1
|
Fan J, Chen Z, Liang C, Tao K, Zhang M, Sun Y, Zhan R. 10 μm-Level TiNb 2 O 7 Secondary Particles for Fast-Charging Lithium-Ion Batteries. Chemistry 2024; 30:e202302857. [PMID: 37872690 DOI: 10.1002/chem.202302857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/25/2023]
Abstract
TiNb2 O7 with Wadsley-Roth phase delivers double theoretical specific capacity and similar working potential in comparison to spinel Li4 Ti5 O12 , the commercial high-rate anode material, and thus can enable much higher energy density of lithium-ion batteries. However, the inter-particle resistance within the high-mass-loading TiNb2 O7 electrode would impede the capacity release for practical application, especially under fast-charging conditions. Herein, 10-20 μm-size carbon-coated TiNb2 O7 secondary particle (SP-TiNb2 O7 ) consisting of initial micro-scale TiNb2 O7 particles (MP-TiNb2 O7 ) was fabricated. The high crystallinity of active material could enable fast-charge diffusion and electrochemical reaction rate within particles, and the small number of stacking layers of SP-TiNb2 O7 could reduce the large inter-particle resistance that regular particle electrode often possess and achieve high compaction density of electrodes with high mass loading. The investigation on materials structure and electrochemical reaction kinetics verified the advances of the as-fabricated SP-TiNb2 O7 in achieving superior electrochemical performance. The SP-TiNb2 O7 exhibited high reversible capacity of 292.7 mAh g-1 in the potential range of 1-3 V (Li+ /Li) at 0.1 C, delivering high-capacity release of 94.3 %, and high capacity retention of 86 % at 0.5 C for 250 cycles in half cell configuration. Particularly, the advances of such an anode were verified in practical 5 Ah-level laminated full pouch cell. The as-assembled LiFePO4 ||TiNb2 O7 full cell exhibited a high capacity of 5.08 Ah at high charging rate of 6 C (77.9 % of that at 0.2 C of 6.52 Ah), as well as an ultralow capacity decay rate of 0.0352 % for 250 cycles at 1 C, suggesting the great potential for practical fast-charging lithium-ion batteries.
Collapse
Affiliation(s)
- Jing Fan
- Wuhan Institute of Marine Electric Propulsion, Wuhan, 430064, China
| | - Zhengxu Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chennan Liang
- Wuhan Institute of Marine Electric Propulsion, Wuhan, 430064, China
| | - Kai Tao
- Wuhan Institute of Marine Electric Propulsion, Wuhan, 430064, China
| | - Ming Zhang
- Wuhan Institute of Marine Electric Propulsion, Wuhan, 430064, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yongming Sun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Renming Zhan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
2
|
Gong S, Wang Y, Li M, Wen Y, Xu B, Wang H, Qiu J, Li B. Establish TiNb 2O 7@C as Fast-Charging Anode for Lithium-Ion Batteries. MATERIALS (BASEL, SWITZERLAND) 2022; 16:333. [PMID: 36614672 PMCID: PMC9822346 DOI: 10.3390/ma16010333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Intercalation-type metal oxides are promising active anode materials for the fabrication of safer rechargeable lithium-ion batteries, as they are capable of minimizing or even eliminating Li plating at low voltages. Due to the excellent cycle performance, high specific capacity and appropriate working potential, TiNb2O7 (TNO) is considered to be the candidate of anode materials. Despite a lot of beneficial characteristics, the slow electrochemical kinetics of the TNO-based anodes limits their wide use. In this paper, TiNb2O7@C was prepared by using the self-polymerization coating characteristics of dopamine to enhance the rate-performance and cycling stability. The TNO@C-2 particles present ideal rate performance with the discharge capacity of 295.6 mA h g-1 at 0.1 C. Moreover, the TNO@C-2 anode materials exhibit initial discharge capacity of 177.4 mA h g-1, providing 91% of capacity retention after 400 cycles at 10 C. The outstanding electrochemical performance can be contributed to the carbon layer, which builds fast lithium ion paths, enhancing the electrical conductivity of TNO. All these results confirm that TNO@C is a valid methodology to enhance rate-performance and cycling stability and is a new way to provide reliable and quickly rechargeable energy storage resources.
Collapse
Affiliation(s)
- Shuya Gong
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Research Institute of Chemical Defense, AMS, Beijing 100191, China
| | - Yue Wang
- Research Institute of Chemical Defense, AMS, Beijing 100191, China
| | - Meng Li
- Research Institute of Chemical Defense, AMS, Beijing 100191, China
| | - Yuehua Wen
- Research Institute of Chemical Defense, AMS, Beijing 100191, China
| | - Bin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingyi Qiu
- Research Institute of Chemical Defense, AMS, Beijing 100191, China
| | - Bin Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Dimensional effects on the electronic conductivity and rheological behaviors of LiFePO4 catholytes for rechargeable lithium slurry battery. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Lei C, Huang S, Qin X, Guo Z, Wei T, Zhang Y. Reduced Graphene Oxide/Glucose Co‐Assisted Micro Titanium Niobium Oxide Hybrid Anodes for Lithium‐Ion Batteries. ChemElectroChem 2022. [DOI: 10.1002/celc.202200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Xue Qin
- Tianjin University School of Science No.135 Yaguan Road, Jinnan District, Tianjin, China 300072 Tianjin CHINA
| | | | - Tianyu Wei
- Tianjin University School of Science CHINA
| | | |
Collapse
|
5
|
Zhang S, Hwang J, Matsumoto K, Hagiwara R. In Situ Orthorhombic to Amorphous Phase Transition of Nb 2O 5 and Its Temperature Effect on Pseudocapacitive Behavior. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19426-19436. [PMID: 35446016 DOI: 10.1021/acsami.2c01550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Niobium pentoxide (Nb2O5) represents an exquisite class of negative electrode materials with unique pseudocapacitive kinetics that engender superior power and energy densities for advanced electrical energy storage devices. Practical energy devices are expected to maintain stable performance under real-world conditions such as temperature fluctuations. However, the intercalation pseudocapacitive behavior of Nb2O5 at elevated temperatures remains unexplored because of the scarcity of suitable electrolytes. Thus, in this study, we investigate the effect of temperature on the pseudocapacitive behavior of submicron-sized Nb2O5 in a wide potential window of 0.01-2.3 V. Furthermore, ex situ X-ray diffraction and X-ray photoelectron spectroscopy reveal the amorphization of Nb2O5 accompanied by the formation of NbO via a conversion reaction during the initial cycle. Subsequent cycles yield enhanced performance attributed to a series of reversible NbV, IV/NbIII redox reactions in the amorphous LixNb2O5 phase. Through cyclic voltammetry and symmetric cell electrochemical impedance spectroscopy, temperature elevation is noted to increase the pseudocapacitive contribution of the Nb2O5 electrode, resulting in a high rate capability of 131 mAh g-1 at 20,000 mA g-1 at 90 °C. The electrode further exhibits long-term cycling over 2000 cycles and high Coulombic efficiency ascribed to the formation of a robust, [FSA]--originated solid-electrolyte interphase during cycling.
Collapse
Affiliation(s)
- Shaoning Zhang
- Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jinkwang Hwang
- Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiko Matsumoto
- Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rika Hagiwara
- Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Yang Y, Huang J, Cao Z, Lv Z, Wu D, Wen Z, Meng W, Zeng J, Li CC, Zhao J. Synchronous Manipulation of Ion and Electron Transfer in Wadsley-Roth Phase Ti-Nb Oxides for Fast-Charging Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104530. [PMID: 34962107 PMCID: PMC8867197 DOI: 10.1002/advs.202104530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/20/2021] [Indexed: 06/14/2023]
Abstract
Implementing fast-charging lithium-ion batteries (LIBs) is severely hindered by the issues of Li plating and poor rate capability for conventional graphite anode. Wadsley-Roth phase TiNb2 O7 is regarded as a promising anode candidate to satisfy the requirements of fast-charging LIBs. However, the unsatisfactory electrochemical kinetics resulting from sluggish ion and electron transfer still limit its wide applications. Herein, an effective strategy is proposed to synchronously improve the ion and electron transfer of TiNb2 O7 by incorporation of oxygen vacancy and N-doped graphene matrix (TNO- x @N-G), which is designed by combination of solution-combustion and electrostatic self-assembly approach. Theoretical calculations demonstrate that Li+ intercalation gives rise to the semi-metallic characteristics of lithiated phases (Liy TNO- x ), leading to the self-accelerated electron transport. Moreover, in situ X-ray diffraction and Raman measurements reveal the highly reversible structural evolution of the TNO- x @N-G during cycling. Consequently, the TNO- x @N-G delivers a higher reversible capacity of 199.0 mAh g-1 and a higher capacity retention of 86.5% than those of pristine TNO (155.8 mAh g-1 , 59.4%) at 10 C after 2000 cycles. Importantly, various electrochemical devices including lithium-ion full battery and hybrid lithium-ion capacitor by using the TNO- x @N-G anode exhibit excellent rate capability and cycling stability, verifying its potential in practical applications.
Collapse
Affiliation(s)
- Yang Yang
- State Key Lab of Physical Chemistry of Solid SurfacesState‐Province Joint Engineering Laboratory of Power Source Technology for New Energy VehicleCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Jingxin Huang
- State Key Lab of Physical Chemistry of Solid SurfacesState‐Province Joint Engineering Laboratory of Power Source Technology for New Energy VehicleCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Zhenming Cao
- State Key Lab of Physical Chemistry of Solid SurfacesState‐Province Joint Engineering Laboratory of Power Source Technology for New Energy VehicleCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Zeheng Lv
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
| | - Dongzhen Wu
- State Key Lab of Physical Chemistry of Solid SurfacesState‐Province Joint Engineering Laboratory of Power Source Technology for New Energy VehicleCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Zhipeng Wen
- State Key Lab of Physical Chemistry of Solid SurfacesState‐Province Joint Engineering Laboratory of Power Source Technology for New Energy VehicleCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Weiwei Meng
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive UtilizationPanzhihua617000P. R. China
| | - Jing Zeng
- State Key Lab of Physical Chemistry of Solid SurfacesState‐Province Joint Engineering Laboratory of Power Source Technology for New Energy VehicleCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Cheng Chao Li
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
| | - Jinbao Zhao
- State Key Lab of Physical Chemistry of Solid SurfacesState‐Province Joint Engineering Laboratory of Power Source Technology for New Energy VehicleCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
7
|
Sui D, Chang M, Peng Z, Li C, He X, Yang Y, Liu Y, Lu Y. Graphene-Based Cathode Materials for Lithium-Ion Capacitors: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2771. [PMID: 34685207 PMCID: PMC8537845 DOI: 10.3390/nano11102771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/26/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022]
Abstract
Lithium-ion capacitors (LICs) are attracting increasing attention because of their potential to bridge the electrochemical performance gap between batteries and supercapacitors. However, the commercial application of current LICs is still impeded by their inferior energy density, which is mainly due to the low capacity of the cathode. Therefore, tremendous efforts have been made in developing novel cathode materials with high capacity and excellent rate capability. Graphene-based nanomaterials have been recognized as one of the most promising cathodes for LICs due to their unique properties, and exciting progress has been achieved. Herein, in this review, the recent advances of graphene-based cathode materials for LICs are systematically summarized. Especially, the synthesis method, structure characterization and electrochemical performance of various graphene-based cathodes are comprehensively discussed and compared. Furthermore, their merits and limitations are also emphasized. Finally, a summary and outlook are presented to highlight some challenges of graphene-based cathode materials in the future applications of LICs.
Collapse
Affiliation(s)
- Dong Sui
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Meijia Chang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Zexin Peng
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Changle Li
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Xiaotong He
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Yanliang Yang
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Yong Liu
- Collaborative Innovation Center of Nonferrous Metals of Henan Province, Henan Key Laboratory of Non-Ferrous Materials Science & Processing Technology, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Yanhong Lu
- School of Chemistry & Material Science, Langfang Normal University, Langfang 065000, China
| |
Collapse
|
8
|
Abstract
Lithium-ion capacitors (LICs) are considered to be one of the most promising energy storage devices which have the potential of integrating high energy of lithium-ion batteries and high power and long cycling life of supercapacitors into one system. However, the current LICs could only provide high power density at the cost of low energy density due to the sluggish Li+ diffusion and/or low electrical conductivity of the anode materials. Moreover, the serious capacity and kinetics imbalances between anode and cathode result in not only inferior rate performance but also unsatisfactory cycling stability. Therefore, designing high-power and structure stable anode materials is of great significance for practical LICs. Under this circumstance, graphene-based materials have been intensively explored as anodes in LICs due to their unique structure and outstanding electrochemical properties and attractive achievements have been made. In this review, the recent progresses of graphene-based anode materials for LICs are systematically summarized. Their synthesis procedure, structure and electrochemical performance are discussed with a special focus on the role of graphene. Finally, the outlook and remaining challenges are presented with some constructive guidelines for future research.
Collapse
|