1
|
Khalid R, Shah A, Javed M, Hussain H. Progress and obstacles in electrode materials for lithium-ion batteries: a journey towards enhanced energy storage efficiency. RSC Adv 2025; 15:15951-15998. [PMID: 40370856 PMCID: PMC12076151 DOI: 10.1039/d5ra02042e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025] Open
Abstract
This review critically examines various electrode materials employed in lithium-ion batteries (LIBs) and their impact on battery performance. It highlights the transition from traditional lead-acid and nickel-cadmium batteries to modern LIBs, emphasizing their energy density, efficiency, and longevity. It primarily focuses on cathode materials, including LiMn2O4, LiCoO2, and LiFePO4, while also exploring emerging materials such as organosulfides, nanomaterials, and transition metal oxides & sulfides. It also presents an overview of the anode materials based on their mechanism, e.g., intercalation-deintercalation, alloying, and conversion-type anode materials. The strengths, limitations, and synthesis techniques associated with each material are discussed. This review also delves into cathode materials, such as soft and hard carbon and high-nickel systems, assessing their influence on storage performance. Additionally, the article addresses safety concerns, recycling strategies, environmental impact evaluations, and disposal practices. It highlights emerging trends in the development of electrode materials, focusing on potential solutions and innovations. This comprehensive review provides an overview of current lithium-ion battery technology, identifying technical challenges and opportunities for advancement to promote efficient, sustainable, and environmentally responsible energy storage solutions. This review also examines the issues confronting lithium-ion batteries, including high production costs, scarcity of materials, and safety risks, with suggestions to address them through doping, coatings, and incorporation of nanomaterials.
Collapse
Affiliation(s)
- Rimsha Khalid
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Afzal Shah
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Mohsin Javed
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Hazrat Hussain
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
2
|
Ren H, Li H, Barry P, Wang Z, Campos AR, Takeuchi ES, Marschilok AC, Yan S, Takeuchi KJ, Reichmanis E. Recent Advances in the Application of Magnetite (Fe 3O 4) in Lithium-Ion Batteries: Synthesis, Electrochemical Performance, and Characterization Techniques. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:9299-9319. [PMID: 39398366 PMCID: PMC11467837 DOI: 10.1021/acs.chemmater.4c02013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024]
Abstract
With the promotion of portable energy storage devices and the popularization of electric vehicles, lithium-ion battery (LiB) technology plays a crucial role in modern energy storage systems. Over the past decade, the demands for LiBs have centered around high energy density and long cycle life. These parameters are often determined by the characteristics of the active materials in the electrodes. Given its high abundance, environmental friendliness, low cost and high capacity, magnetite (Fe3O4) emerges as a promising anode material. However, the practical application of Fe3O4 faces challenges, such as significant volume expansion during cycling. To overcome these obstacles and facilitate the commercialization of Fe3O4, a comprehensive understanding of its properties and behavior is essential. This review provides an overview of recent Fe3O4 research advances, focusing on its synthesis, factors influencing its electrochemical performance, and characterization techniques. By thoroughly understanding the characteristics of Fe3O4 in LiB applications, we can optimize its properties and enhance its performance, thereby paving the way for its widespread use in energy storage applications. Additionally, the review concludes with perspectives on promoting the commercialization of Fe3O4 in LiBs and future research directions.
Collapse
Affiliation(s)
- Haoze Ren
- Department
of Chemical and Bimolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Han Li
- Department
of Chemical and Bimolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Patrick Barry
- Institute
of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony
Brook, New York 11794, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Zhongling Wang
- Institute
of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony
Brook, New York 11794, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Armando Rodriguez Campos
- Institute
of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony
Brook, New York 11794, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Esther S. Takeuchi
- Institute
of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony
Brook, New York 11794, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Amy C. Marschilok
- Institute
of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony
Brook, New York 11794, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Shan Yan
- Institute
of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Kenneth J. Takeuchi
- Institute
of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony
Brook, New York 11794, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Elsa Reichmanis
- Department
of Chemical and Bimolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
3
|
Mandal S, Pillai VK, Ranjana Ponraj M, K M T, Bhagavathsingh J, Grage SL, Peng X, Kang JW, Liepmann D, Kannan ANM, Thavasi V, Renugopalakrishnan V. van der Waals gap modulation of graphene oxide through mono-Boc ethylenediamine anchoring for superior Li-ion batteries. ENERGY ADVANCES 2024; 3:1977-1991. [PMID: 39131508 PMCID: PMC11308804 DOI: 10.1039/d4ya00217b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/13/2024] [Indexed: 08/13/2024]
Abstract
Li-ion batteries stand out among energy storage systems due to their higher energy and power density, cycle life, and high-rate performance. Development of advanced, high-capacity anodes is essential for enhancing their performance, safety, and durability, and recently, two-dimensional materials have garnered extensive attention in this regard due to distinct properties, particularly their ability to modulate van der Waals gap through intercalation. Covalently intercalated Graphene oxide interlayer galleries with mono-Boc-ethylenediamine (GO-EnBoc) was synthesized via the ring opening of epoxide, forming an amino alcohol moiety. This creates three coordination sites for Li ion exchange on the graphene oxide nanosheets' surface. Consequently, the interlayer d-spacing expands from 8.47 Å to 13.17 Å, as anticipated. When explored as an anode, Li-GO-EnBoc shows a significant enhancement in the stable and reversible capacity of 270 mA h g-1 at a current density of 25 mA g-1 compared to GO (80 mA h g-1), without compromising the mechanical or chemical stability. Through 13C, 7Li and 6Li MAS NMR, XPS, IR, Raman microscopy, and density functional theory (DFT) calculations, we confirm the positioning of Li+ ions at multiple sites of the interlayer gallery, which enhances the electrochemical performance. Our findings suggest that these novel systematically modulated van der Waals gap GO-engineered materials hold promise as efficient anodes for Li-ion batteries.
Collapse
Affiliation(s)
- Sneha Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati Andhra Pradesh 517507 India
| | - Vijayamohanan K Pillai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati Andhra Pradesh 517507 India
| | - Mano Ranjana Ponraj
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences Coimbatore Tamil Nadu 641114 India
| | - Thushara K M
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences Coimbatore Tamil Nadu 641114 India
| | - Jebasingh Bhagavathsingh
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences Coimbatore Tamil Nadu 641114 India
| | - Stephan L Grage
- Karlsruhe Institute of Technology, Institute of Biological Interfaces IBG-2 P.O. Box 3640 76021 Karlsruhe Germany
| | - Xihong Peng
- College of Integrative Sciences and Arts, Arizona State University Mesa AZ 85212 USA
| | - Jeon Woong Kang
- Laser Biomedical Research Centre, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Dorian Liepmann
- Department of Bioengineering, University of California 80 Hearst Memorial Mining Bldg. Berkeley CA 94720 USA
| | | | - Velmurugan Thavasi
- Center for Quantum Research and Technology, The University of Oklahoma 440 W. Brooks Street Normon OK 73019 USA
| | - Venkatesan Renugopalakrishnan
- Department of Chemistry, Boston Children's Hospital, Harvard Medical School, MGB Center for COVID Innovation, Northeastern University Boston MA 02115 USA
| |
Collapse
|
4
|
Devina W, Subiyanto I, Han SO, Yoon HC, Kim H. Double-Shelled Fe-Fe 3C Nanoparticles Embedded on a Porous Carbon Framework for Superior Lithium-Ion Half/Full Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38623949 DOI: 10.1021/acsami.3c19401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Cost-effective and environmentally friendly Fe-based active materials offer exceptionally high energy capacity in lithium-ion batteries (LIBs) due to their multiple electron redox reactions. However, challenges, such as morphology degradation during cycling, cell pulverization, and electrochemical stability, have hindered their widespread use. Herein, we demonstrated a simple salt-assisted freeze-drying method to design a double-shelled Fe/Fe3C core tightly anchored on a porous carbon framework (FEC). The shell consists of a thin Fe3O4 layer (≈2 nm) and a carbon layer (≈10 nm) on the outermost part. Benefiting from the complex nanostructuring (porous carbon support, core-shell nanoparticles, and Fe3C incorporation), the FEC anode delivered a high discharge capacity of 947 mAh g-1 at 50 mA g-1 and a fast-rate capability of 305 mAh g-1 at 10 A g-1. Notably, the FEC cell still showed 86% reversible capacity retention (794 mAh g-1 at 50 mA g-1) at a high cycling temperature of 80 °C, indicating superior structural integrity during cycling at extreme temperatures. Furthermore, we conducted a simple solid-state fluorination technique using the as-prepared FEC sample and excess NH4F to prepare iron fluoride-carbon composites (FeF2/C) as the positive electrode. The full cell configuration, consisting of the FEC anode and FeF2/C cathode, reached a remarkable capacity of 200 mAh g-1 at a 20 mA g-1 rate or an energy density of approximately 530 Wh kg-1. Thus, the straightforward and simple experimental design holds great potential as a revolutionary Fe-based cathodic-anodic pair candidate for high-energy LIBs.
Collapse
Affiliation(s)
- Winda Devina
- Hydrogen Convergence Materials Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Iyan Subiyanto
- Hydrogen Convergence Materials Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
- University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Seong Ok Han
- Hydrogen Convergence Materials Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Hyung Chul Yoon
- Clean Fuel Research Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Hyunuk Kim
- Hydrogen Convergence Materials Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
- University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
5
|
Liu K, Li Q, Song Y, Song Y, Yan Z, Wang J, Li X, Wang H, Li J. Construction of heterostructured Fe 2O 3/Fe 7S 8 hollow fibers to boost the electrochemical kinetics of lithium storage. Chem Commun (Camb) 2024; 60:4218-4221. [PMID: 38525863 DOI: 10.1039/d4cc00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Heterostructured Fe2O3/Fe7S8 hollow fibers were rationally designed and synthesized via the electrospinning technique, followed by a calcination process and sulfuration treatment. Benefitting from the synergistic effect of the hollow structure and the built-in electric field induced by the heterostructure, the as-prepared Fe2O3/Fe7S8 composite anode exhibits high specific capacity (947 mA h g-1 after 100 cycles at 0.2 A g-1), excellent rate capability, and long-term cycling stability (730 mA h g-1 after 1000 cycles at 1 A g-1).
Collapse
Affiliation(s)
- Kaitao Liu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, Shandong, China.
| | - Qiaoling Li
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, Shandong, China.
- School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
| | - Yingying Song
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, Shandong, China.
| | - Yifei Song
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, Shandong, China.
| | - Zhiming Yan
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, Shandong, China.
| | - Junzhe Wang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, Shandong, China.
| | - Xueda Li
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, Shandong, China.
| | - Hongqiang Wang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, Shandong, China.
| | - Jiao Li
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, Shandong, China.
| |
Collapse
|
6
|
Liu H, Zhang W, Wang W, Han G, Zhang J, Zhang S, Wang J, Du Y. Design and Construction of Carbon-Coated Fe 3 O 4 /Cr 2 O 3 Heterostructures Nanoparticles as High-Performance Anodes for Lithium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304264. [PMID: 37661567 DOI: 10.1002/smll.202304264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/16/2023] [Indexed: 09/05/2023]
Abstract
Transition metal oxides, highly motivated anodes for lithium-ion batteries due to high theoretical capacity, typically afflict by inferior conductivity and significant volume variation. Architecting heterogeneous structures with distinctive interfacial features can effectively regulate the electronic structure to favor electrochemical properties. Herein, an engineered carbon-coated nanosized Fe3 O4 /Cr2 O3 heterostructure with multiple interfaces is synthesized by a facile sol-gel method and subsequent heat treatment. Such ingenious components and structural design deliver rapid Li+ migration and facilitate charge transfer at the heterogeneous interface. Simultaneously, the strong coupling synergistic interactions between Fe3 O4 , Cr2 O3 , and carbon layers establish multiple interface structures and built-in electric fields, which accelerate ion/electron transport and effectively eliminate volume expansion. As a result, the multi-interface heterostructure, as a lithium-ion battery anode, exhibits superior cycling stability maintaining a reversible capacity of 651.2 mAh g-1 for 600 cycles at 2 C. The density functionaltheory calculations not only unravel the electronic structure of the modulation but also illustrate favorable lithium-ion adsorption kinetics. This multi-interface heterostructure strategy offers a pathway for the development of advanced alkali metal-ion batteries.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Weibin Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Weili Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Guifang Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Jingde Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Shiwei Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| | - Jianchuan Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| | - Yong Du
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
7
|
Tu J, Tong H, Wang P, Wang D, Yang Y, Meng X, Hu L, Wang H, Chen Q. Octahedral/Tetrahedral Vacancies in Fe 3 O 4 as K-Storage Sites: A Case of Anti-Spinel Structure Material Serving as High-Performance Anodes for PIBs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301606. [PMID: 37086133 DOI: 10.1002/smll.202301606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/25/2023] [Indexed: 05/03/2023]
Abstract
Potassium-ion batteries (PIBs) have attracted more and more attention as viable alternatives to lithium-ion batteries (LIBs) due to the deficiency and uneven distribution of lithium resources. However, it is shown that potassium storage in some compounds through reaction or intercalation mechanisms cannot effectively improve the capacity and stability of anodes for PIBs. The unique anti-spinel structure of magnetite (Fe3 O4 ) is densely packed with thirty-two O atoms to form a face-centered cubic (fcc) unit cell with tetrahedral/octahedral vacancies in the O-closed packing structure, which can serve as K+ storage sites according to the density functional theory (DFT) calculation results. In this work, carbon-coated Fe3 O4 @C nanoparticles are prepared as high-performance anodes for PIBs, which exhibit high reversible capacity (638 mAh g-1 at 0.05 A g-1 ) and hyper stable cycling performance at ultrahigh current density (150 mAh g-1 after 9000 cycles at 10 A g-1 ). In situ XRD, ex-situ Fe K-edge XAFS, and DFT calculations confirm the storage of K+ in tetrahedral/octahedral vacancies.
Collapse
Affiliation(s)
- Jinwei Tu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Huigang Tong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Peichen Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Dongdong Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yang Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiangfu Meng
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Lin Hu
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Hui Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
8
|
Qi C, Zhao M, Fang T, Zhu Y, Wang P, Xie A, Shen Y. Multifunctional Hollow Porous Fe 3O 4@N-C Nanocomposites as Anodes of Lithium-Ion Battery, Adsorbents and Surface-Enhanced Raman Scattering Substrates. Molecules 2023; 28:5183. [PMID: 37446845 DOI: 10.3390/molecules28135183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
At present, it is still a challenge to prepare multifunctional composite nanomaterials with simple composition and favorable structure. Here, multifunctional Fe3O4@nitrogen-doped carbon (N-C) nanocomposites with hollow porous core-shell structure and significant electrochemical, adsorption and sensing performances were successfully synthesized through the hydrothermal method, polymer coating, then thermal annealing process in nitrogen (N2) and lastly etching in hydrochloric acid (HCl). The morphologies and properties of the as-obtained Fe3O4@N-C nanocomposites were markedly affected by the etching time of HCl. When the Fe3O4@N-C nanocomposites after etching for 30 min (Fe3O4@N-C-3) were applied as the anodes for lithium-ion batteries (LIBs), the invertible capacity could reach 1772 mA h g-1 after 100 cycles at the current density of 0.2 A g-1, which is much better than that of Fe3O4@N-C nanocomposites etched, respectively, for 15 min and 45 min (948 mA h g-1 and 1127 mA h g-1). Additionally, the hollow porous Fe3O4@N-C-3 nanocomposites also exhibited superior rate capacity (950 mA h g-1 at 0.6 A g-1). The excellent electrochemical properties of Fe3O4@N-C nanocomposites are attributed to their distinctive hollow porous core-shell structure and appropriate N-doped carbon coating, which could provide high-efficiency transmission channels for ions/electrons, improve the structural stability and accommodate the volume variation in the repeated Li insertion/extraction procedure. In addition, the Fe3O4@N-C nanocomposites etched by HCl for different lengths of time, especially Fe3O4@N-C-3 nanocomposites, also show good performance as adsorbents for the removal of the organic dye (methyl orange, MO) and surface-enhanced Raman scattering (SERS) substrates for the determination of a pesticide (thiram). This work provides reference for the design and preparation of multifunctional materials with peculiar pore structure and uncomplicated composition.
Collapse
Affiliation(s)
- Chunxia Qi
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
- Department of Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Mengxiao Zhao
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Tian Fang
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Yaping Zhu
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Peisan Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Anjian Xie
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Yuhua Shen
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
9
|
Gao X, Xiao Z, Jiang L, Wang C, Lin X, Sheng L. Yolk-shell porous Fe3O4@C anchored on graphene as anode for Li-ion half/full batteries with high rate capability and long cycle life. J Colloid Interface Sci 2023; 641:820-830. [PMID: 36966571 DOI: 10.1016/j.jcis.2023.03.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
Iron oxides have been widely studied as anode materials for lithium-ion batteries (LIBs) due to their high conductivity (5 × 104 S m-1) and high capacity (ca. 926 mAh g-1). However, having a large volume change and being highly prone to dissolution/aggregation during charge/discharge cycles hinder their practical application. Herein, we report a design strategy for constructing yolk-shell porous Fe3O4@C anchored on graphene nanosheets (Y-S-P-Fe3O4/GNs@C). This particular structure can not only introduce sufficient internal void space to accommodate the volume change of Fe3O4 but also afford a carbon shell to restrict Fe3O4 overexpansion, thus greatly improving capacity retention. In addition, the pores in Fe3O4 can effectively promote ion transport, and the carbon shell anchored on graphene nanosheets is capable of enhancing overall conductivity. Consequently, Y-S-P-Fe3O4/GNs@C features a high reversible capacity of 1143 mAh g-1, an excellent rate capacity (358 mAh g-1 at 10.0 A g-1), and a prolonged cycle life with robust cycling stability (579 mAh g-1 remaining after 1800 cycles at 2.0 A g-1) when assembled into LIBs. The assembled Y-S-P-Fe3O4/GNs@C//LiFePO4 full-cell delivers a high energy density of 341.0 Wh kg-1 at 37.9 W kg-1. The Y-S-P-Fe3O4/GNs@C is proved to be an efficient Fe3O4-based anode material for LIBs.
Collapse
|
10
|
Al-Fogra S, Yang B, Jurkiewicz L, Hauke F, Hirsch A, Wei T. Spatially Resolved Janus Patterning of Graphene by Direct Laser Writing. J Am Chem Soc 2022; 144:19825-19831. [PMID: 36256880 DOI: 10.1021/jacs.2c07280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Covalently patterned Janus-functionalized graphene featuring a spatially defined asymmetric bifacial addend binding motif remains a challenging synthetic target. Here, a facile and universal laser writing approach for a one-step covalent Janus patterning of graphene is reported, leading to the formation of up to now elusive graphene architectures, solely consisting of antaratopically functionalized superlattices. The structurally defined covalent functionalization procedure is based on laser-triggered concurrent photolysis of two different photosensitizers situated on both sides of the graphene plane, generating radicals and subsequent addend binding in the laser-irradiated areas only. Careful structure analysis was performed by Raman spectroscopy and Kelvin probe force microscopy. In terms of the advantages of our newly established concept, including a simple/easy-to-operate patterning procedure, arbitrary pattern availability, and a high degree of addend binding, an easy access to tailor-designed Janus-functionalized graphene devices with spatially resolved functional entities can be envisaged.
Collapse
Affiliation(s)
- Sabrin Al-Fogra
- Department of Chemistry and Pharmacy, Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Bowen Yang
- Department of Chemistry and Pharmacy, Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Lisa Jurkiewicz
- Department of Chemistry and Pharmacy, Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Frank Hauke
- Department of Chemistry and Pharmacy, Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy, Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Tao Wei
- Department of Chemistry and Pharmacy, Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| |
Collapse
|
11
|
Vafaeezadeh M, Thiel WR. Task-Specific Janus Materials in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206403. [PMID: 35670287 PMCID: PMC9804448 DOI: 10.1002/anie.202206403] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 01/05/2023]
Abstract
Janus materials are anisotropic nano- and microarchitectures with two different faces consisting of distinguishable or opposite physicochemical properties. In parallel with the discovery of new methods for the fabrication of these materials, decisive progress has been made in their application, for example, in biological science, catalysis, pharmaceuticals, and, more recently, in battery technology. This Minireview systematically covers recent and significant achievements in the application of task-specific Janus nanomaterials as heterogeneous catalysts in various types of chemical reactions, including reduction, oxidative desulfurization and dye degradation, asymmetric catalysis, biomass transformation, cascade reactions, oxidation, transition-metal-catalyzed cross-coupling reactions, electro- and photocatalytic reactions, as well as gas-phase reactions. Finally, an outlook on possible future applications is given.
Collapse
Affiliation(s)
- Majid Vafaeezadeh
- Fachbereich ChemieTechnische Universität KaiserslauternErwin-Schrödinger-Strasse 5467663KaiserslauternGermany
| | - Werner R. Thiel
- Fachbereich ChemieTechnische Universität KaiserslauternErwin-Schrödinger-Strasse 5467663KaiserslauternGermany
| |
Collapse
|
12
|
Jeong S, Yuan G, Satija SK, Jeon N, Lee E, Kim Y, Choi S, Koo J. Polyamide thin films with nanochannel networks synthesized at the liquid–gas interface for water purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Gogoi A, Neyts EC, Milošević MV, Peeters FM. Arresting Aqueous Swelling of Layered Graphene-Oxide Membranes with H 3O + and OH - Ions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34946-34954. [PMID: 35872649 DOI: 10.1021/acsami.2c05926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the past decade, graphene oxide (GO) has emerged as a promising membrane material with superior separation performance and intriguing mechanical/chemical stability. However, its practical implementation remains very challenging primarily because of its undesirable swelling in an aqueous environment. Here, we demonstrated that dissociation of water molecules into H3O+ and OH- ions inside the interlayer gallery of a layered GO membrane can strongly affect its stability and performance. We reveal that H3O+ and OH- ions form clusters inside the GO laminates that impede the permeance of water and salt ions through the membrane. Dynamics of those clusters is sensitive to an external ac electric field, which can be used to tailor the membrane performance. The presence of H3O+ and OH- ions also leads to increased stability of the hydrogen bond (H-bond) network among the water molecules and the GO layers, which further reduces water permeance through the membrane, while crucially imparting stability to the layered GO membrane against undesirable swelling.
Collapse
Affiliation(s)
- Abhijit Gogoi
- PLASMANT, Department of Chemistry, University of Antwerp, Antwerp 2610, Belgium
- Department of Physics, University of Antwerp, Antwerp 2020, Belgium
| | - Erik C Neyts
- PLASMANT, Department of Chemistry, University of Antwerp, Antwerp 2610, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
| | - Milorad V Milošević
- Department of Physics, University of Antwerp, Antwerp 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
| | | |
Collapse
|
14
|
Hao J, Sun M, Li D, Zhang T, Li J, Zhou D. An IFI6-based hydrogel promotes the healing of radiation-induced skin injury through regulation of the HSF1 activity. J Nanobiotechnology 2022; 20:288. [PMID: 35717249 PMCID: PMC9206756 DOI: 10.1186/s12951-022-01466-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
Radiation-induced skin injury (RISI) is a common complication of radiotherapy. Interferon-alpha inducible protein 6 (IFI6) significantly reduces the radiation sensitivity of HaCaT cells. Sodium alginate (SA) has substantial moisturizing properties. Graphene oxide (GO) is a suitable substrate with physical antibacterial properties. Therefore, we designed materials to modify IFI6 using the biogule of polydopamine (PDA) connected to GO/SA. The structure, size, morphology, and elemental compositions of IFI6-PDA@GO/SA were analyzed. Cytological studies suggested that IFI6-PDA@GO/SA is non-toxic to HaCaT cells, with antibacterial properties. It promotes migration and vascularization and inhibits apoptosis. These cells express IFI6 after irradiation. The mouse model suggested that IFI6-PDA@GO/SA promotes wound healing and reduces reactive oxygen species expression. IFI6-PDA@GO/SA accelerates RISI healing, possibly by initiating the SSBP1/HSF1 signaling pathway. In addition, IFI6-PDA@GO/SA improves the immune microenvironment. This study constitutes the first use of IFI6 as a RISI wound-healing material.
Collapse
Affiliation(s)
- Jie Hao
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Mengyi Sun
- Department of Rehabilitation, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830092, China
| | - Dong Li
- Department of Oncology, The General Hospital of Western Theater Command of PLA, Chengdu, 610083, China
| | - Tao Zhang
- Department of Oncology, The General Hospital of Western Theater Command of PLA, Chengdu, 610083, China.
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Daijun Zhou
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, 400038, China. .,Department of Oncology, The General Hospital of Western Theater Command of PLA, Chengdu, 610083, China.
| |
Collapse
|
15
|
Vafaeezadeh M, Thiel WR. Task‐Specific Janus Materials in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Majid Vafaeezadeh
- Technische Universitat Kaiserslautern Chemistry Erwin-Schrödinger-Str. 54 67663 Kaiserslautern GERMANY
| | - Werner R. Thiel
- Kaiserslautern University of Technology: Technische Universitat Kaiserslautern Chemistry Erwin-Schrödinger-Str. 54 67663 Kaiserslautern GERMANY
| |
Collapse
|
16
|
Alivand MS, Mazaheri O, Wu Y, Zavabeti A, Christofferson AJ, Meftahi N, Russo SP, Stevens GW, Scholes CA, Mumford KA. Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO 2 capture. Nat Commun 2022; 13:1249. [PMID: 35273166 PMCID: PMC8913730 DOI: 10.1038/s41467-022-28869-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
Catalytic solvent regeneration has attracted broad interest owing to its potential to reduce energy consumption in CO2 separation, enabling industry to achieve emission reduction targets of the Paris Climate Accord. Despite recent advances, the development of engineered acidic nanocatalysts with unique characteristics remains a challenge. Herein, we establish a strategy to tailor the physicochemical properties of metal-organic frameworks (MOFs) for the synthesis of water-dispersible core-shell nanocatalysts with ease of use. We demonstrate that functionalized nanoclusters (Fe3O4-COOH) effectively induce missing-linker deficiencies and fabricate mesoporosity during the self-assembly of MOFs. Superacid sites are created by introducing chelating sulfates on the uncoordinated metal clusters, providing high proton donation capability. The obtained nanomaterials drastically reduce the energy consumption of CO2 capture by 44.7% using only 0.1 wt.% nanocatalyst, which is a ∽10-fold improvement in efficiency compared to heterogeneous catalysts. This research represents a new avenue for the next generation of advanced nanomaterials in catalytic solvent regeneration. Catalytic solvent regeneration is of interest to reduce energy consumption in CO2 separation, however, the development of engineered nanocatalysts remains a challenge. Here, a new avenue is presented for the next generation of advanced metal-organic frameworks (MOFs) in energy-efficient CO2 capture.
Collapse
Affiliation(s)
- Masood S Alivand
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Omid Mazaheri
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia.,School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Yue Wu
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia.,School of Science, RMIT University, Melbourne, Vic, 3001, Australia
| | - Andrew J Christofferson
- School of Science, RMIT University, Melbourne, Vic, 3001, Australia.,ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Vic, 3000, Australia
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Vic, 3000, Australia
| | - Salvy P Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Vic, 3000, Australia
| | - Geoffrey W Stevens
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Colin A Scholes
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Kathryn A Mumford
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia.
| |
Collapse
|
17
|
Luo R, Hu X, Zhang N, Li L, Wu F, Chen R. Toward Highly Stable Anode for Secondary Batteries: Employing TiO 2 Shell as Elastic Buffering Marix for FeO x Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105713. [PMID: 35060316 DOI: 10.1002/smll.202105713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Transition metal oxides are considered promising anode materials for next-generation lithium-ion and sodium-ion batteries (LIBs and SIBs) because of their high theoretical capacities; however, their practical application is limited by the detrimental large volume expansion that occurs upon cycling. In this work, a rationally designed TiO2 @Fe@FeOx nanocomposite encapsulated by a TiO2 shell with unique core-shell structure is synthesized and exhibits outstanding electrochemical performance as an anode in LIBs and SIBs. The nanocomposite exhibits a reversible capacity of 619.2 mAh g-1 at 1 A g-1 with a coulombic efficiency over 99.5% after 1000 cycles when used as a LIB anode. The nanocomposite also exhibits superior sodium storage performance (267 mAh g-1 at 50 mA g-1 , capacity retention of 65.4% after 1000 cycles at 200 mA g-1 ). The TiO2 shell serves as a strong conformal layer and soft matrix that can tolerate the volume expansion and maintain the structural integrity of the anode during discharging and charging. Moreover, the open active diffusion channels of the shell contribute to high ion diffusivity and improved ionic, and electronic diffusion. These findings indicate that adoption of TiO2 coating is an effective strategy to optimize the electrochemical performance of transition metal oxide anode materials.
Collapse
Affiliation(s)
- Rui Luo
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xin Hu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Nanxiang Zhang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
| |
Collapse
|
18
|
Fang C, Yoon I, Hubble D, Tran TN, Kostecki R, Liu G. Recent Applications of Langmuir-Blodgett Technique in Battery Research. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2431-2439. [PMID: 34985860 DOI: 10.1021/acsami.1c19064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Langmuir-Blodgett (LB) technique, in which monolayers are commonly transferred from a liquid/gas interface to a solid surface, allows convenient fabrication of highly ordered thin films with molecular-level precision. This method is widely applicable to substances ranging from organic molecules to nanomaterials. Therefore, LB methods have provided a critical toolbox for researchers to engineer nanoarchitectures. The LB fabrication process is also compatible with numerous substrate materials over large areas, which is advantageous for practical application. Despite its wide applicability, the LB strategy has not been extensively employed in battery studies. The versatility of LB film, along with the accumulated knowledge associated with this technique, makes it a promising platform for promoting battery chemistry evolution. This Review summarizes recent advances of LB methods for high-performance battery development, including preparation of electrode materials, fabrication of functional layers, and battery diagnosis and thus illustrates the high utility of LB approaches in battery research.
Collapse
Affiliation(s)
- Chen Fang
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Insun Yoon
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dion Hubble
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Thanh-Nhan Tran
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Robert Kostecki
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Gao Liu
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Montes-García V, Samorì P. Janus 2D materials via asymmetric molecular functionalization. Chem Sci 2022; 13:315-328. [PMID: 35126966 PMCID: PMC8729797 DOI: 10.1039/d1sc05836c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022] Open
Abstract
Janus two-dimensional materials (2DMs) are a novel class of 2DMs in which the two faces of the material are either asymmetrically functionalized or are exposed to a different local environment. The diversity of the properties imparted to the two opposing sides enables the design of new multifunctional materials for applications in a broad variety of fields including opto-electronics, energy storage, and catalysis. In this perspective, we summarize the most enlightening experimental methods for the asymmetric chemical functionalization of 2DMs with tailored made (macro)molecules by means of a supratopic binding (one side) or antaratopic binding (two sides) process. We describe the emergence of unique electrical and optical characteristics resulting from the asymmetric dressing of the two surfaces. Representative examples of Janus 2DMs towards bandgap engineering, enhanced photoresponse and photoluminescence are provided. In addition, examples of Janus 2DMs for real applications such as energy storage (batteries and supercapacitors) and generation (photovoltaics), opto-electronics (field-effect transistors and photodetectors), catalysis, drug delivery, self-healing materials, chemical sensors and selective capture and separation of small molecules are also described. Finally, we discuss the future directions, challenges, and opportunities to expand the frontiers of Janus 2DMs towards technologies with potential impact in environmental science and biomedical applications.
Collapse
Affiliation(s)
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
20
|
Yu S, Lu Z, Xie J, Hu J, Cao Y. Carbon-coated Fe 3O 4 nanoparticles in situ grown on 3D cross-linked carbon nanosheets as anodic materials for high capacity lithium and sodium-ion batteries. NEW J CHEM 2022. [DOI: 10.1039/d2nj01838a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Carbon coated Fe3O4 nanoparticles were grown in situ on 3D cross-linked carbon nanosheets, and exhibited excellent performance for lithium ion batteries.
Collapse
Affiliation(s)
- Shuijing Yu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| | - Jindou Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| |
Collapse
|