging the unique coordination properties of the bipyridine moieties. The interaction between Cu2+ and the nitrogen atoms in the bipyridine units induces fluorescence quenching at 500 nm through an efficient host-guest electron transfer mechanism, where excited-state electrons from the COF framework are transferred to the vacant orbitals of Cu2+. Upon excitation at 410 nm, the sensor exhibits a primary emission peak at 500 nm, which is quenched in the presence of Cu2+, while an overtone peak at 820 nm remains stable, serving as an internal reference for ratiometric measurements and significantly enhancing the accuracy and reliability of the sensor. The detection limit for Cu2+ is 0.1 μM, with the dual-emission system and the strong affinity of the bipyridine units for Cu2+, further improving the sensor's sensitivity and selectivity. Additionally, the sensor demonstrated excellent recovery rates in real water samples, confirming its practical applicability in environmental monitoring.
Collapse
Affiliation(s)
- Tongfu Huang
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China
| | - Wei Xiong
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China
| | - Fusheng Liao
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China
| | - Guobing Wei
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China
| | - Zhaojiang Yin
- Clinical Medical Research Center, Yichun People's Hospital, Yichun, Jiangxi 336000, China
| | - Hao Fan
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China
| |
Collapse
|
3
|
Wang W, Wei D, Zhang Y, Ye Y, Dou Y, Guo J, Yan M, Yin Y. Photoreversible Color-Switching Cu-Doped TiO 2 Nanoparticles for High-Contrast Rewritable Printing. ACS NANO 2024; 18:34186-34194. [PMID: 39622075 DOI: 10.1021/acsnano.4c11212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Light-printable rewritable paper that can be used multiple times has attracted extensive attention because of its potential benefits in reducing environmental pollution and energy consumption. Developing rewritable paper with high black-to-colorless contrast, lasting legibility, and a fast response is fascinating but challenging. Here, we integrate the redox chemistry of Cu2+ ions into photoreductive TiO2 nanoparticles to produce Cu-doped TiO2 nanoparticles capable of highly photoreversible switching between colorless and black with excellent contrast and color stability. Incorporating such nanoparticles into hydroxyethyl cellulose produces a rewritable paper with the same appearance as that of conventional paper. More importantly, it demonstrates great features promising for practical applications, including high black-to-colorless contrast, fast light-printing (<20 s), long legible time (>3 days), high reversibility (>50 cycles), high resolution (90 μm), and large scale (A4 size) applicability.
Collapse
Affiliation(s)
- Wenshou Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Dongliang Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yun Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yifan Ye
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yao Dou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
4
|
Venkatareddy VK, Parsimehr H, Ignaszak A, M RR. Near-IR absorbing tetraene-linked π-conjugated porous polymers for energy storage and electrical conductivity. Chem Commun (Camb) 2024; 61:125-128. [PMID: 39620340 DOI: 10.1039/d4cc05074f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Tetraene-linked diketopyrrolopyrrole (DPP)-based CMPs were developed via Knoevenagel condensation of ditopic active hydrogen containing DPP with tritopic aryl aldehydes. The "tetra-ene" π-arrangement in the molecular framework promotes uninterrupted π-delocalization, resulting in near-infrared (NIR) absorption (∼red edge of 1200 nm), high electrical conductivity in the pristine (10-3 S m-1) and doped states (0.2 S m-1), and moderate energy storage (70 F g-1).
Collapse
Affiliation(s)
| | | | - Anna Ignaszak
- Department of Chemistry, University of New Brunswick, Fredericton, Canada
| | - Rajeswara Rao M
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka, India.
| |
Collapse
|
5
|
Chen Y, Zhao G, Yoon S, Habibi P, Hong CS, Li S, Moultos OA, Dey P, Vlugt TJH, Chung YG. Computational Exploration of Adsorption-Based Hydrogen Storage in Mg-Alkoxide Functionalized Covalent-Organic Frameworks (COFs): Force-Field and Machine Learning Models. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61995-62009. [PMID: 39475372 DOI: 10.1021/acsami.4c11953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Hydrogen is a clean-burning fuel that can be converted to other forms. of energy without generating any greenhouse gases. Currently, hydrogen is stored either by compression to high pressure (>700 bar) or cryogenic cooling to liquid form (<23 K). Therefore, it is essential to develop safe, reliable, and energy-efficient storage technology that can store hydrogen at lower pressures and temperatures. In this work, we systematically designed 2902 Mg-alkoxide-functionalized covalent-organic frameworks (COFs) and performed high-throughput (HT) computational screening for hydrogen storage applications at 111, 231, and 296 K. To accurately model the interaction between Mg-alkoxide sites and molecular hydrogen, we performed MP2 calculations to compute the hydrogen binding energy for different types of functionalized models, and the data were subsequently used to fit modified-Morse force field (FF) parameters. Using the developed FF models, we conducted HT grand canonical Monte Carlo (GCMC) simulations to compute hydrogen uptakes for both original and functionalized COFs. The generated data were subsequently used to evaluate the materials' gravimetric and volumetric storage performance at various temperatures (111, 231, and 296 K). Finally, we developed machine learning (ML) models to predict the hydrogen storage performance of functionalized structures based on the features of the original structures. The developed model showed excellent performance with a mean absolute error (MAE) of 0.061 wt % and 0.456 g/L for predicting the gravimetric and volumetric deliverable capacities, enabling a quick evaluation of structures in a hypothetical COF database. The screening results demonstrated that the Mg-alkoxide functionalization yields greater improvements in volumetric H2 storage capacities for COFs with smaller pores compared to those with larger (mesoporous) pores.
Collapse
Affiliation(s)
- Yu Chen
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Guobin Zhao
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sunghyun Yoon
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Parsa Habibi
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Song Li
- Department of New Energy and Science Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Poulumi Dey
- Materials Science and Engineering Department, Faculty of Mechanical Engineering, Delft University of Technology, Merkelweg 2, 2628 CD Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Yongchul G Chung
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
6
|
Zhang H, Yuan T, Zhumabay N, Ruan Z, Qian H, Rueping M. Ketone-functionalized conjugated organic polymers boost red-light-driven molecular oxygen-mediated oxygenation. Chem Sci 2024:d4sc05816j. [PMID: 39371460 PMCID: PMC11446402 DOI: 10.1039/d4sc05816j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
Photocatalytic molecular oxygen activation has emerged as a valuable tool for organic synthesis, environmental remediation and energy conversion. Most reported instances have relied on high-energy light sources. Herein, 9-fluorenone-functionalized porous organic polymers (POPs) were reported to enable red-light-excited photocatalysis for the organic oxygenation reaction. Notably, this modification extends the conjugated backbone, allowing the capture of lower-energy light. Incorporating ketone groups into POPs also facilitates charge separation and enhances carrier concentration, thereby promoting catalytic efficiency. The new POP photomaterials exhibit high activity for the direct α-oxygenation of N-substituted tetrahydroisoquinolines (THIQs) using O2 as a green oxidant under 640 nm light irradiation, achieving high yield in short reaction times. Detailed mechanistic investigations clearly showed the role of oxygen and the photocatalyst. This work provides valuable insights into the potential of ketone-modified POPs for superior photocatalytic activation of molecular oxygen under low-energy light conditions.
Collapse
Affiliation(s)
- Hao Zhang
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Tingting Yuan
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| | - Nursaya Zhumabay
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| | - Zhipeng Ruan
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University 351100 Fujian China
| | - Hai Qian
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Magnus Rueping
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
7
|
Wei Y, Chen Y, Hu L, Gao Y, Cai H, Wu C, Yang Y. Unveiling the Potential of Highly Porous Covalent Organic Frameworks for Water-Jet Rewritable Papers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22248-22255. [PMID: 38626353 DOI: 10.1021/acsami.4c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The massive use of paper has resulted in significant negative impacts on the environment. Fortunately, recent progress has been made in the field of rewritable paper, which has great potential in solving the increasing demand for paper while minimizing its environmental footprint. In this work, we report a green and economic strategy to develop ink-free rewritable paper by introducing hydrochromic covalent organic frameworks (COFs) in paper and using water as the sole trigger. When exposed to water or acidic solvents, two kinds of imino COFs change their colors reversibly from red to black. Additionally, a new visible absorption band appears, indicating that it can be transformed into another structure reversibly. This reversibility may be due to the isomerization from the diiminol to an iminol/cisketoenamine and its inability to doubly tautomerize to a diketoenamine. Specifically, we prepared the rewritable paper by loading these two COFs onto filter paper by using the decompression filtration method. When exposed to water, the paper undergoes a color change from red to black, which shows promising potential for applications in water-jet printing. Additionally, there is no significant performance degradation after 20 uses and 10 days between, further highlighting their potential as rewritable papers. To further improve its uniformity, we take the interface polymerization strategy to yield highly crystalline and more compact membranes, which are then transferred to paper to prepare writable papers. Our research has opened up a way for the application of COFs as a water-based printing material.
Collapse
Affiliation(s)
- Youhao Wei
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yilong Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Leilei Hu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangyang Gao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haitao Cai
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Conghao Wu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuhui Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312451, China
| |
Collapse
|
8
|
Wang K, Wu Z, Ji N, Wang T, Gu Y, Zhao Z, Guo Y, Wang X, Jia Z, Tan B. Robust Thiazole-Linked Covalent Organic Frameworks for Water Sensing with High Selectivity and Sensitivity. Molecules 2024; 29:1677. [PMID: 38611956 PMCID: PMC11013684 DOI: 10.3390/molecules29071677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024] Open
Abstract
The rational design of covalent organic frameworks (COFs) with hydrochromic properties is of significant value because of the facile and rapid detection of water in diverse fields. In this report, we present a thiazole-linked COF (TZ-COF-6) sensor with a large surface area, ultrahigh stability, and excellent crystallinity. The sensor was synthesized through a simple three-component reaction involving amine, aldehyde, and sulfur. The thiazole and methoxy groups confer strong basicity to TZ-COF-6 at the nitrogen sites, making them easily protonated reversibly by water. Therefore, TZ-COF-6 displayed color change visible to the naked eye from yellow to red when protonated, along with a red shift in absorption in the ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) when exposed to water. Importantly, the water-sensing process was not affected by polar organic solvents, demonstrating greater selectivity and sensitivity compared to other COF sensors. Therefore, TZ-COF-6 was used to detect trace amounts of water in organic solvents. In strong polar solvents, such as N,N-dimethyl formamide (DMF) and ethanol (EtOH), the limit of detection (LOD) for water was as low as 0.06% and 0.53%, respectively. Even after 8 months of storage and 15 cycles, TZ-COF-6 retained its original crystallinity and detection efficiency, displaying high stability and excellent cycle performance.
Collapse
Affiliation(s)
- Kewei Wang
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Z.W.); (N.J.); (T.W.); (Y.G.); (Z.Z.); (Y.G.)
| | - Zhaoxia Wu
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Z.W.); (N.J.); (T.W.); (Y.G.); (Z.Z.); (Y.G.)
| | - Na Ji
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Z.W.); (N.J.); (T.W.); (Y.G.); (Z.Z.); (Y.G.)
| | - Tingxia Wang
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Z.W.); (N.J.); (T.W.); (Y.G.); (Z.Z.); (Y.G.)
| | - Yongxin Gu
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Z.W.); (N.J.); (T.W.); (Y.G.); (Z.Z.); (Y.G.)
| | - Zhixiang Zhao
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Z.W.); (N.J.); (T.W.); (Y.G.); (Z.Z.); (Y.G.)
| | - Yong Guo
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Z.W.); (N.J.); (T.W.); (Y.G.); (Z.Z.); (Y.G.)
| | - Xiaoyan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Zhifang Jia
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Z.W.); (N.J.); (T.W.); (Y.G.); (Z.Z.); (Y.G.)
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
| |
Collapse
|
9
|
Qiao S, Wang J, Guo Z. Ratiometric Fluorescent Detection of Chromium(III) Based on One-Dimensional Imine-Linked Covalent Organic Framework. Inorg Chem 2024; 63:706-713. [PMID: 38111959 DOI: 10.1021/acs.inorgchem.3c03611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Chromium (Cr3+) as a highly toxic pollutant has aroused much attention due to its wide industrial applications. Covalent organic frameworks (COFs) have been considered as one of the most promising metal ion sensors due to their open pore channels and abundant adsorption sites. Herein, a novel luminescent one-dimensional COF (Py-An COF) was constructed by the condensation of 5'-(anthracen-9-yl)-[1,1':3',1″-terphenyl]-4,4″-dicarbaldehyde (An-2CHO) and 1,3,6,8-tetrakis(p-aminophenyl) pyrene (PyTTA). The resulting COF showed high crystallinity, comparative high surface area, and good thermal stability, which can be utilized for Cr3+ fluorescent sensors with high sensitivity and selectivity. Furthermore, the coordination between Schiff-base N atoms and Cr3+ inhibits the photoinduced electron transfer (PET) process, resulting in the enhanced fluorescence intensity of chromophores (436 nm) and decreased the fluorescence intensity of Py-An COF (512 nm) simultaneously, which eventually realizes a highly efficient ratiometric fluorescent sensor for trace Cr3+. Compared with other porous fluorescent materials, Py-An COF possesses a lower detection limit, higher sensitivity, and better selectivity. This work provides strategic guidance for the design of COFs as ratiometric fluorescence sensors.
Collapse
Affiliation(s)
- Shujie Qiao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, P.R. China
| | - Jiawei Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, P.R. China
| | - Zhiyong Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, P.R. China
| |
Collapse
|
10
|
Fan Y, Kang DW, Labalme S, Lin W. A Spirobifluorene-Based Covalent Organic Framework for Dual Photoredox and Nickel Catalysis. J Am Chem Soc 2023; 145:25074-25079. [PMID: 37934955 DOI: 10.1021/jacs.3c09729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as tunable, crystalline, and porous functional organic materials, but their application in photocatalysis has been limited by rapid excited-state quenching. Herein, we report the first example of dual photoredox/nickel catalysis by an sp2 carbon-conjugated spirobifluorene-based COF. Constructed from spirobifluorene and nickel-bipyridine linkers, the NiSCN COF adopted a two-dimensional structure with staggered stacking. Under light irradiation, NiSCN catalyzed amination and etherification/esterification reactions of aryl halides through the photoredox mechanism, with a catalytic efficiency more than 23-fold higher than that of its homogeneous control. NiSCN was used in five consecutive reactions without a significant loss of catalytic activity.
Collapse
Affiliation(s)
- Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Dong Won Kang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Steven Labalme
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Maji S, Natarajan R. A Halogen-Bonded Organic Framework (XOF) Emissive Cocrystal for Acid Vapor and Explosive Sensing, and Iodine Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302902. [PMID: 37394720 DOI: 10.1002/smll.202302902] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Indexed: 07/04/2023]
Abstract
There is a strong and urgent need for efficient materials that can capture radioactive iodine atoms from nuclear waste. This work presents a novel strategy to develop porous materials for iodine capture by employing halogen bonding, mechanochemistry and crystal engineering. 3D halogen-bonded organic frameworks (XOFs) with guest-accessible permanent pores are exciting targets in crystal engineering for developing functional materials, and this work reports the first example of such a structure. The new-found XOF, namely TIEPE-DABCO, exhibits enhanced emission in the solid state and turn-off emission sensing of acid vapors and explosives like picric acid in nanomolar quantity. TIEPE-DABCO captures iodine from the gas phase (3.23 g g-1 at 75 °C and 1.40 g g-1 at rt), organic solvents (2.1 g g-1 ), and aqueous solutions (1.8 g g-1 in the pH range of 3-8); the latter with fast kinetics. The captured iodine can be retained for more than 7 days without any leaching, but readily released using methanol, when required. TIEPE-DABCO can be recycled for iodine capture several times without any loss of storage capacity. The results presented in this work demonstrate the potential of mechanochemical cocrystal engineering with halogen bonding as an approach to develop porous materials for iodine capture and sensing.
Collapse
Affiliation(s)
- Suman Maji
- Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramalingam Natarajan
- Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
12
|
Zhu B, Zhu L, Deng S, Wan Y, Qin F, Han H, Luo J. A fully π-conjugated covalent organic framework with dual binding sites for ultrasensitive detection and removal of divalent heavy metal ions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132081. [PMID: 37473574 DOI: 10.1016/j.jhazmat.2023.132081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Covalent organic frameworks (COFs) have become a promising candidate for the remediation of heavy metal pollution. However, researches on COF adsorbents still have challenges on maintaining good optical properties and adsorption performance under harsh conditions. Herein, a fully π-conjugated COF with dual binding sites (Bpy-sp2c-COF) is reported for rapid fluorescence recognition and enhanced adsorption towards divalent heavy metal ions. The vinylene-linkage lattice shows strong luminescence and excellent stability in both strong acidity and basicity. Bpy-sp2c-COF demonstrates not only nanomolar-scale detection of divalent heavy metal ions, but also good adsorption capacity (Hg2+ 718.48, Ni2+ 278.64, Cu2+ 260.11, and Co2+ 126.23 mg/g). Experimental and theoretical studies reveal the intramolecular charge transfer as the fluorescence quenching mechanism. Further simulation results demonstrate the cyano and bipyridine groups on the lattice can act as dual binding sites for divalent heavy metal ions. Experimental results confirmed the adsorption capacity of Bpy-sp2c-COF superior to that of COFs with either cyano groups (Hg2+ 415.34, Ni2+ 165.60, Cu2+ 160.55, and Co2+ 73.14 mg/g), or bipyridine groups (Hg2+ 369.25, Ni2+ 133.41, Cu2+ 133.32, and Co2+ 69.23 mg/g). Besides, robust regeneration of the adsorbent could be achieved over 10 cycles. The fully π-conjugated COF with dual binding sites provides a new approach for designing next-generation sensors and adsorbents with excellent performances.
Collapse
Affiliation(s)
- Bin Zhu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Longyi Zhu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Shengyuan Deng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Feng Qin
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haikang Han
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Luo
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
13
|
Zhang C, Xie J, Zhao C, Yang Y, An Q, Mei Z, Xu Q, Ding Y, Zhao G, Guo H. Regulating the Lithium Ions' Local Coordination Environment through Designing a COF with Single Atomic Co Site to Achieve Dendrite-Free Lithium-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304511. [PMID: 37384535 DOI: 10.1002/adma.202304511] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
The detrimental growth of lithium dendrites and unstable solid electrolyte interphase (SEI) inhibit the practical application of lithium-metal batteries. Herein, atomically dispersed cobalt coordinate conjugated bipyridine-rich covalent organic framework (sp2 c-COF) is explored as an artificial SEI on the surface of the Li-metal anode to resolve these issues. The single Co atoms confined in the structure of COF enhance the number of active sites and promote electron transfer to the COF. The synergistic effects of the Co─N coordination and strong electron-withdrawing cyano-group can adsorb the electron from the donor (Co) at a maximum and create an electron-rich environment, hence further regulating the Li+ local coordination environment and achieving uniform Li-nucleation behavior. Furthermore, in situ technology and density functional theory calculations reveal the mechanism of the sp2 c-COF-Co inducing Li uniform deposition and promoting Li+ rapid migration. Based on these advantages, the sp2 c-COF-Co modified Li anode exhibits a low Li-nucleation barrier of 8 mV, and excellent cycling stability of 6000 h.
Collapse
Affiliation(s)
- Conghui Zhang
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Jiyang Xie
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Changtai Zhao
- Solid State Batteries Research Center, GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan, Guangdong, 528051, China
- China Automotive Battery Research Institute Co. Ltd. 5th Floor, No. 43 Mining Building North Sanhuan Middle Road, Beijing, 100088, China
| | - Yongxin Yang
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Qi An
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Zhiyuan Mei
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Qijun Xu
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Yuqing Ding
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Genfu Zhao
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Hong Guo
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| |
Collapse
|
14
|
Li Y, Wu X, Zhang J, Han C, Cao M, Li X, Wan J. Vinylene-Linked Emissive Covalent Organic Frameworks for White-Light-Emitting Diodes. Polymers (Basel) 2023; 15:3704. [PMID: 37765558 PMCID: PMC10535042 DOI: 10.3390/polym15183704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Covalent organic frameworks (COFs) have gained considerable attention due to their highly conjugated π-skeletons, rendering them promising candidates for the design of light-emitting materials. In this study, we present two vinylene-linked COFs, namely, VL-COF-1 and VL-COF-2, which were synthesized through the Knoevenagel condensation of 2,4,6-trimethyl-1,3,5-triazine with terephthalaldehyde or 4,4'-biphenyldicarboxaldehyde. Both VL-COF-1 and VL-COF-2 exhibited excellent chemical and thermal stability. The presence of vinylene linkages between the constituent building blocks in these COFs resulted in broad excitation and emission properties. Remarkably, the designed VL-COFs demonstrated bright emission, fast fluorescence decay, and high stability, making them highly attractive for optoelectronic applications. To assess the potential of these VL-COFs in practical devices, we fabricated white-light-emitting diodes (WLEDs) coated with VL-COF-1 and VL-COF-2. Notably, the WLEDs coated with VL-COF-1 achieved high-quality white light emission, closely approximating standard white light. The promising performance of VL-COF-coated WLEDs suggests the feasibility of utilizing COF materials for stable and efficient lighting applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jieqiong Wan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Y.L.)
| |
Collapse
|
15
|
Jati A, Dam S, Kumar S, Kumar K, Maji B. A π-conjugated covalent organic framework enables interlocked nickel/photoredox catalysis for light-harvesting cross-coupling reactions. Chem Sci 2023; 14:8624-8634. [PMID: 37592981 PMCID: PMC10430564 DOI: 10.1039/d3sc02440g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Covalent organic frameworks (COFs) are an outstanding platform for heterogeneous photocatalysis. Herein, we synthesized a pyrene-based two-dimensional C[double bond, length as m-dash]C linked π-conjugated COF via Knoevenagel condensation and anchored Ni(ii)-centers through bipyridine moieties. Instead of traditional dual metallaphotoredox catalysis, the mono-metal decorated Ni@Bpy-sp2c-COF interlocked the catalysis mediated by light and the transition metal. Under light irradiation, enhanced energy and electron transfer in the COF backbone, as delineated by the photoluminescence, electrochemical, and control experiments, expedited the excitation of Ni centers to efficiently catalyze diverse photocatalytic C-X (X = B, C, N, O, P, S) cross-coupling reactions with efficiencies orders of magnitude higher than the homogeneous controls. The COF catalyst tolerated a diverse range of coupling partners with various steric and electronic properties, delivering the products with up to 99% yields. Some reactions were performed on a gram scale and were applied to diversify pharmaceuticals and complex molecules to demonstrate the synthetic utility.
Collapse
Affiliation(s)
- Ayan Jati
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 WB India
| | - Suranjana Dam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 WB India
| | - Shekhar Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 WB India
| | - Kundan Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 WB India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 WB India
| |
Collapse
|
16
|
Paul R, Kalita P, Dao DQ, Mondal I, Boro B, Mondal J. Linker Independent Regioselective Protonation Triggered Detoxification of Sulfur Mustards with Smart Porous Organic Photopolymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302045. [PMID: 37165579 DOI: 10.1002/smll.202302045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/20/2023] [Indexed: 05/12/2023]
Abstract
The development of efficient metal-free photocatalysts for the generation of reactive oxygen species (ROS) for sulfur mustard (HD) decontamination can play a vital role against the stockpiling of chemical warfare agents (CWAs). Herein, one novel concept is conceived by smartly choosing a specific ionic monomer and a donor tritopic aldehyde, which can trigger linker-independent regioselective protonation/deprotonation in the polymeric backbone. In this context, the newly developed vinylene-linked ionic polymers (TPA/TPD-Ionic) are further explored for visible-light-assisted detoxification of HD simulants. Time-resolved-photoluminescence (TRPL) study reveals the protonation effect in the polymeric backbone by significantly enhancing the life span of photoexcited electrons. In terms of catalytic performance, TPA-Ionic outperformed TPD-Ionic because of its enhanced excitons formation and charge carrier abilities caused by the donor-acceptor (D-A) backbone and protonation effects. Moreover, the formation of singlet oxygen (1 O2 ) species is confirmed via in-situ Electron Spin Resonance (ESR) spectroscopy and density functional theory (DFT) analysis, which explained the crucial role of solvents in the reaction medium to regulate the (1 O2 ) formation. This study creates a new avenue for developing novel porous photocatalysts and highlights the crucial roles of sacrificial electron donors and solvents in the reaction medium to establish the structure-activity relationship.
Collapse
Affiliation(s)
- Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyanka Kalita
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Vietnam
| | - Indranil Mondal
- Department of Chemistry, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Bishal Boro
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
17
|
Guo H, Li Y, Li Y, He X, Chen L, Zhang Y. Construction of Stable Magnetic Vinylene-Linked Covalent Organic Frameworks for Efficient Extraction of Benzimidazole Fungicides. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36897016 DOI: 10.1021/acsami.2c22386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Covalent organic frameworks (COFs) have attracted impressive interest in separation on aqueous media. Herein, we integrated the stable vinylene-linked COFs with magnetic nanosphere via the monomer-mediated in situ growth strategy to construct a crystalline Fe3O4@v-COF composite for enrichment and determination of benzimidazole fungicides (BZDs) from complex sample matrices. The Fe3O4@v-COF has a crystalline assembly, high surface area, porous character together with a well-defined core-shell structure, and serves as progressive pretreatment materials for magnetic solid phase extraction (MSPE) of BZDs. Adsorption mechanism studies revealed that the extended conjugated system and numerous polar cyan groups on v-COF provides abundant π-π and multiple hydrogen bonding sites, which are conducive to interact with BZDs collaboratively. Fe3O4@v-COF also displayed enrichment effects to various polar pollutions with conjugated structures and hydrogen-bonding sites. Fe3O4@v-COF-based MSPE-high-performance liquid chromatography exhibited the low limit of detection, wide linearity, and good precision. Moreover, Fe3O4@v-COF showed better stability, enhanced extraction performance, and more sustainable reusability in comparison with its imine-linked counterpart. This work proposes a feasible strategy on constructing the crystalline stable magnetic vinylene-linked COF composite for the determination of trace contaminants in complex food matrices.
Collapse
Affiliation(s)
- Hongying Guo
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yang Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Yijun Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education, Nankai University, Tianjin 300071, China
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yukui Zhang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
18
|
Fan Y, Kang DW, Labalme S, Li J, Lin W. Enhanced Energy Transfer in A π-Conjugated Covalent Organic Framework Facilitates Excited-State Nickel Catalysis. Angew Chem Int Ed Engl 2023; 62:e202218908. [PMID: 36652347 DOI: 10.1002/anie.202218908] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
Covalent organic frameworks (COFs) have received broad interest owing to their permanent porosity, high stability, and tunable functionalities. COFs with long-range π-conjugation and photosensitizing building blocks have been explored for sustainable photocatalysis. Herein, we report the first example of COF-based energy transfer Ni catalysis. A pyrene-based COF with sp2 carbon-conjugation was synthesized and used to coordinate NiII centers through bipyridine moieties. Under light irradiation, enhanced energy transfer in the COF facilitated the excitation of Ni centers to catalyze borylation and trifluoromethylation reactions of aryl halides. The COF showed two orders of magnitude higher efficiency in these reactions than its homogeneous control and could be recovered and reused without significant loss of catalytic activity.
Collapse
Affiliation(s)
- Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Dong Won Kang
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Steven Labalme
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Jinhong Li
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| |
Collapse
|
19
|
Mu PF, Zhang L, Bu R, Xiong LF, Liu YW, Gao EQ. Guanidine-Based Covalent Organic Frameworks: Cooperation between Cores and Linkers for Chromic Sensing and Efficient CO 2 Conversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6902-6911. [PMID: 36694474 DOI: 10.1021/acsami.2c20510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
C(sp)-H carboxylation with CO2 is an attractive route of CO2 utilization and is traditionally promoted by transition metal catalysts, and organocatalysis for the conversion remains rarely explored and challenging. In this article, triaminoguanidine-derived covalent organic frameworks (COFs) were used as platforms to develop heterogeneous organocatalysts for the reaction. We demonstrated that the COFs with guanidine cores and pyrazine linkers show high catalytic performance as a result of the cooperation between cores and linkers. The core is vitally important, which is deprotonated to the guanidinato group that binds and activates CO2. The pyrazine linker collaborates with the core to activate the C(sp)-H bond through hydrogen bonding. In addition, the COFs show acid- and base-responsive chromic behaviors thanks to the amphoteric nature of the core and the auxochromic effect of the pyrazine linker. The work opens up new avenues to organocatalysts for C-H carboxylation and chromic materials for sensing and switching applications.
Collapse
Affiliation(s)
- Peng-Fei Mu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Lin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Li-Fei Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ya-Wei Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
20
|
Chi K, Wu Y, Wang X, Zhang Q, Gao W, Yang L, Chen X, Chang D, Zhang Y, Shen T, Lu X, Zhao Y, Liu Y. Single Atom Catalysts with Out-of-Plane Coordination Structure on Conjugated Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203966. [PMID: 36135721 DOI: 10.1002/smll.202203966] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Adjusting the local coordination environment of single-atom electrocatalysts is a viable way to improve catalytic performance. The diversity of coordination geometric structures is limited to the traditional in-plane configuration, with only a little consideration paid to out-of-plane configurations due to the lack of suitable carriers and fabrication methods. This study reports out-of-plane coordination of Co-based single-atom catalysts mediated by the conjugated bipyridine-rich covalent organic framework (COF). The bipyridine nitrogen on the COF layer backbone of these catalysts serves as the linker center for cobalt sites anchoring, while the complementary moieties are coordinated at the other side of the Co metal and reside beyond the COF backbone plane, thus yielding out-of-plane coordination. The electrochemical experiments and density functional theory calculations reveal that catalysts with multiple out-of-plane coordinations exhibit different electrocatalytic oxygen evolution activities and catalytic pathways. The out-of-plane coordination enabled by COFs provides a strategy for designing single-atom electrocatalysts, expanding the application of COFs in the field of electrocatalysis.
Collapse
Affiliation(s)
- Kai Chi
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yangjiang Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xuejun Wang
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Qingsong Zhang
- Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenqiang Gao
- Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Longfei Yang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xin Chen
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Dongdong Chang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yu Zhang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Tao Shen
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xuefeng Lu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Zhao
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
21
|
Li Z, Yang Z, Zhang Y, Yang B, Yang Y. Synthesis of an Acidochromic and Nitroaromatic Responsive Hydrazone‐Linked Pillararene Framework by a Macrocycle‐To‐Framework Strategy. Angew Chem Int Ed Engl 2022; 61:e202206144. [DOI: 10.1002/anie.202206144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zheng Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yinan Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Ying‐Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
22
|
Bu R, Lu Y, Zhang B. Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Yue JY, Song LP, Ding XL, Wang YT, Yang P, Ma Y, Tang B. Ratiometric Fluorescent pH Sensor Based on a Tunable Multivariate Covalent Organic Framework. Anal Chem 2022; 94:11062-11069. [PMID: 35880804 DOI: 10.1021/acs.analchem.2c01999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ratiometric detection of pH is always significant in environmental regulation, medical diagnosis, synthetic chemistry, and beyond. The construction of practical ratiometric pH sensors with reusability is still challenging. Herein, by exploiting a multivariate strategy, we first synthesized and reported a series of novel three-component covalent organic frameworks (COF-COOHX, X = 33, 50, and 67) through Schiff base reaction between 2-hydroxybenzene-1,3,5-tricarbaldehyde (HTA), 4,4'-diamino-3,3'-biphenyldicarboxylic acid (DBA), and 5,5'-diamino-2,2'-bipyridine (BPY) at various molar ratios (X = [DBA]/([BPY] + [DBA]) × 100 = 33, 50, and 67). COF-COOHX (X = 33, 50, and 67) displayed ratiometric pH sensing performance in acidic conditions with selectivity and repeatability. By tuning the molar ratio of DBA and BPY, the fluorescent properties, linear pH responsive ranges, and pKa values of COF-COOHX (X = 33, 50, and 67) can be regulated. Meanwhile, the two-component COF-COOH0 and COF-COOH100 did not exhibit ratiometric pH detection ability. Moreover, the constructed three ratiometric sensors can be applied to detect pH in drug solutions and carbonated drinks with satisfactory results. This work sheds new light on the design and fabrication of innovative ratiometric fluorescent sensors using COFs.
Collapse
Affiliation(s)
- Jie-Yu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Li-Ping Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Xiu-Li Ding
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Yu-Tong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| |
Collapse
|
24
|
Li Z, Yang Z, Zhang Y, Yang B, Yang YW. Synthesis of an Acidochromic and Nitroaromatic Responsive Hydrazone‐Linked Pillararene Framework by a Macrocycle‐To‐Framework Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zheng Li
- Jilin University College of Chemistry CHINA
| | | | | | - Bing Yang
- Jilin University College of Chemistry CHINA
| | - Ying-Wei Yang
- Jilin University College of Chemistry 2699 Qianjin Street 130012 Changchun CHINA
| |
Collapse
|
25
|
Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Xu S, Liao Z, Dianat A, Park S, Addicoat MA, Fu Y, Pastoetter DL, Fabozzi FG, Liu Y, Cuniberti G, Richter M, Hecht S, Feng X. Combination of Knoevenagel Polycondensation and Water-Assisted Dynamic Michael-Addition-Elimination for the Synthesis of Vinylene-Linked 2D Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202202492. [PMID: 35253336 PMCID: PMC9401016 DOI: 10.1002/anie.202202492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 12/16/2022]
Abstract
Vinylene-linked two-dimensional conjugated covalent organic frameworks (V-2D-COFs), belonging to the class of two-dimensional conjugated polymers, have attracted increasing attention due to their extended π-conjugation over the 2D backbones associated with high chemical stability. The Knoevenagel polycondensation has been demonstrated as a robust synthetic method to provide cyano (CN)-substituted V-2D-COFs with unique optoelectronic, magnetic, and redox properties. Despite the successful synthesis, it remains elusive for the relevant polymerization mechanism, which leads to relatively low crystallinity and poor reproducibility. In this work, we demonstrate the novel synthesis of CN-substituted V-2D-COFs via the combination of Knoevenagel polycondensation and water-assisted dynamic Michael-addition-elimination, abbreviated as KMAE polymerization. The existence of C=C bond exchange between two diphenylacrylonitriles (M1 and M6) is firstly confirmed via in situ high-temperature NMR spectroscopy study of model reactions. Notably, the intermediate M4 synthesized via Michael-addition can proceed the Michael-elimination quantitatively, leading to an efficient C=C bond exchange, unambiguously confirming the dynamic nature of Michael-addition-elimination. Furthermore, the addition of water can significantly promote the reaction rate of Michael-addition-elimination for highly efficient C=C bond exchange within 5 mins. As a result, the KMAE polymerization provides a highly efficient strategy for the synthesis of CN-substituted V-2D-COFs with high crystallinity, as demonstrated by four examples of V-2D-COF-TFPB-PDAN, V-2D-COF-TFPT-PDAN, V-2D-COF-TFPB-BDAN, and V-2D-COF-HATN-BDAN, based on the simulated and experimental powder X-ray diffraction (PXRD) patterns as well as N2 -adsorption-desorption measurements. Moreover, high-resolution transmission electron microscopy (HR-TEM) analysis shows crystalline domain sizes ranging from 20 to 100 nm for the newly synthesized V-2D-COFs.
Collapse
Affiliation(s)
- Shunqi Xu
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
- Department of Synthetic Materials and Functional DevicesMax-Planck Institute of Microstructure Physics06120HalleGermany
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS)01109DresdenGermany
| | - Arezoo Dianat
- Chair of Material Science and NanotechnologyFaculty of Mechanical Science and EngineeringTechnische Universität DresdenHallwachstraße 301069DresdenGermany
| | - Sang‐Wook Park
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
- Leibniz-Institute for Polymer Research Dresden e.V. (IPF)01069DresdenGermany
| | - Matthew A. Addicoat
- School of Science and TechnologyNottingham Trent UniversityClifton LaneNottinghamNG11 8NSUK
| | - Yubin Fu
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
| | - Dominik L. Pastoetter
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
| | - Filippo Giovanni Fabozzi
- DWI-Leibniz Institute for Interactive Materials & Institute of Technical and Macromolecular ChemistryRWTH Aachen University52074AachenGermany
| | - Yannan Liu
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
| | - Gianaurelio Cuniberti
- Chair of Material Science and NanotechnologyFaculty of Mechanical Science and EngineeringTechnische Universität DresdenHallwachstraße 301069DresdenGermany
| | - Marcus Richter
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
| | - Stefan Hecht
- DWI-Leibniz Institute for Interactive Materials & Institute of Technical and Macromolecular ChemistryRWTH Aachen University52074AachenGermany
| | - Xinliang Feng
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
- Department of Synthetic Materials and Functional DevicesMax-Planck Institute of Microstructure Physics06120HalleGermany
| |
Collapse
|
27
|
Xu S, Liao Z, Dianat A, Park S, Addicoat MA, Fu Y, Pastoetter DL, Fabozzi FG, Liu Y, Cuniberti G, Richter M, Hecht S, Feng X. Combination of Knoevenagel Polycondensation and Water‐Assisted Dynamic Michael‐Addition‐Elimination for the Synthesis of Vinylene‐Linked 2D Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shunqi Xu
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
- Department of Synthetic Materials and Functional Devices Max-Planck Institute of Microstructure Physics 06120 Halle Germany
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS) 01109 Dresden Germany
| | - Arezoo Dianat
- Chair of Material Science and Nanotechnology Faculty of Mechanical Science and Engineering Technische Universität Dresden Hallwachstraße 3 01069 Dresden Germany
| | - Sang‐Wook Park
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
- Leibniz-Institute for Polymer Research Dresden e.V. (IPF) 01069 Dresden Germany
| | - Matthew A. Addicoat
- School of Science and Technology Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Yubin Fu
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Dominik L. Pastoetter
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Filippo Giovanni Fabozzi
- DWI-Leibniz Institute for Interactive Materials & Institute of Technical and Macromolecular Chemistry RWTH Aachen University 52074 Aachen Germany
| | - Yannan Liu
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Gianaurelio Cuniberti
- Chair of Material Science and Nanotechnology Faculty of Mechanical Science and Engineering Technische Universität Dresden Hallwachstraße 3 01069 Dresden Germany
| | - Marcus Richter
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Stefan Hecht
- DWI-Leibniz Institute for Interactive Materials & Institute of Technical and Macromolecular Chemistry RWTH Aachen University 52074 Aachen Germany
| | - Xinliang Feng
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
- Department of Synthetic Materials and Functional Devices Max-Planck Institute of Microstructure Physics 06120 Halle Germany
| |
Collapse
|
28
|
Yan X, Chen H, Du G, Guo Q, Yuan Y, Yue T. Recent trends in fluorescent aptasensors for mycotoxin detection in food: Principles, constituted elements, types, and applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xiaohai Yan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Hong Chen
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Gengan Du
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Qi Guo
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Yahong Yuan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Tianli Yue
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
- College of Food Science and Technology Northwest University Xi’ an 710000 China
| |
Collapse
|
29
|
Zhang C, Pan G, He Y. Conjugated microporous organic polymer as fluorescent chemosensor for detection of Fe 3+ and Fe 2+ ions with high selectivity and sensitivity. Talanta 2022; 236:122872. [PMID: 34635253 DOI: 10.1016/j.talanta.2021.122872] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022]
Abstract
A conjugated microporous organic polymer (TPA-Bp) comprised of triphenylamine (TPA) and 2,2'-bipyridine-5,5'-diformaldehyde (Bp) was prepared via the Schiff-base reaction under ambient conditions. TPA-Bp is an amorphous and microporous spherical nanoparticle with very high stability. TPA-Bp suspension in DMF displayed strong fluorescence emission and selective fluorescence quenching response towards Fe3+ and Fe2+ ions. The fluorescence intensity of TPA-Bp at 331 nm presents linear relationship with the concentrations of both Fe3+ and Fe2+ with low detection limits of 1.02 × 10-5 M for Fe3+ and 5.37 × 10-6 M for Fe2+. The results of X-ray photoelectron spectroscopy (XPS) and Fourier Transform infrared spectroscopy (FTIR) confirm the selective coordination of N atoms of pyridine unit with Fe ions. The fluorescence quenching of TPA-Bp upon the addition of Fe3+/Fe2+ ions can be attributed to the absorption competition quenching (ACQ) mechanism and the energy transfer between TPA-Bp and Fe3+/Fe2+ ions. This work demonstrates that the conjugated microporous polymers are promising candidates as luminescent sensor for detection of the special analytes in practical applications.
Collapse
Affiliation(s)
- Chao Zhang
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Guanjun Pan
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yi He
- College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
30
|
Dautzenberg E, Lam M, Li G, de Smet LCPM. Enhanced surface area and reduced pore collapse of methylated, imine-linked covalent organic frameworks. NANOSCALE 2021; 13:19446-19452. [PMID: 34788773 PMCID: PMC8638808 DOI: 10.1039/d1nr05911d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Covalent Organic Frameworks (COFs) are thermally and chemically stable, nanoporous materials with high surface areas, making them interesting for a large variety of applications including energy storage, gas separation, catalysis and chemical sensing. However, pore blocking and pore collapse may limit their performance. Reducing the capillary forces by using solvents with low surface tension, like supercritical CO2, for activation, and the introduction of bulky isopropyl/methoxy groups were found to reduce pore collapse. Herein, we present an easy-to-use alternative that involves the combination of a new, methylated building block (2,4,6-trimethylbenzene-1,3,5-tricarbaldehyde, Me3TFB) with vacuum drying. Condensation of Me3TFB with 1,4-phenylenediamine (PA) or benzidine (BD) resulted in imine-linked 2D COFs (Me3TFB-PA and Me3TFB-BD) with higher degrees of crystallinity and higher BET surface areas compared to their non-methylated counterparts (TFB-PA and TFB-BD). This was rationalized by density functional theory computations. Additionally, the methylated COFs are less prone to pore collapse when subjected to vacuum drying and their BET surface area was found to remain stable for at least four weeks. Within the context of their applicability as sensors, we also studied the influence of hydrochloric acid vapour on the optical and structural properties of all COFs. Upon acid exposure their colour and absorbance spectra changed, making them indeed suitable for acid detection. Infrared spectroscopy revealed that the colour change is likely attributed to the cleavage of imine bonds, which are only partially restored after ammonia exposure. While this limits their application as reusable sensors, our work presents a facile method to increase the robustness of commonly known COFs.
Collapse
Affiliation(s)
- Ellen Dautzenberg
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| | - Milena Lam
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| | - Guanna Li
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
- Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Louis C P M de Smet
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| |
Collapse
|
31
|
Zhao Y, Yang Y, Xia T, Tian H, Li Y, Sui Z, Yuan N, Tian X, Chen Q. Pyrimidine-Functionalized Covalent Organic Framework and its Cobalt Complex as an Efficient Electrocatalyst for Oxygen Evolution Reaction. CHEMSUSCHEM 2021; 14:4556-4562. [PMID: 34378359 DOI: 10.1002/cssc.202101434] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Indexed: 06/13/2023]
Abstract
A pyrimidine-modified covalent organic framework (COF-Pyr) was designed to be synthesized via the Povarov reaction. The nitrogen atom on the pyrimidine showed excellent coordination ability to metal ions. Their stable metal composite material (Co@COF-Pyr) exhibited remarkable performance for electrocatalytic oxygen evolution reaction (OER) in 1.0 m KOH aqueous solution. The overpotential was 450 mV at 10 mA cm-2 . The Co@COF-Pyr with large specific surface area (392 m2 g-1 ) and regular crystal structure provided free passage for H2 O to move and make them fully contact with the uniformly dispersed cobalt ions on the surface. Thus, the turnover frequency of Co@COF-Pyr was 0.1 s-1 at the overpotential of 370 mV, which was higher than most reported OER catalysts. This work provided a new way to design and prepare nitrogen-containing heterocyclic functionalized COFs. They can be combined with metal ions to expand the application of COFs in the field of electrocatalysis.
Collapse
Affiliation(s)
- Yuxiang Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Yingjie Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Tian Xia
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Hao Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Yongpeng Li
- School of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Zhuyin Sui
- School of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, P. R. China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Qi Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|